
Detection and Mitigation of Security

Threats in Cloud Computing

Tianwei Zhang

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical Engineering

Adviser: Professor Ruby B. Lee

September 2017



c© Copyright by Tianwei Zhang, 2017.

All rights reserved.



Abstract

Infrastructure-as-a-Service (IaaS) clouds provide computation and storage services to

enterprises and individuals with increased elasticity and low cost. Cloud customers

rent resources in the form of virtual machines (VMs). However, these VMs may face

various security threats.

This dissertation proposes a new architectural framework, CloudMonatt, to detect

and mitigate potential security threats targeting customers’ VMs in cloud computing.

CloudMonatt monitors the security health of VMs and attests to customers if they

are getting their desired security. It takes actions to mitigate the potential threats

that can compromise the security properties requested. We design cloud management

and security services, and define new hardware-software modules in cloud servers to

provide the underlying measurements. We define secure communications protocols to

guarantee that the monitoring service takes place in an unforgeable way.

To demonstrate how CloudMonatt can enhance the VMs’ security, we consider a

variety of threats and their defenses that can be integrated in CloudMonatt. We first

consider threats on resource availability. We design a set of memory Denial-of-Service

(DoS) attacks: an attacker VM can abuse the shared memory resources to significantly

degrade a victim VM’s performance. Then we statistically monitor VMs’ resource

consumption behaviors to detect these attacks, and use resource throttling to mitigate

the availability threats.

Next, we consider subtle attacks on confidentiality, specifically cache side-channel

attacks. An attacker VM can exploit a shared CPU cache to steal information from

the victim VM. We collect VMs’ micro-architectural behaviors and use a combination

of signature and anomaly detection techniques to identify the existence of various

side-channel attacks. We use targeted VM migration to eliminate these confidentiality

threats.

iii



Then, we consider attacks on system integrity within a VM. We show how to

protect a VM’s system integrity from malware, using Virtual Machine Introspection

(VMI) to passively collect information for malware detection and also actively change

the VM’s execution paths to defeat the potential malware.

In summary, CloudMonatt is a general-purpose architecture for providing VM

security monitoring and protection to cloud customers. We hope CloudMonatt can be

a foundation for future work on protecting VMs’ security health in cloud computing.

iv



Acknowledgements

I would like to express my gratitude to my colleagues, friends and family, who gave

me great support to complete this dissertation.

First and foremost, I would like to thank my adviser, Professor Ruby B. Lee. This

dissertation would not be possible without her continuous support throughout my

Ph.D. I am deeply impressed by her enthusiasm for research, attention to details and

diligent work ethic. Her encouragement helped me overcome the difficulties in research.

Her guidance helped me improve the skills of critical thinking, writing and presenting,

which will bring significant benefits to my future career. I am extremely lucky to have

Professor Lee as my Ph.D advisor.

There are several other people who gave me technical support in my research. I

would like to express my sincere gratitude to Professor Jennifer Rexford who served

as my dissertation readers. Their valuable feedback helps improve this dissertation. I

would also like to thank Professor Niraj K. Jha and Professor Sharad Malik for serving

as examiners for my Final Public Oral presentation. I am very grateful to Professor

Yinqian Zhang from the Ohio State University, who has collaborated with me on two

research projects. He provided me with new and priceless perspectives in research.

He also served as one dissertation reader and offered useful suggestions to improve

this dissertation.

It has been a great pleasure to work with some talented and enthusiastic people

at the Princeton Architecture Laboratory for Multimedia and Security (PALMS).

Jakub Szefer helped me start my first research project and write my first paper. He

is a patient and responsible mentor. Pramod Jamkhedkar guided me in the research

project of secure cloud computing. We worked together to set up the physical servers

and cloud software framework, which is the foundation of this dissertation. Fangfei

Liu and I shared most of our Ph.D years. I really appreciate discussions with her, and

the research experience and codes she shared with me. I would also like to thank all

v



current PALMS members, Wei-Han Lee, Zecheng He and Guangyuan Hu, for the time

they spent listening to my work and providing me with insightful comments.

I would like to thank the administrative assistants, Lori Bailey, Stacey Weber,

Colleen Conrad, Roelie Abdi and Heather Evans for making everything easier. I

would like to acknowledge the financial support for my research from National Science

Foundation (NSF CNS-1218817) for the project “Cloud Security on Demand”, and

also from NSF 1526493 STARSS and SRC T3S.

I am really fortunate to have some best friends at Princeton University. I would like

to thank Yaosheng Fu, Haotian Pang, Sen Tao and Yun Wang in the EE department

for all their tremendous support and encouragement. I really enjoyed having dinner

with them in the weekends. I would like to thank Li Chen, Qixing Ji, Borui Liu and

Xin Teng. We had unforgettable memories together — hiking, road trips, playing

cards, BBQ, just to name a few. I want to give my most sincere gratitude to my

girlfriend, Xiaoyu Tang, for her endless love and support. I thank her for accompanying

me through the tough Ph.D journey. I thank her for sharing the joy when I made

achievements and comforting me when I was sad.

Last but most important, I want to thank my family. I would like to thank my

parents, Xinling Zhang and Yuan Liu, and my sister, Lu Zhang, for their unconditional

support both emotionally and financially over the years. They make enormous sacrifices

to help me make the achievements today. I cannot imagine a life without their love

and blessings.

vi



To my parents.

vii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1

1.1 Cloud Computing Definition . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Essential Characteristics . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 System Support . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Cloud Computing Models . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Deployment Models . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Attack Vectors in Cloud Computing . . . . . . . . . . . . . . . . . . . 8

1.4 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Past Work 15

2.1 Security Threats and Protections in Cloud Computing . . . . . . . . 15

2.1.1 Service Interface . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Cloud Managers . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4 Virtualized System . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



2.1.5 Shared Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.6 Cloud Services . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.7 What is Covered in This Dissertation . . . . . . . . . . . . . . 43

2.2 Cloud Security Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 VM Security Health Monitoring and Attestation 50

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Security on Demand Framework . . . . . . . . . . . . . . . . . 53

3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 CloudMonatt Architecture . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Design Goals of the Architecture . . . . . . . . . . . . . . . . 60

3.2.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.4 Monitoring and Attestation Protocols . . . . . . . . . . . . . . 66

3.2.5 VM Lifecycle and Attestation Responses . . . . . . . . . . . . 70

3.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Startup and Runtime Integrity . . . . . . . . . . . . . . . . . . 73

3.3.2 Runtime Confidentiality Breach through Covert Channels . . . 75

3.3.3 Runtime CPU Availability . . . . . . . . . . . . . . . . . . . . 77

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 Prototype Implementation . . . . . . . . . . . . . . . . . . . . 80

3.4.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 82

3.5 Appendix to Chapter 3: Security Verification . . . . . . . . . . . . . . 85

3.5.1 Verification Methodology . . . . . . . . . . . . . . . . . . . . . 86

3.5.2 External Verification . . . . . . . . . . . . . . . . . . . . . . . 90

3.5.3 Internal Verification . . . . . . . . . . . . . . . . . . . . . . . 94

3.5.4 Verification Discussions . . . . . . . . . . . . . . . . . . . . . . 102

ix



3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Detection and Mitigation of Availability Vulnerabilities 106

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1.1 Threat Model and Assumptions . . . . . . . . . . . . . . . . . 109

4.1.2 Hardware Memory Resources . . . . . . . . . . . . . . . . . . 111

4.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Memory DoS Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.1 Fundamental Attack Strategies . . . . . . . . . . . . . . . . . 117

4.2.2 Cache Contention (Storage Resources) . . . . . . . . . . . . . 119

4.2.3 Bus Contention (Scheduling Resources) . . . . . . . . . . . . . 125

4.2.4 Memory Contention (Combined Resources) . . . . . . . . . . . 130

4.3 Case Studies in Amazon EC2 . . . . . . . . . . . . . . . . . . . . . . 136

4.3.1 Attacking Distributed Applications . . . . . . . . . . . . . . . 138

4.3.2 Attacking E-Commerce Websites . . . . . . . . . . . . . . . . 141

4.4 Defense against Memory DoS Attacks . . . . . . . . . . . . . . . . . . 143

4.4.1 Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4.2 Mitigation Method . . . . . . . . . . . . . . . . . . . . . . . . 148

4.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5 Detection and Mitigation of Confidentiality Vulnerabilities 158

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.1.2 Threat Model and Assumptions . . . . . . . . . . . . . . . . . 165

5.2 Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2.1 Design Challenges and Overview . . . . . . . . . . . . . . . . 165

x



5.2.2 Signature Detection of Cryptographic Applications . . . . . . 167

5.2.3 Anomaly Detection of Side-channel Activities . . . . . . . . . 173

5.3 Mitigation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . 176

5.4.2 System Operations . . . . . . . . . . . . . . . . . . . . . . . . 177

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.5.1 Detection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 179

5.5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.6.1 Detecting Other Side Channels . . . . . . . . . . . . . . . . . 185

5.6.2 Potential Evasive Attacks . . . . . . . . . . . . . . . . . . . . 185

5.6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6 Detection and Mitigation of Integrity Vulnerabilities 188

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2 VM System Integrity Vulnerabilities . . . . . . . . . . . . . . . . . . . 193

6.2.1 Kernel-level Rootkits . . . . . . . . . . . . . . . . . . . . . . . 193

6.2.2 User-level Malware . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2.3 Network-level Application Attacks . . . . . . . . . . . . . . . . 196

6.3 Detection and Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.3.1 Kernel-level Rootkits . . . . . . . . . . . . . . . . . . . . . . . 197

6.3.2 User-level Malware . . . . . . . . . . . . . . . . . . . . . . . . 200

6.3.3 Network-level Application Attacks . . . . . . . . . . . . . . . . 202

6.4 CloudGuard Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.4.1 Architecture Requirements . . . . . . . . . . . . . . . . . . . . 204

xi



6.4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.5.1 CloudGuard Prototype . . . . . . . . . . . . . . . . . . . . . . 208

6.5.2 VMI Functionalities . . . . . . . . . . . . . . . . . . . . . . . . 210

6.5.3 Security Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.6.1 Rootkits Scanner . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.6.2 Anti-malware . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6.6.3 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7 Conclusions 228

7.1 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Bibliography 236

xii



List of Tables

2.1 Comparisons between different cloud security platforms . . . . . . . . 46

3.1 Types of monitoring and attestation requests. . . . . . . . . . . . . . 62

4.1 Testbed Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 Fisher Scores for different events. . . . . . . . . . . . . . . . . . . . . 170

5.2 Detection latency (µs) under different window sizes and sampling intervals184

5.3 CloudSuite Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.1 Modifications of the guest OS. . . . . . . . . . . . . . . . . . . . . . . 226

xiii



List of Figures

1.1 Two types of virtualization platforms . . . . . . . . . . . . . . . . . . 4

1.2 Three cloud service models. . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Attack vectors in cloud computing . . . . . . . . . . . . . . . . . . . . 9

2.1 Cloud-based attacks and defenses. . . . . . . . . . . . . . . . . . . . . 16

2.2 A taxonomy of cloud-based attacks. . . . . . . . . . . . . . . . . . . . 17

2.3 A taxonomy of cloud-based defenses. . . . . . . . . . . . . . . . . . . 18

3.1 Architectural overview of CloudMonatt . . . . . . . . . . . . . . . . . 61

3.2 Server architectures enabling security monitoring. . . . . . . . . . . . 64

3.3 Attestation Protocol and Key Management in CloudMonatt. . . . . . 69

3.4 Frequency distribution detection of three covert channels verses a benign

program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 CPU availability attacks and detection . . . . . . . . . . . . . . . . . 78

3.6 Implementation of attestation architecture. . . . . . . . . . . . . . . . 80

3.7 Performance for VM launching. . . . . . . . . . . . . . . . . . . . . . 84

3.8 Performance effect of runtime attestation. . . . . . . . . . . . . . . . 84

3.9 Attestation reaction times during VM runtime. . . . . . . . . . . . . 86

3.10 The structure of verification goals of CloudMonatt. . . . . . . . . . . 88

3.11 The external protocol in CloudMonatt. . . . . . . . . . . . . . . . . . 90

3.12 Internal protocol (interactions) in the cloud server . . . . . . . . . . . 96

xiv



3.13 Internal protocol (interactions) in the Attestation Server . . . . . . . 100

3.14 Internal protocol (interactions) in the Cloud Controller . . . . . . . . 101

4.1 An attacker VM (with 2 vCPUs) and a victim VM share multiple layers

of memory resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Shared storage-based and scheduling-based hardware memory resources

in multi-core cloud servers. . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Performance slowdown due to LLC cleansing contention. . . . . . . . 122

4.4 Performance slowdown due to multi-threaded LLC cleansing attack . 123

4.5 Performance slowdown due to adaptive LLC cleansing attacks . . . . 124

4.6 Performance slowdown due to bus saturation contention. . . . . . . . 126

4.7 Performance slowdown due to bus locking contention. . . . . . . . . . 129

4.8 Performance slowdown due to bus locking attacks. . . . . . . . . . . . 130

4.9 Performance slowdown due to memory channel and bank contention. 132

4.10 Performance slowdown due to memory flooding contention. . . . . . . 133

4.11 Performance slowdown due to multi-threaded and adaptive memory

flooding attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.12 Performance slowdown of the Hadoop applications due to memory DoS

attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.13 Latency and throughput of the Magento application due to memory

DoS attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.14 Probability distributions of the Protected VM’s memory bandwidth.144

4.15 Illustration of monitoring the Protected VM and identifying the

attack VM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.16 Architecture overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.17 KS statistics of the Protected VM for detecting and mitigating

memory DoS attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.18 Detection accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xv



4.19 Normalized performance of the Protected VM with throttling of

memory DoS attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.20 Request latency of Magento Application . . . . . . . . . . . . . . . . 155

4.21 Performance overhead of co-located VMs due to monitoring. . . . . . 156

5.1 Signatures of different applications based on the number of branches . 171

5.2 DTW distances of different cryptographic programs. . . . . . . . . . . 174

5.3 Monitoring cache activities under side-channel attacks . . . . . . . . . 175

5.4 Architecture Overview of CloudRadar . . . . . . . . . . . . . . . . . 177

5.5 ROC curve of crypto detection under two sampling intervals. . . . . . 181

5.6 ROC curve of attack detection under different window lengths. . . . . 182

5.7 ROC curve of attack detection under different sampling intervals. . . 183

5.8 Performance of different benchmarks under CloudRadar . . . . . . . 185

6.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.2 A screenshot showing the added protection service in the CloudGuard

OpenStack Dashboard. . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.3 Bypassing a function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.4 Killing a process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.5 The performance of rootkits scanner. . . . . . . . . . . . . . . . . . . 222

6.6 Static malware detection . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.7 The performance overhead of different cloud benchmarks under dynamic

malware detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.8 The performance overhead of different cloud benchmarks under firewall

protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.1 CloudMonatt can integrate methods from this dissertation to detect

and mitigate vulnerabilities in cloud computing. . . . . . . . . . . . . 231

xvi



Chapter 1

Introduction

Cloud computing offers large enterprises, small businesses and individuals new options

for IT deployment. In this computing model, third party cloud providers maintain

large-scale centralized computing resources and environments, and lease them out to

customers. Customers can outsource their computation and data storage tasks to

the cloud systems with great elasticity, low cost and high energy efficiency. Cloud

computing introduces new characteristics (e.g., resource pooling and broad network

access) to reduce operational costs for cloud providers, and offer high-quality services

to customers. However, these characteristics can also introduce new security threats

to customers’ computations and data. This dissertation designs new architectures

and methods to detect and mitigate security vulnerabilities in cloud computing. In

this chapter, we provide background information on cloud computing, and the attack

vectors in the cloud system.

1.1 Cloud Computing Definition

The National Institute of Standards and Technology (NIST) gives a definition of cloud

computing as follows [156]:

1



Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction.

1.1.1 Essential Characteristics

Based on this definition, cloud computing has several key features compared to

traditional computing models:

On-demand resources. Cloud providers enable customers to specify the computing

resources they need on demand, i.e., when they need it. Cloud providers typically

adopt a “pay-as-you-go” pricing model, which charges customers based on the duration

and amount of computing resources they use. This can greatly save customers upfront

infrastructure costs, as they do not need to purchase and maintain physical servers.

Broad network access. Cloud computing is a type of Internet-based computing

service that can be accessed via networks. Customers deliver their computation

tasks and data to the remote datacenters, and manage them remotely. This provides

flexibility to customers as they can access and share cloud services with others

regardless of their locations or the devices they use to access cloud services.

Resource pooling. Cloud providers manage and categorize computing resources

for different customers. The key technique for resource management is virtualization.

Cloud providers adopt virtualization software and hardware to isolate and allocate

physical resources to different customers efficiently. This helps achieve the feature

of on-demand resources for customers, as well as maximize resource utilization and

reduce costs for cloud providers.

Rapid elasticity. Cloud providers offer scalable services to customers. At runtime,

customers can scale up their computing resources as their computing needs increase,

or scale down when their computing needs decrease.

2



Measured service. Cloud providers utilize different metrics to monitor and measure

the provision of services. These metrics can price the cloud services in the “pay-as-

you-go” model. They can also achieve resource optimization and predictive planning:

cloud providers can conduct automatic on-demand scaling and failure recovery based

on these metrics.

1.1.2 System Support

The features of cloud computing are supported by the virtualization technique. Virtu-

alization enables different operating systems to run concurrently on the same physical

server. Each Operating System (OS) enjoys the same abstraction of having the entire

machine, while they physically share the same server. Each OS runs within a Virtual

Machine (VM). Virtualization is realized by both software and hardware.

Software support. In the software layer, virtualization is achieved by a privileged

software called the hypervisor or the Virtual Machine Monitor (VMM). This software

has several functions. First, it virtualizes the physical resources (CPU cores, memory,

I/O devices, etc.) so that multiple VMs can run concurrently on one physical

server. Second, it provides isolation between different VMs so each VM has its own

CPU context and memory space. Third, it can manage VMs’ activities, e.g., VM

launch/termination, suspension/resumption, migration, etc.

There are two types of virtualization approaches [231]: (1) full virtualization is

a technique that supports unmodified guest operating systems. The guest OSes can

issue the same privileged instructions and sensitive calls as those running on real

hardware. These instructions will be translated to executable instructions by the

hypervisor (Binary Translation virtualization), or directly handled by the hardware

(Hardware Assisted virtualization). (2) Para virtualization is another technique in

which the guest operating systems need to be modified to issue special hypercalls to

communicate directly with the hypervisor. This is called OS Assisted virtualization.

3



CPU Memory NIC Disk

Hypervisor

Host OS Guest OS

Control Apps

Host VM Guest VM

AppApp

(a) Type-1 bare-metal virtualization platform

CPU Memory NIC Disk

Host OS Hypervisor

Guest OS

Guest VM

AppApp

Control Apps

(b) Type-2 hosted virtualization platform

Figure 1.1: Two types of virtualization platforms

There are also two types of hypervisors: (1) a Type-1 native hypervisor runs

directly on the host’s hardware to control a privileged host VM and other guest VMs.

(2) A Type-2 hosted hypervisor runs inside an operating systems (called host operating

system). It manages the guest VMs from the host operating system. Figure 1.1 shows

the abstract structures of these two types of hypervisors.

Hardware support. In addition to software, new hardware is also designed to

support virtualization and enable the rapid growth of cloud computing. First, with

the development of multi-core processors, more and more processing units can be

integrated on the same server. This increases the cloud server’s capability to host

more VMs concurrently, improving resource utilization and power efficiency.

Second, processor vendors add hardware virtualization extensions into their pro-

cessors (e.g., Intel VT-x [9], AMD-V [5]). These extensions introduce new hardware

components, instructions and execution modes to handle virtualization functions. For

instance, Intel VT-x has several new features [9]. (1) VT-x introduces two operation

modes: VMX root operation, which is a fully privileged mode and intended for the

hypervisor; VMX non-root operation, which is not fully privileged and intended for

the guest VMs. (2) VT-x introduces a Virtual Machine Control Structure (VMCS) for

4



each VM to manage and store its non-root operations and VMX transitions. (3) Intel

VT-x uses the Extended Page-Table (EPT) hardware to support the virtualization

of physical memory. (4) VT-x includes new instructions to handle VMCS operations

and memory management. AMD-V has similar functions [5]. These hardware exten-

sions can significantly accelerate the virtualization speed and improve performance

compared to purely software solutions.

1.2 Cloud Computing Models

1.2.1 Deployment Models

Cloud computing offers different deployment models to deliver cloud services. These

deployment models represent different cloud environments and usage scenarios.

Private cloud. In a private cloud model, the cloud infrastructure is provisioned for a

single organization. This organization usually has dynamic or unpredictable computing

needs, or requires direct control over the computation environment. Generally the

private cloud system is installed behind firewalls under the control of its organization,

so it only permits access by authorized customers from this organization. Note that a

private cloud can be configured internally by the organization itself, or externally by

a third-party cloud provider.

Community cloud. A community cloud is mutually shared among several orga-

nizations from a specific community with common concerns (security, compliance,

jurisdiction, etc.). The cost is shared by these organizations so that this model can

save more cost than private clouds. Similar to private clouds, a community cloud

can be run and managed internally by the community, or externally by a third-party

provider.

5



Public cloud. A public cloud delivers its service for public use. The whole system

is usually shared by various organizations. Any customer with a credit card can

pay to rent cloud services under the “pay-as-you-go” pricing model. The customers

do not have direct control over the cloud system. A public cloud is usually run by

a commercial cloud provider, e.g., Amazon Web Services, Microsoft Azure, Google

Compute Engine, Rackspace, etc.

Hybrid cloud. A hybrid cloud combines two or more clouds, offering the benefits of

multiple deployment models. It allows a customer to extend the capacity or capability

of a cloud service by aggregation, integration or customization with another cloud

service. For instance, in a hybrid cloud composed of a private and a public cloud, the

organization can store protected data in its private cloud, and leverage computing

resources from the public cloud to run applications that rely on the data. This keeps

data exposure to a bare minimum because it is not storing sensitive data for long in

the public cloud component.

1.2.2 Service Models

In addition to deployment models, cloud computing also has different service models.

NIST defines three standard service models as Software-as-a-Service (SaaS), Platform-

as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). Figure 1.2 shows the

abstract architectures of these three service models. Inside the figures, gray blocks are

managed by the cloud provider and white blocks are managed by the customers. We

describe these services separately.

Software-as-a-Service. In the SaaS model, the cloud provider offers applications

software to customers as on-demand services. Specifically, the cloud provider manages

the infrastructure and platforms, installs applications software on the cloud servers,

and grants customers network accesses to the applications software. In this way, cloud

customers can use the applications directly via web browsers or program interfaces,

6



Virtualization Layer

OS OS

App

Hardware

AppApp App

(a) SaaS

Virtualization Layer

OS OS

App

Hardware

AppApp App

(b) PaaS

Virtualization Layer

OS OS

App

Hardware

AppApp App

(c) IaaS

Figure 1.2: Three cloud service models. Grey blocks are controlled by the cloud
provider and white blocks are controlled by the customers

without the need to install or configure applications on their own computers. Popular

cloud applications include email, storage, social networks, etc.

With the help of virtualization, the cloud provider can run multiple copies of one

application in different virtual machines to achieve scalability. Besides, one cloud

server can host multiple different cloud applications to maximize resource utilization.

Platform-as-a-Service. The PaaS vendor provides programming environments to

customers for running their applications. In this model, the cloud provider configures

and delivers computing platforms and environments, e.g., OSes, programming libraries

and databases, to customers, as a service. Then cloud customers can directly develop

and run their own applications inside this platform, without the complexity of building

and maintaining the underlying infrastructure such as servers and OSes. The cloud

provider uses the virtualization technique to provide context isolation and allocate

resources based on the application’s demands.

Infrastructure-as-a-Service. The cloud provider leases an entire virtual machine

(OSes, CPUs, memory, storage and networking) to customers, so they do not need to

purchase physical servers or network devices. When launching VMs, customers can

specify the desired computing resources. These options include the number of CPU

cores, memory size, disk size, operating systems, etc. Then the cloud provider selects

physical host servers and boots the VMs with the specified configurations on these

7



host servers. After the VMs are booted up, customers can access them remotely to

deploy and run arbitrary software inside their VMs.

The cloud customers are able to request the cloud provider to suspend, resume

or terminate their VMs at anytime during the VMs’ lifecycles. Besides, the cloud

provider may migrate customers’ VMs to different servers for energy optimization or

fault tolerance. Nowadays the cloud provider usually uses the live migration technique

in which the VMs can continue execution during the migration process. This live

migration can achieve near zero downtime, incurring negligible performance overhead

to the migrated VMs, and customers are not aware that their VMs are being migrated.

1.3 Attack Vectors in Cloud Computing

Cloud computing introduces new features to ease IT deployment for enterprises and

individuals. However, these new features also amplify existing vulnerabilities and

create new vulnerabilities. The Cloud Security Alliance has identified several common

threats that can compromise customers’ computations and data in clouds [102]. We

classify these threats into different categories based on the attack vectors. Figure 1.3

shows the abstract architecture of a cloud system with the potential attack vectors.

Service interface . To use a cloud service, a customer needs to register an account

on the cloud provider’s website. Then he can login to his account to manage the cloud

service. However, some cloud systems lack strong user identification and authentication.

This gives attackers opportunities to hijack customers’ accounts, and thus access or

compromise the critical areas of cloud services. Also, customers interact with the

cloud services with some User Interfaces (UIs) or Application Programming Interfaces

(APIs). If these interfaces are not designed correctly, an attacker can easily exploit

the vulnerabilities to steal credentials or compromise the cloud services.

8



Cloud 
Manager

Cloud
Customer

Network

Hypervisor

OS

App

Hardware

OS

App…

Cloud 
Servers

Figure 1.3: Attack vectors in cloud computing

Networks . Cloud computing requires customers and end-users to access cloud

services via networks. If the networks are not well protected, attackers can steal

sensitive data (e.g., personal health information, financial information, intellectual

property) during transmission. Besides, attackers can conduct Denial-of-Service (DoS)

attacks to prevent customers or end-users from accessing the data or applications in

the clouds.

Cloud managers . The cloud managers have administrative privileges to manage all

the cloud infrastructure and services. Untrusted or compromised cloud managers can

introduce great security risks to the customers in two ways. First, accidents happening

on a cloud system can cause permanent loss or leak of customers’ data. Such accidents

include accidental data deletion by cloud managers, or a physical catastrophe such

as a fire or an earthquake. Second, a malicious insider can easily access sensitive

information stored in the clouds, or compromise the cloud’s key management.

Virtualized system. System vulnerabilities in the cloud servers or virtual machines

can be exploited by attackers to intrude into the servers or VMs to steal data, take

control of the entire server system or disrupt service operations. First, cloud servers

introduce a new virtualization layer, which enlarges the attack surface. The hypervisor

9



has a large codebase size and inevitably contains security bugs that enable attackers

to compromise the servers [173]. Second, vulnerabilities within the guest operating

systems inside virtual machines also put the security of customers’ data and services

at significant risk.

Shared infrastructure. The cloud provider allocates different customers’ data,

applications or virtual machines on the same server. The sharing of the underly-

ing components and resources can lead to new cross-domain vulnerabilities, for a

multi-tenant infrastructure (IaaS), re-deployable platforms (PaaS) or multi-customer

applications (SaaS). A malicious domain can exploit the shared components to steal

sensitive information from another co-located domain. It can also abuse the shared re-

sources to conduct host-based Denial-of-Service attacks to compromise other domains’

resource availability.

Cloud services. Cloud computing provides elastic and low-cost cloud services.

However, malicious customers can abuse these cloud services to conduct attacks.

These customers can first acquire a large amount of cloud resources via free cloud

service trials or credit card fraud. Then they can abuse the cloud resources to

attack other customers, organizations or the cloud provider. Typical attacks include

Distributed DoS attacks, large-scale email spam and phishing attacks, brute-force

password guessing attacks, port scanning attacks, etc.

In Section 2.1, we will describe detailed example attacks for each attack vector.

1.4 Dissertation Summary

Given the severity of cloud threats and the large attack surface, this dissertation aims

to design a secure cloud system that can detect and mitigate potential security threats

against customers’ applications and data, thus providing a secure cloud environment

for customers.

10



Scope. We focus on public clouds with the Infrastructure-as-a-Service (IaaS) model.

Public clouds are open to the public and allow different organizations and individuals

to share the same system. So they have more complicated environments and more

security issues than private clouds. We focus on the IaaS service model as other types

of service models can be built on top of IaaS. So the security protection architecture

and methods presented in this dissertation can also be applied to other types of cloud

deployment and service models.

We consider the security threats caused by the shared infrastructure, and the

virtualized system. These are unique to cloud computing and need specific cloud-based

solutions. Some other types of threats (e.g., service interface, networks) are common

in traditional computing models and have been well studied. So they are not in the

scope of this dissertation. We aim to build secure cloud systems for customers, so we

trust the cloud managers and customers, and do not consider the threats caused by

malicious service providers or customers.

Summary. We design an end-to-end IaaS cloud architecture to protect customers’

virtual machines based on their demands. In current public clouds, customers have

different performance needs and they can choose computing resources and configu-

rations to match their needs. They may also have different security needs for their

computations and data in the clouds. However, current Service Level Agreements

(SLAs) in public clouds do not provide security specifications and the corresponding

services to satisfy customers’ security needs. Our architecture provides on-demand

security services for the cloud customers. It enables customers to request different

security properties for their VMs. Then it provides persistent security protection for

each VM throughout its life-time in the clouds.

In Chapter 3 we introduce the CloudMonatt architecture. CloudMonatt provides a

novel security service to cloud customers: it allows customers to specify their desired

security properties for virtual machines, and then monitors the security health of the

11



VMs during their lifetime in the cloud. Once CloudMonatt detects that the VMs are

facing potential threats that violate the customers’ security properties, it automatically

conducts remediation actions to eliminate the threats and keep the VMs healthy. We

show the basic and necessary settings and requirements to realize the monitoring

functionalities in the IaaS cloud context. We also show how to perform translations

between high-level security properties specified by the customers, and the low-level

platform measurements. We use several case studies implemented in CloudMonatt to

exemplify the usage of this monitoring service.

In the next three chapters, we detail the security mechanisms that can be adopted

by cloud providers to defeat different threats. These can all be integrated into

the CloudMonat framework. Chapter 4 considers availability threats and Chapter

5 considers confidentiality threats. Both of these two types of threats come from

the shared infrastructure. We design novel methods to detect and mitigate such

vulnerabilities, using statistical tests and existing hardware features. Chapter 6

considers system integrity threats from the guest OS in a leased virtual machine. We

adopt the Virtual Machine Introspection (VMI) technique to defend against these

vulnerabilities.

More specifically, Chapter 4 introduces availability threats caused by shared cloud

servers, and provides a defense solution. In particular, we discuss memory Denial-of-

Service attacks. We find that a hostile VM can intentionally generate memory resource

contention and significantly degrade the performance of the victim VM co-located

on the same server. We design a set of attack techniques that target different layers

of hardware memory resources to enhance the attack effects. We evaluate these

attack techniques in the lab as well as in public cloud settings. We then design and

implement a novel and effective approach to detect and mitigate all known types

of such availability attacks with small overhead. Our detection strategy provides a

generalized method for detecting deviations from the normal behavior of the protected

12



VM, by statistically comparing reference and monitored probability distributions of

important runtime measurements. Once the malicious VM is detected, we use a

resource throttling scheme to reduce the attacker’s execution speed to minimize the

attack effects.

Chapter 5 introduces a new method to defeat one type of confidentiality threat:

cache side-channel attacks on multi-tenant cloud servers. In this type of attacks,

a hostile VM can generate contention on the CPU cache and then steal a victim

VM’s critical information through observing the victim’s footprint on the shared

cache. We observe that the attacker VM always has anomalous cache behaviors when

the information is leaking from the victim to the attacker. To detect the existence

of such information leakage, we first use signature-based detection to identify the

critical moment that the victim is accessing sensitive information, which is also the

moment that the attacker can steal sensitive information from the victim. Then we use

anomaly-based detection to check if the attacker VM has anomalous cache behaviors at

this critical moment. By doing so, we are able to detect the cache side-channel attacks

with high fidelity. Once an attacker is detected, we eliminate this confidentiality threat

by migrating the attacker VM to a different processor package or cloud server.

Chapter 6 considers the system integrity threats within the guest VMs. Customers’

VMs may face different integrity vulnerabilities at runtime, e.g., kernel-level rootkits,

user-level malware, or network-level attacks. We summarize the features of these

vulnerabilities and the corresponding defense solutions. Then we exploit the Virtual

Machine Introspection method to design security tools to protect the VMs from these

vulnerabilities. These security tools are located in the hypervisor layer. They monitor

the VMs’ memory, disk and networks for malicious activities and actively change the

VMs’ executions or recover the compromised data to defeat the potential attacks.

This enables the cloud provider to protect the VMs’ system integrity for customers.

13



Organization. The dissertation is organized as follows: Chapter 1 provides the

background information about cloud computing and its security issues. It also

summarizes the contribution of this dissertation. Chapter 2 discusses past work with

regard to security threats and security protection mechanisms in cloud computing.

Chapter 3 introduces CloudMonatt, our cloud security health monitoring framework,

architecture and protocol. We also present the evaluation and security verification of

this architecture. Chapter 4 considers the availability property. We present memory

DoS attacks and the corresponding defense against these attacks. Chapter 5 considers

confidentiality attacks. We present a novel defense against cache side-channel attacks

in the cloud. Chapter 6 considers the integrity of VMs from a compromised guest

OS. We present methods to monitor and protect virtual machines’ system integrity.

Chapter 7 concludes this dissertation and discusses future work.

14



Chapter 2

Past Work

Chapter 1 briefly discusses the cloud computing background and potential security

threats existing in cloud systems. In this chapter, we review the past work related

to cloud computing security. We systematically describe the existing cloud-based

attacks and vulnerabilities discovered by researchers, as well as the new approaches

and architectures designed in prior work to defeat these attacks and enhance cloud

system security (Section 2.1). We describe the security threats we consider in this

dissertation and compare our methods proposed with the past work. We also review

the secure cloud platforms from commodity products and past research literature, and

compare them with the work we propose in this dissertation (Section 2.2). Specific

past work relevant to each chapter will be discussed in that chapter.

2.1 Security Threats and Protections in Cloud

Computing

Traditional cyber security threats, e.g., network vulnerabilities, operating system

attacks, are also common in cloud computing. Besides, the unique features of cloud

computing introduce new risks to public cloud providers and customers. First, cus-

15



Attack Vector

Service Interface

Networks

Cloud Managers

Virtualized System

Shared Infrastructure

Cloud Service

Web-based attacks

Network protocol attacks
Denial-of-Service attacks

Insider attacks

VM image attacks
Hypervisor-based attacks

Colocation attacks
Side/covert-channel attacks
Row hammer attacks
Denial-of-Service attacks

Cloud abuse attacks

Eliminating service interface vulnerabilities

Defeating DoS attacks

Protecting data in clouds
Verifying cloud services

Managing VM images

Introspecting VMs
Eliminating hypervisor’s vulnerabilities

Avoiding co-location
Reducing side-channel leakage

Preventing abuse of cloud services

Hardening cloud management

Attacks Defenses

Management software attacks

Inside VM attacks

Fraud service attacks

Eliminating network protocol vulnerabilities

Defeating row hammer attacks
Optimizing resources

Figure 2.1: Cloud-based attacks and defenses.

tomers need to entrust the cloud providers to deploy computation and storage tasks

for them. So the security states and resource management of the cloud services are

not transparent to or controllable by customers. Customers heavily rely on the cloud

providers to protect their data and computation. Second, cloud systems usually adopt

the multi-tenancy feature, where cloud services belonging to different customers are

allocated on the same platform. This feature can efficiently improve the whole system’s

resource utilization and reduce the operational costs. However, this can bring new

vulnerabilities due to the infrastructure sharing. Third, the cloud providers usually

use the virtualization technique to manage resources. This extra software layer can

make the systems more complicated and add new attack vectors.

In this section, we review the existing cloud vulnerabilities from past work. We also

talk about the defense solutions proposed in prior work to eliminate these cloud-based

vulnerabilities. Basically we categorize these vulnerabilities and defenses based on

16



At
ta

ck
 

Ve
ct

or

Se
rv

ic
e 

In
te

rf
ac

e

N
et

w
or

ks

C
lo

ud
 M

an
ag

er
s

Vi
rt

ua
liz

ed
 S

ys
te

m

Sh
ar

ed
 In

fr
as

tr
uc

tu
re

C
lo

ud
 S

er
vi

ce

W
eb

-b
as

ed
 a

tta
ck

s

Ne
tw

or
k 

pr
ot

oc
ol

 a
tta

ck
s

De
ni

al
-o

f-S
er

vic
e 

at
ta

ck
s

XM
L 

sig
na

tu
re

 w
ra

pp
in

g 
at

ta
ck

Cr
os

s 
Si

te
 S

cr
ip

tin
g 

at
ta

ck
St

or
ag

e 
Pr

ot
oc

ol
 a

tta
ck

Sh
or

t U
RL

 a
tta

ck
Ba

nd
w

id
th

 d
ep

le
tio

n

Re
so

ur
ce

 d
ep

le
tio

n

M
an

ag
em

en
t s

of
tw

ar
e 

vu
ln

er
ab

ilit
ie

s

O
S 

vu
ln

er
ab

ilit
y

Ba
ck

do
or

Se
ns

iti
ve

 in
fo

rm
at

io
n 

le
ak

ag
e

Hy
pe

rv
iso

r v
ul

ne
ra

bi
lit

ie
s

Pr
im

e-
Pr

ob
e

Fl
us

h-
Re

lo
ad

CP
U

M
em

or
y

I/O Po
w

er

In
sid

er
 a

tta
ck

s

M
an

ag
em

en
t s

of
tw

ar
e 

at
ta

ck
s

Fr
au

d 
se

rv
ic

e 
at

ta
ck

s

VM
 im

ag
e 

at
ta

ck
s

Hy
pe

rv
iso

r-b
as

ed
 a

tta
ck

s

In
sid

e 
VM

 a
tta

ck
s

Co
lo

ca
tio

n 
at

ta
ck

s

Si
de

-c
ha

nn
el

 a
tta

ck
s

Ro
w

 h
am

m
er

 a
tta

ck
s

De
ni

al
-o

f-S
er

vic
e 

at
ta

ck
s

Cl
ou

d 
ab

us
e 

at
ta

ck
s

M
al

w
ar

e

[1
04

, 2
03

]
[2

03
]

[1
61

]
[9

7]

[2
15

]

[1
83

]

[2
41

, 5
7,

 3
9]

[5
7,

 3
9]

[1
82

, 4
2,

 1
15

, 2
48

, 2
26

]

[2
55

, 1
22

, 2
70

, 1
07

]

[2
46

]

[2
49

]

Bo
tn

et

UD
P/

IC
M

P 
flo

od
Pe

rio
di

c 
bu

rs
t

[1
57

, 1
45

]
[9

1,
 1

18
]

TC
P 

SY
N

DN
S 

re
fle

ct
io

n
[1

57
, 2

02
, 1

96
, 1

97
]

[1
57

]

CP
U

Ca
ch

e
Bu

s 
Co

ve
rt-

ch
an

ne
l a

tta
ck

s
[1

65
]

[2
44

]
DR

AM
 [1

74
]

[2
23

]

Co
m

m
on

 V
ul

ne
ra

bi
lit

ie
s

M
al

w
ar

e
[3

9,
 2

61
]

[3
9]

Co
m

m
on

 V
ul

ne
ra

bi
lit

ie
s

I/O
 E

m
ul

at
io

n
[1

73
]

[1
71

]

L1 LL
C[2

69
]

[1
44

, 1
20

]

L2 LL
C[2

47
]

[1
44

]

LL
C

Pi
pe

lin
e

Sc
he

du
le

r[1
03

]
[2

74
]

Ca
ch

e
Bu

s
[2

24
, 1

03
, 2

42
, c

ha
pt

er
 4

]
[2

42
, c

ha
pt

er
 4

]
DR

AM
[1

60
, c

ha
pt

er
 4

]
Ne

tw
or

k
Di

sk
[4

4,
 1

17
, 3

1]
[2

53
, 6

7,
 1

17
, 3

1]

Da
ta

 e
nc

ry
pt

io
n

Fa
ul

t t
ol

er
an

ce

Ph
ys

ic
al

 is
ol

at
io

n[5
4] [2

68
]

[1
57

]
De

ni
al

-o
f-S

er
vic

e 
at

ta
ck

[1
57

]
Em

ai
l s

pa
m

 a
tta

ck
[1

57
]

Pa
ss

w
or

d 
gu

es
sin

g 
at

ta
ck

[1
57

]
SQ

L 
in

je
ct

io
n 

at
ta

ck [1
57

]
Po

rt 
sc

an
 a

tta
ck

As
su

re
d 

De
le

tio
n

[2
21

]

F
ig

u
re

2.
2:

A
ta

x
on

om
y

of
cl

ou
d
-b

as
ed

at
ta

ck
s

d
is

cu
ss

ed
in

th
is

ch
ap

te
r.

D
as

h
ed

b
ox

es
sh

ow
th

e
n
ew

w
or

k
w

e
d
id

in
th

is
d
is

se
rt

at
io

n
.

17



At
ta

ck
 

Ve
ct

or

Se
rv

ic
e 

In
te

rf
ac

e

N
et

w
or

ks

C
lo

ud
 M

an
ag

er
s

Vi
rt

ua
liz

ed
 S

ys
te

m

Sh
ar

ed
 In

fr
as

tr
uc

tu
re

C
lo

ud
 S

er
vi

ce

El
im

in
at

in
g 

se
rv

ic
e 

in
te

rfa
ce

 v
ul

ne
ra

bi
lit

ie
s

El
im

in
at

in
g 

ne
tw

or
k 

pr
ot

oc
ol

 v
ul

ne
ra

bi
lit

ie
s

De
fe

at
in

g 
Do

S 
at

ta
ck

s

M
es

sa
ge

 in
te

gr
ity

 c
he

ck
in

g 
an

d 
va

lid
at

io
n

Cl
ie

nt
 ID

 v
al

id
at

io
n

CA
PT

CH
A

M
ov

in
g 

ta
rg

et
 d

ef
en

se
Se

rv
ic

e 
re

pl
ic

at
io

n
M

an
da

to
ry

 A
cc

es
s 

Co
nt

ro
l

[2
41

]
De

sig
ni

ng
 s

ec
ur

e 
hy

pe
rv

iso
rs

Pa
rti

tio
ni

ng
Ra

nd
om

iza
tio

n
At

ta
ck

 d
et

ec
tio

n

Re
so

ur
ce

 p
ar

tit
io

n
At

ta
ck

 d
et

ec
tio

n

Re
so

ur
ce

 u
til

iza
tio

n 
ad

ju
st

m
en

t

Pr
ot

ec
tin

g 
da

ta
 in

 c
lo

ud
s

Ha
rd

en
in

g 
cl

ou
d 

m
an

ag
em

en
t

Ve
rif

yin
g 

cl
ou

d 
se

rv
ic

es

M
an

ag
in

g 
VM

 im
ag

es

El
im

in
at

in
g 

hy
pe

rv
iso

r’s
 v

ul
ne

ra
bi

lit
ie

s

In
tro

sp
ec

tin
g 

VM
s

Av
oi

di
ng

 c
o-

lo
ca

tio
n

Re
du

ci
ng

 s
id

e-
ch

an
ne

l le
ak

ag
e

De
fe

at
in

g 
ro

w
 h

am
m

er
 a

tta
ck

s 

O
pt

im
izi

ng
 re

so
ur

ce
s

Pr
ev

en
tin

g 
ab

us
e 

of
 c

lo
ud

 s
er

vic
es

[9
5,

 7
9,

 1
70

, 1
27

, 9
3,

 2
04

, 8
1,

 c
ha

pt
er

 6
]

[1
04

]
[1

61
]

[9
7]

[1
25

]
[9

8]
[2

13
, 2

15
]

En
cr

yp
tio

n

[1
54

, 2
27

]

VM
 la

un
ch

 p
la

ce
m

en
t

[1
80

, 2
00

, 1
31

, 1
41

, 2
38

, 8
3]

[2
29

, 1
39

, 2
71

, 2
38

, 2
39

, 1
43

, 1
42

]
[c

ha
pt

er
 5

]

Er
ro

r-C
or

re
ct

in
g 

Co
de [8

, 2
56

]
[c

ha
pt

er
 4

]

[1
37

]
Ab

us
e 

de
te

ct
io

n

Ex
ec

ut
io

n 
m

on
ito

rin
g

[2
11

]
Ex

ec
ut

io
n 

iso
la

tio
n[

21
2]

O
bl

ivi
ou

s 
RA

M
 

In
te

gr
ity

 c
he

ck
in

g
Da

ta
 p

ro
ce

ss
in

g 
iso

la
tio

n

[1
89

, 2
52

]
[2

07
, 2

06
, 2

05
, 7

6,
 1

49
]

[5
3,

 2
08

] [2
60

, 1
92

, 2
59

]
En

cr
yp

tio
n 

ve
rifi

ca
tio

n
Fa

ul
t-t

ol
er

an
ce

 v
er

ifi
ca

tio
n

As
su

re
d 

de
le

tio
n 

ve
rifi

ca
tio

n
Ph

ys
ic

al
 is

ol
at

io
n 

ve
rifi

ca
tio

n

[2
23

] [5
4,

 3
3]

[2
21

, 1
79

, 1
58

]
[2

68
]

Pr
ot

ec
tin

g 
hy

pe
rv

iso
r i

nt
eg

rit
y

[2
40

, 3
4]

Re
du

ci
ng

 h
yp

er
vis

or
 a

tta
ck

 s
ur

fa
ce

[1
29

, 2
17

, 5
8]

[3
6,

 1
13

]
Ru

nt
im

e 
VM

 m
ig

ra
tio

n [
27

2,
 1

38
, 1

59
]

[1
33

]
M

em
or

y 
iso

la
tio

n
[5

5]
Vu

ln
er

ab
ilit

y 
de

te
ct

io
n

[5
5,

 1
21

]

[8
0]

De
m

ot
iva

tin
g 

at
ta

ck
s

[2
18

]

F
ig

u
re

2.
3:

A
ta

x
on

om
y

of
cl

ou
d
-b

as
ed

d
ef

en
se

s
d
is

cu
ss

ed
in

th
is

ch
ap

te
r.

D
as

h
ed

b
ox

es
sh

ow
th

e
n
ew

w
or

k
w

e
d
id

in
th

is
d
is

se
rt

at
io

n
.

18



the attack vectors, as described in Section 1.3. Figure 2.1 shows the taxonomy of the

attacks and defenses we are going to discuss in this chapter. Figures 2.2 and 2.3 show

the detailed attacks and defense approaches.

2.1.1 Service Interface

Customers access and manage cloud services via the cloud providers’ websites or APIs.

If these cloud service interfaces are not designed securely, attackers can exploit their

bugs and vulnerabilities to manipulate customers’ cloud usage, and hijack customers’

accounts.

2.1.1.1 Service Interface Attacks

Web-based attacks . XML signature wrapping attacks were demonstrated to com-

promise the control interfaces of popular cloud services (e.g., Amazon EC2 [104, 203],

Amazon S3 [203], Eucalyptus cloud software [203]). Basically customers and cloud

providers’ websites use Simple Object Access Protocol (SOAP) to exchange messages.

Customers generate SOAP messages including their desired actions as well as the

signatures of each action in the XML format, and send the messages to the cloud

websites. The cloud websites execute the operations if these signatures are valid.

However, an attacker can intercept a SOAP message, move the customer’s actions to

a “Wrapper” structure, and add malicious actions. As the customer’s actions have not

been modified but just moved, their signatures are still valid. However, the website

will also conduct the attacker’s malicious actions in addition to the original customers’

ones. With this technique, attackers can inject arbitrary cloud control operations for

execution, as if they come from the customers.

Somorovsky et al. [203] discovered Cross Site Scripting (XSS) attacks in the control

interface of Amazon Web Services. Basically they observed that the Amazon online

shop has the same credentials and login session as the Amazon Web Services. Then

19



an attacker can inject arbitrary HTML codes to the Amazon online shop website. The

injected codes allow attackers to extract and steal customers’ cookies of the online

shop, which are also the cookies of the Amazon Web Services. Using these cookies,

the attacker can break into the customers’ accounts of Amazon Web Services and

steal sensitive data.

2.1.1.2 Service Interface Defenses

Eliminating service interface vulnerabilities. Vulnerabilities from cloud service

interfaces can be exploited by attackers to hijack cloud accounts. So it is necessary to

reduce such threats in the web interfaces and APIs. Prior work to defeat web-based

vulnerabilities can also be used to enhance the security of the cloud interface. For

instance, to mitigate the XML signature wrapping attacks against cloud interfaces,

Gruschka and Iacono [104] proposed a method to validate SOAP messages in two

steps. First they validated the XML schema by checking the integrity of both the

SOAP headers and bodies. Second, they proposed security policies related to wrapping

attacks and verified if these policies were satisfied for the cloud web interfaces. These

checking procedures can prevent attackers from modifying SOAP messages. Input

validation can also help protect the service websites from XSS attacks.

2.1.2 Networks

As customers need to access their data and computations in the clouds via networks,

the networking system can also bring different types of security threats to the cloud

services.

2.1.2.1 Network Attacks

Network protocol attacks. Network protocols provide data encryption, integrity

protection, and identity authentication for the cloud services. However, if the commu-

20



nication protocols are not designed correctly, adversaries standing between customers

and the cloud systems can impersonate customers and gain unauthorized accesses

to their data stored in the clouds. Mulazzani et al. [161] discovered three such

attacks against the SaaS storage application, Dropbox. (1) Direct download attack:

in Dropbox, customers fetched file blocks by submitting their host IDs and the hash

values of these blocks. However, Dropbox did not check the host IDs’ permissions to

these blocks. So an attacker could exploit this vulnerability to download any data, as

long as he had an arbitrary ID (not necessarily the ID of the file owner), and the hash

value of the requested data block. (2) Stolen host ID attack: Dropbox used a unique

host ID to link a customer’s devices to his Dropbox account. If this host ID was stolen

by the attacker, all this customer’s files could be linked to the attacker’s account, and

downloaded by the attacker. (3) Hash value manipulation attack: Dropbox used the

de-duplication technique to merge multiple data blocks with the same hash value from

different files into one. An attacker could deliberately counterfeit a fake hash value and

upload it to the Dropbox. If a block with the same hash value from another customer

existed, then Dropbox created a link from this data block to the attacker. Then the

attacker could gain unauthorized access to this data block. These vulnerabilities were

fixed by Dropbox.

Georgiev and Shmatikov [97] demonstrated a set of attacks to steal critical files

from Microsoft OneDrive and geo-location information from Google online map. SaaS

applications usually used short URLs to replace long URLs to denote file locations

in networks. An adversary could simply scan all the possible short URLs to identify

the valid ones that direct to file locations. Accesses to these short URLs would be

redirected to the long URLs which could reveal customers’ critical information and

files, e.g., user locations, photos, etc.

Denial-of-Service attacks. In the traditional computing model, one popular attack

is a (Distributed) Denial-of-Service (DoS) attack, where the attacker tries to induce a

21



huge amount of network traffic from many different sources to the victim machine,

saturating its network bandwidth and depleting its network resources. Such a threat

is more prominent in cloud computing as the availability of the cloud services heavily

depends on the network availability,

DoS attacks can be classified into two categories. The first one is bandwidth

depletion, where the attacker tries to use up the network bandwidth and delay the

victim’s traffic. Two common techniques of bandwidth depletion DoS attacks are

UDP flood and ICMP flood [157]. Liu [145] proposed a DoS attack in which an

attacker could figure out the network topology and the bottleneck links in a cloud

networking system. Then the malicious VMs can generate a large amount of UDP

traffic to saturate these bottleneck links. Feng et al. [91] proposed Shrew attacks,

which invoked periodic bursts of network traffic. Such burst traffic could saturate the

network bandwidth in the cloud system and affect the victim’s resource availability,

without being detected by conventional detection approaches. Idziorek et al. [118]

designed Fraudulent Resource Consumption attacks, which sent burst network traffic to

the victim in a subtle way, making the target victim consume more network bandwidth

and pay more money for their VMs.

The second approach is resource depletion, where the attacker tries to deplete the

network resources on the victim host servers. Two common techniques of such attacks

are TCP SYN flood and DNS reflection [157]. Somani et al. [202] proposed Economic

Denial of Sustainability attacks, to cause economic loss of the target victim under

the network resource depletion DDoS attacks. Shea and Liu [196, 197] evaluated the

resistence of different benchmarks on different virtualization platforms against TCP

SYN attacks.

22



2.1.2.2 Network Defenses

Eliminating network protocol vulnerabilities. Network protocols for cloud

applications must be carefully designed to prevent attackers from compromising the

communications between customers and their services. Mulazzani et al. [161] suggested

to include validation of host IDs in the network protocols for secure authentication.

Georgiev and Shmatikov [97] suggested to introduce CAPTCHAs or other methods in

the protocols to separate human users from malicious automated scanners.

Defeating DoS attacks. Common solutions of defeating DoS attacks include intru-

sion detection systems, firewalls, etc. Besides, researchers have proposed new methods

to effectively mitigate DoS vulnerabilities using the elastic computing resources from

the cloud systems. Jia et al. [125] used cloud services to build a moving target defense

mechanism to mitigate DDoS attacks. Upon detecting DDoS attacks against target

instances in a cloud system, they quickly instantiate new instances at different network

locations and replicate the attacked instances to the new ones while shutting down the

attacked ones. This can effectively restrict attackers’ target into a small set of replica

instances and separate benign clients away from them. Gilad et al. [98] proposed

Content Delivery Network (CDN) on Demand to defeat DDoS attacks against web

applications at low cost. The idea is to replicate protected web pages to different web

servers located in different cloud systems, and assign the nearest web server to each

client. Each cloud system has a manager to monitor the replicated web servers. If one

manager identifies that some web servers can not respond normally, it will activate the

CDN-on-Demand mechanism and deploy new servers in the cloud system to protect

the availability of web services.

23



2.1.3 Cloud Managers

Customers outsource computations and data storage to the public clouds. They

entrust the cloud providers to protect their applications and data. An untrusted cloud

manager can bring significant security risks to customers. It can steal or tamper with

customers’ sensitive data, or compromise service availability by disabling servers and

networks.

2.1.3.1 Cloud Manager Attacks

Management software attacks. There exists vulnerabilities in the management

software that could be exploited by the attackers to compromise the cloud manager.

Sze et al. [215] discovered some vulnerabilities inside the OpenStack cloud software

that enabled an attacker who took control of one computing server to extend his

controls over the entire cloud system, affecting other VMs on other computing nodes

or even bringing down the whole cloud. They demonstrated three attacks: (1) The

attacker could extract the credentials and tokens of each customer who had VMs on

this computing server. Then the attacker could manage the customer’s cloud services

and resources arbitrarily. (2) The attacker could generate fake messages and send

them to any other computing servers to control the VMs on these servers. They could

also change the root-password of the VMs. (3) The attacker could falsify VM status

and resource utilization of any VMs on any compute nodes to the cloud manager.

This fraudulence could change the cloud manager’s VM/resource management and

scheduling decisions, causing havoc to the whole cloud system.

Insider attacks. Rocha and Correia [183] demonstrated practical insider attacks in

IaaS. If a malicious insider had root privileges on a cloud server, it could easily steal

customers’ confidential data inside the VMs. They presented four attacks: (1) the

insider could create the memory snapshot of the victim VM, and retrieve cleartext

24



passwords from the snapshot. (2) Similarly, the insider could steal private keys from

the VM snapshot. (3) In addition to the memory, the insider could also clone the

VM’s disk and extract confidential data from the disk image. (4) If the cloud server is

protected, the insider could migrate the VM to a vulnerable server and conduct the

above insider attacks.

Fraud service attacks. The cloud providers offer high-performance and security

services to customers at higher prices. These include data encryption [223], fault

tolerance prevention [54], assured deletion [221] and physical resource isolation [268].

However, deployment of such services is not transparent to customers. Even if the

cloud providers commit to providing these services in the service level agreement

(SLA), dishonest providers may cheat the customers who purchase these services, and

do not actually apply the services. They are motivated to do so because this can save

operational cost and it is hard for customers to find if their VMs have the desired

protection.

2.1.3.2 Cloud Manager Defenses

Hardening cloud management. How to enhance the security of management

activities is an important task for the cloud providers. Generally there are three

directions. The first one is access control. Sun et al. [213] outlined a strawman design

of a security cloud operating system, which uses Mandatory Access Control (MAC) to

control cloud management services and customers’ instances, and prevent attacks from

propagating across cloud services. Similarly, Sze et al. [215] applied Mandatory Access

Control and capabilities to confine interactions among different modules in the cloud

management software. This can prevent malicious cloud servers from compromising

the controller server and other trusted cloud servers.

The second one is execution monitoring. Sun et al. [211] designed CloudArmor to

detect and prevent malicious cloud management activities conducted by adversaries.

25



CloudArmor monitors the syscall traces of each cloud service command, and establishes

training models for these commands. When an adversary compromises one command

and injects malicious behaviors, the syscall trace will deviate from the correct one,

and CloudArmor will detect and reject the compromised command.

The third direction is secure execution isolation. Sun et al. [212] designed Pileus to

protect and isolate critical management operations. Pileus splits each cloud operation

into different event handlers, and allocates them to trustworthy cloud nodes that

satisfy the cloud security policies. This can effectively minimize the risk of attack

from other users.

Protecting data in clouds. Encryption can be used to protect data confidentiality

in the cloud storage. Santos et al. [189] designed Excalibur, which uses Attribute-based

Encryption to protect data in the clouds. Excalibur allows customers to encrypt data

with customer-defined policies. Then a centralized monitor is introduced to check each

server’s configurations. Only the servers that satisfy the policies can decrypt and access

customers’ data. Yang et al. [252] used a similar idea to achieve fine-grained access

control in cloud storage. Customers divide their data into several blocks and encrypt

each block with a different key. These keys are encrypted by the Attribute-based

Encryption, associated with certain access structures defined by the data owner. Only

the users whose attributes satisfy the access structure in the ciphertext can decrypt

the keys and obtain different granularities of information.

Encryption alone is not sufficient to guarantee confidentiality as data access

patterns can also leak sensitive information. Researchers proposed to use Oblivious

RAM (ORAM) to eliminate this vulnerability. In ORAM, the sequence of physical

addresses accessed is independent of the actual requested data, so the cloud provider

and customers can access the encrypted data while completely hiding data access

patterns. Past work proposed different methods to optimize its performance and

enhance its security. To reduce the bandwidth overhead, distributed ORAMs are

26



introduced, which partition an ORAM into different parts and distribute these parts

to different locations so access requests can be distributed and served in parallel

[207, 206, 205]. To reduce the access response time, novel schedulers are designed,

which schedule the tasks of serving request and data processing in different priorities

[76]. To enable data sharing, access control is introduced to ORAM systems [149],

in which different users with different permissions can access the data based on the

access control rules defined by the data owner.

Data integrity in the cloud storage is also important. Bowers et al. [53] designed

HAIL to enable file integrity checking. The cloud customer distributes a file with

multiple replicas across a number of servers. To check the integrity of this file, he can

randomly choose a data block and fetch it from all the servers. Inconsistency in a small

portion of blocks indicates that the integrity of these blocks are compromised and the

cloud provider can recover these blocks based on other intact ones. Stefanov et al.

[208] designed the Iris system, which exploits the Message Authentication Code (MAC)

and Merkle-tree to provide scalable authentication of file integrity in the clouds.

Customers are concerned about the security of their sensitive data outsourced

to untrusted public clouds. Past work have proposed methods to create isolated

environments for data processing and storage in untrusted cloud environments. Zhang

et al. [260] designed Sedic to preserve data confidentiality using Hybrid clouds.

Sedic splits the computations and keeps tasks associated with sensitive data in the

organization’s private clouds while moving the rest to the public cloud. Schuster et al.

[192] designed VC3 to achieve the same goal. VC3 exploits Intel SGX technique to

create trusted isolated memory regions for customers’ data and code and prevent them

from being stolen or compromised by untrusted clouds. Zhai et al. [259] designed

CQSTR, which creates cloud containers to manage software execution and control data

flow. CQSTR enables customers to specify security policies and then use the cloud

containers to prevent data leakage and misuse against untrusted cloud applications.

27



Verifying cloud services. Past work designed methods for customers to verify

whether their cloud services are under certain protection as the cloud provider claimed.

The first example is data confidentiality, where customers want to verify if their data

are encrypted by the cloud provider and stored as ciphertext in the clouds. Dijk et al.

[223] designed Hourglass to achieve this goal. The key element in Hourglass is the

hourglass function. This hourglass function can convert input data to output data

(i.e., hourglass format) and convert output data back to input data. However, it takes

a long time to transform input to the hourglass format and a short time to transform

the hourglass format back to the input. In Hourglass, the cloud provider is required

to encrypt customers’ data, convert the ciphertext to the hourglass format using the

hourglass function, and store the hourglass format of ciphertext in cloud. When a

customer wants his data, the cloud provider needs to convert the hourglass format of

ciphertext back to the ciphertext, and then decrypt the ciphertext to get the plaintext

for the customer. To verify data encryption, the customer can randomly select a data

block and ask the cloud provider to show the hourglass format of encrypted ciphertext

of this block. A honest cloud provider can directly fetch the hourglass format in its

storage. A misbehaving cloud provider who only stores the plaintext of customers’

data needs to take a long time to encrypt the data block and calculate the hourglass

format of the ciphertext on-the-fly, which will be observed by the customer.

The second example is data fault-tolerance, where customers want to verify if

the cloud provider stores multiple replicas of their files for fault-tolerance. Bowers

et al. [54] designed Remote Assessment of Fault Tolerance (RAFT) to achieve this

goal. In RAFT, the customer can challenge the cloud provider to retrieve a set of

random blocks from one of his files. If a honest cloud provider stores multiple replicas

of this file, it can fetch different blocks from different replicas. This task can be done

concurrently in a very short time. If a misbehaving cloud provider only stores one

copy of this file, then it has to fetch the blocks one by one from this single copy,

28



leading to a much longer response time. By measuring the response time, the customer

can verify if his file is stored with multiple replicas. Armknecht et al. [33] proposed

Mirror, a method to achieve the same goal. Mirror shifts the burden of constructing

replicas from customers to the cloud providers and therefore saves customers’ network

bandwidth and cost.

The third example is assured deletion, where customers want to verify if the data

they deleted previously have been permanently removed from the cloud storage. Tang

et al. [221] proposed FADE, a system to achieve assured deletion using policy-based

cryptographic operations. Customers encrypt their data using a data key, which is

further encrypted with a control key associated with certain policies (e.g., access

control, expiration time). When customers try to delete the data in the clouds, the

control key will also be permanently destroyed so the plaintext of the data will never

be leaked. Rahumed et al. [179] improved this system by adding version control

functionality. Each file is split into different blocks, and each block is encrypted with

a different key. Then different versions of one file can share the same common blocks.

When one version is removed, its unique blocks will also be assured deleted, while

the common blocks will still be kept for use. Mo et al. [158] further improved the

assured deletion protocol to reduce the number of protected keys. They designed a

Recursively Encrypted Red-black Key tree to store all the keys of each file. Then

customers only need to store the root key to derive each leaf key for file encryption

and decryption. They can add or delete keys with flexibility and elasticity.

The fourth example is dedicated server placement, where customers want to verify

whether there are other VMs co-locating on the same cloud servers with their VMs.

Zhang et al. [268] designed HomeAlone, which exploited the side-channel technique on

the L2 cache to detect co-resident VMs. The customers can use their VMs to prime

and probe some reserved space in the L2 cache to detect if there are activities from

other VMs.

29



2.1.4 Virtualized System

The virtualized operating systems and hypervisors on cloud servers can introduce

security threats to customers’ data and computation.

2.1.4.1 Virtualized System Attacks

VM image attacks. Public clouds allow third parties (publishers) to create VM

OS images, and upload them to the cloud app store for customers to use. When a

customer chooses an image from the app store, the cloud provider initializes a VM

from this image. The sharing of OS images can be exploited by malicious parties to

steal private and sensitive information.

First, a VM image in the app store can contain malware and OS vulnerabilities.

Balduzzi et al. [39] discovered that 98% of Windows images and 58% of Linux images

in the Amazon EC2 cloud contain out-of-date software with critical vulnerabilities.

Besides they also identified two Windows images infected by malware. Zhang et al.

[261] identified several prevalent Common Vulnerabilities and Exposures (CVE) in

public images in Amazon EC2 cloud.

Second, malicious publishers can deliberately install backdoors in the VM images,

so they can login into customers’ VMs originating from these images. There are

three ways to achieve this: the first one is to leave the publishers’ public keys in the

images ([241, 57, 39]); the second one is to configure the SSH applications to enable

password-based authentication and leave the publishers’ passwords in the images

([39]). The third one is to extract the SSH host key pairs from their own VMs, as

VMs originating from the same image sometimes generate the same SSH host key

pairs [57].

Third, publishers may carelessly leave sensitive information in the VM images.

This brings significant privacy threats to the publishers in different ways [57, 39]: (1)

30



Some images contain their publishers’ cloud service API keys, which allow a malicious

customer to hijack the publishers’ accounts and create his own VMs at the expense of

the publishers. (2) Some images have the publishers’ SSH keys and credentials. A

malicious customer can use these leaked keys to access the publishers’ VMs. (3) Some

images contain the shell histories, which have commands that may disclose passwords

or credentials. (4) Browser’s histories can be found in some published images. (5)

Publishers’ names, affiliations and photos can be found in some images. (6) Even if

the publishers delete such information from the image filesystem, the customers are

still able to recover these files using some tools.

Hypervisors-based attacks. A hypervisor is responsible for managing VMs and

virtualizing hardware resources. Although hypervisors are typically much smaller

than commodity OSes, common hypervisors still have fairly large code sizes. So it

is impossible to eliminate security bugs or vulnerabilities inside the hypervisors. A

malicious customer can exploit these vulnerabilities to take control of the hypervisors

and conduct privilege escalation or Denial-of-Service attacks. Past work have studied

the existing vulnerabilities in the hypervisors.

Perer-Botero et al. [173] characterized vulnerabilities of the Xen and KVM hy-

pervisors from the Common Vulnerabilities and Exposures (CVE) database, and

categorized them into eleven types: (1) virtual CPUs state saving/storing; (2) vCPUs

scheduling on symmetric multiprocessor systems; (3) address translation in software

MMU handled by the hypervisors; (4) incorrect handling of interrupt or timer mecha-

nisms; (5) I/O and networking emulation; (6) I/O emulation in paravirtualized mode;

(7) VM exits to the hypervisor from the VM; (8) Hypercalls; (9) VM management;

(10) remote management software; (11) Hypervisor add-ons and extensions.

Pek et al. [171] introduced interrupt attacks to crash a virtualized system. This

type of attacks exploits the vulnerabilities in the Direct Device Assignment technique,

which assigns one physical I/O device exclusively to one VM and grants this VM full

31



control and direct access to the device. A malicious VM can re-configure the devices

to generate arbitrary I/O interrupts, i.e., Message Signaled Interrupts (MSIs). The

I/O Advanced Programmable Interrupt Controller (APIC) translates these MSIs to

Non-Maskable Interrupts (NMI). Some NMIs can cause PCI System Errors and make

the whole system halt.

Inside VM attacks. Since a virtual machine runs a full OS, all the malware

that work in non-virtualized OSes can be invoked directly inside a VM without any

modifications. This makes a VM as vulnerable as traditional systems.

2.1.4.2 Virtualized System Defenses

Managing VM images . It is important to protect the VM images in the cloud app

store and eliminate potential vulnerabilities to their publishers and the retrievers. Wei

et al. [241] designed Mirage, an image management system to address the security

concerns of VM images using several approaches: (1) Access control: Mirage uses

two types of access permissions, checkout and checkin, to carefully define who can

revise or retrieve the images. (2) Image filters: Mirage uses repository-specific filters

and user-specific filters to remove sensitive information from the publishers’ original

images. (3) Provenance tracking: Mirage tracks the derivation history and associated

operations of the images for accountability. (4) Image maintenance: Mirage provides

a set of maintenance services to the dormant images, e.g., malware detectors, license

compliance managers and security patchers.

Eliminating Hypervisor’s vulnerabilities . Past work have designed various mech-

anisms to enhance the security of hypervisors. The first direction is to design new

secure hypervisors. McCune et al. [154] introduced TrustVisor, a tiny hypervisor to

provide integrity for applications’ critical data and codes. TrustVisor introduces the

secure guest mode for the execution of applications, and uses x86 hardware virtualiza-

tion support to enforce memory isolation between the hypervisor, the host OS and

32



applications. TrustVisor also creates a software micro-TPM instance for each applica-

tion to perform integrity attestation. Vasudevan et al. [227] designed, implemented

and verified an open-source eXtensible and Modular Hypervisor Framework (XMHF).

XMHF consists of a XMHF core and small supporting libraries. A hypervisor applica-

tion can extend the XMHF core and the basic hypervisor functionalities provided by

this core to implement desired security functionalities.

The second direction is to protect the integrity of hypervisors. Wang et al. [240]

designed HyperSafe, a lightweight approach to providing runtime integrity for Type-I

hypervisors. HyperSafe uses the Write Protect (WP) bit to protect the hypervisor

pages from being compromised by malicious programs. HyperSafe also sets up a target

table containing all legitimate destinations for indirect control flow instructions to

enforce the hypervisor program’s control flow at runtime. Azab et al. [34] designed

HyperSentry to measure the runtime integrity of a hypervisor. A remote client who

wants to verify the hypervisor can use the Intelligent Platform Management Interface

(IPMI) to trigger the server into the System Management Mode (SMM) and measure

the hypervisor’s code, data and CPU state. TPM-based protocols are exploited for

secure communication.

The third direction is to reduce the hypervisors’ privileges and functionalities.

NoHype [129, 217] is designed to eliminate the hypervisor during the VM’s runtime,

thus reducing the attack surface from the hypervisor. Nohype achieves this by pre-

allocating processor cores and memory for each VM during VM launch, assigning

virtualized I/O devices directly to VMs to avoid needing the hypervisor to do I/O

emulation, and modifying the guest OS to cache host system configuration for later

use. Butt et al. [58] proposed self-service cloud computing to restrict the host VM’s

privileges. It splits the administrative privileges between a system-wide VM and

per-client administrative VMs. The per-client administrative VMs are able to perform

some privileged system tasks for their own VMs, while the system-wide VM cannot

33



inspect the code, data or computation of client VMs. Then security and privacy are

preserved even if the host VM is compromised.

Introspecting VMs. A traditional method to defeat inside VM vulnerabilities is to

place security tools inside the target VM. However, these security tools are located in

the vulnerable system and hence are highly susceptible to the attacks. So researchers

proposed to place the security tools in the hypervisor layer, making them introspect

into the VM and monitor the activities inside the VMs. This technique is called

Virtual Machine Introspection (VMI) [95, 79, 170].

One challenge for VM introspection is to narrow down the semantic gap between

the views inside and outside the VMs. The first solution is to reconstruct the internal

views of the guest VM in the hypervisor or secure monitoring VMs. Jiang et al. [127]

cast the guest VM’s semantic views of the OS into the hypervisor for monitoring in

a non-intrusive manner. Fu et al. [93] designed VM-Space Traveler (VMST), which

redirects the data related to the introspected VM’s OS state to the monitoring VM

for VM introspection.

The second solution is to reconstruct the suspect programs of the guest VM

in the hypervisor or secure monitoring VMs. Srinivasan et al. [204] designed the

process out-grafting technique, which relocates the suspect process to run side-by-side

with the security tools. Dolan-Gavitt et al. [81] designed Virtuoso to automatically

convert in-guest VM programs into out-of-guest VM programs that reproduce the

same behaviors.

2.1.5 Shared Infrastructure

In a public cloud system, VMs or applications belonging to different customers can

be placed on the same server, thus sharing the infrastructure. Although software

isolation techniques carefully isolate memory spaces and CPU contexts between virtual

machines and processes, the underlying hardware resources are still shared by different

34



customers’ VMs and applications running on the same physical machine. This multi-

tenant feature creates new vulnerabilities in cloud computing compared to private

datacenters or personal computers. A malicious customer can exploit the shared

infrastructure to attack the co-located VMs or applications. He first needs to conduct

co-location attacks to achieve server co-location. Then he can conduct side/covert-

channel attacks to steal the victim’s data, row hammer attacks to tamper with the

victim’s data, or DoS attacks to compromise the victim’s resource availability.

2.1.5.1 Shared Infrastructure Attacks

Co-location attacks. In an IaaS system, a VM co-location attack refers to the

threat that the victim VM’s location (i.e., its host server) can be identified by the

attacker, and then the attacker can launch his VM on the same host server as the

victim VM. Co-location attacks are the prerequisite for other shared infrastructure

attacks.

Ristenpart et al. [182] first proposed network-based approaches to conduct co-

location attacks in the Amazon EC2 cloud. An attacker can launch many VM instances

in the same availability region as the victim VM, and use several ways to check if his

VMs co-locate with the victim VM: (1) the attacker can use TCP SYN traceroute to

identify the network traffic’s first hop (which is the Dom0 in the host Xen server) of

his VM and the victim VM. A matching Dom0 IP address between his VM and the

victim VM indicates co-location. (2) The attacker can measure the network packet

round-trip time between his VM and the victim VM. A smaller value indicates the two

VMs share the same machine. (3) The attacker can check the internal IP addresses of

his VM and the victim VM. Numerically close internal IP addresses indicate the two

VMs are probably on the same server.

After Amazon EC2 eliminated these placement vulnerabilities, some other work

proposed new methods to achieve co-location. Bates et al. [42] exploited the network

35



flow watermarking covert channel: the attacker injects network activities to each of

his malicious VMs while measuring the victim VM’s network performance. A network

delay from the victim VM indicates that its performance is affected by the malicious

VM, and thus co-location is confirmed. Herzberg et al. [115] proposed a co-location

method using two steps. First the attacker needs to identify the victim VM’s internal

IP address. The attacker sets up a client machine to connect to the web service

(e.g., downloading a file or a web page) of the victim via its public IP address. The

attacker also uses a prober VM to send a large number of network packets to each

possible internal address in the address block range. If the attacker’s client machine

observes that the victim’s performance is affected by the prober VM, then the victim

VM’s internal address is the one that the prober VM is flooding. Second the attacker

performs the Time To Live (TTL) scan using the internal addresses to measure the

number of hops between his VM and the victim VM. A zero TTL indicates potential

co-residence.

Xu et al. [248] used the DNS lookup mechanism to find the victim VM’s internal

IP address. Then they verified the co-location using two steps. The first step is

pre-filtering unlikely pairs of co-located VMs by checking the /24 prefix in the internal

IP addresses: if two VMs do not share the /24 prefix of internal IP addresses, they are

not likely to be co-located. The second step is to use the bus locking covert channel to

justify co-location: they construct a bus locking covert channel between each pair of

VMs. If two VMs can communicate with each other via this covert channel, then they

are located on the same physical machine. Varadarajan et al. [226] also exploited the

bus locking covert channels to evaluate the financial costs of co-location in different

public clouds.

Side/Covert-channel attacks. When the attacker and victim domains are on the

same server, the attacker can exploit the shared CPU cache to extract crypto keys from

the victim using cache side-channel attacks. The adversary has two basic techniques

36



to capture information on the cache. The first one is Prime-Probe. The adversary

repeatedly accesses some cache lines and measures the time: a large time means a

cache miss, indicating this cache set has been accessed by the victim. By checking

the cache state altered by the victim, the adversary can obtain the cache accesses of

the victim’s program, and recover confidential data. Zhang et al. [269] first exploited

the Prime-Probe technique to perform side-channel attacks on L1 cache in the Xen

platform. Then Prime-Probe attacks on the last level cache were proposed to break

different ciphers in different virtualized platforms [144, 120]. The second method is

Flush-Reload. This requires the attacker and victim VMs to share some memory

pages that contain critical instructions, which is enabled by the hypervisor’s memory

deduplication technique. The attacker VM flushes some cache lines in the cache using

the clflush instruction then lets the victim execute, and then reloads these lines and

measures the access time. A short access time at the reload indicates a cache hit so

this line has been accessed by the victim VM. The attacker can obtain the victim

VM’s critical instruction traces and deduce the confidential data. Yarom et al. [255]

demonstrated a Flush-Reload attack against the RSA cipher in different virtualized

platforms. Irazoqui et al. [122] showed a similar attack against the AES cipher. Zhang

et al. [270] showed the Flush-Reload technique could be used to attack different

security-critical applications in the PaaS platform. Gruss et al. [107] designed cache

template attacks using the Flush-Reload technique, which could automatically

profile and extract information from arbitrary programs.

Another confidentiality attack is the covert-channel attack, where a malicious

trojan inside the victim VM attempts to transmit secrets to another spy VM secretly.

The trojan can generate certain characteristics using the shared hardware as the

covert channels. Okamura and Oyama [165] proposed a cross-VM covert channel using

CPU loads: the trojan can execute programs to transmit bit “1” and stay idle to

transmit bit “0”. The spy VM can measure its own CPU usage to infer the trojan’s

37



CPU activities and thus decode the information. A more popular covert channel is

established on the shared caches [247, 144]: the trojan can access some cache sets to

transmit bit “1” and do nothing to transmit bit “0”. The spy VM can check the states

of these cache sets to infer the covert channel information. Wu et al. [244] proposed

to use bus activities as the medium to transmit information: the trojan can lock the

memory bus for bit “1” and release the bus for bit “0”. Then the spy VM can extract

the information by checking the bus locking states. Pessl et al. [174] proposed to use

DRAM row buffer contention to establish covert channels. The trojan can occupy the

bank row buffer for bit “1” and empty the bank row buffer for bit “0”. By accessing

the row buffer and testing if the access is a row hit or row miss, the spy VM is able to

decode the sensitive information.

Row hammer attacks. Modern DRAM chips have large capacity and high density

of memory cells. So a memory cell can suffer from disturbance errors due to electrical

interference from the neighboring cells. Specifically, when an adversary rapidly and

repeatedly accesses the DRAM with some specific patterns, certain data bits, in the

memory region where the adversary has no access permission, can be flipped due to

the electrical interactions. Such DRAM hardware vulnerability is called a row hammer

attack. Xiao et al. [246] exploited this vulnerability to attack a para-virtualized

platform from a guest VM. In their attacks, an adversary VM keeps accessing some

selected data in the DRAM to flip critical bits in this VM’s page table entry. By

doing so the page table entry is changed to point to a forged page table without being

noticed and checked by the hypervisor. The forged page table translates this VM’s

virtual page to a physical page that does not belong to this VM. So the attacker VM

can steal or tamper with critical data from co-located VMs.

Denial-of-Service attacks. Hardware sharing can also be exploited to conduct

host-based Denial-of-Service attacks. The adversary VM can generate contention on

38



different types of shared resources to degrade the victim VM’s performance, or to

increase its own performance.

The first resource in consideration is the CPU. Grunwald and Ghiasi [103] proposed

to flush the shared processor pipeline to affect the victim’s performance. They achieved

this by executing denormalized floating point values to generate an underflow so the

pipeline has to be flushed to handle the exceptional condition. Zhou et al. [274]

designed a CPU resource attack where an attacker VM can exploit the boost mechanism

in the Xen credit scheduler to increase its scheduling priority and obtain more CPU

resource than paid for.

The second case is the memory system. Varadarajan et al. [224] proposed the

resource-freeing attack, where an attacker can intentionally increase the victim VM’s

usage of one type of resource (e.g., network I/O) to force it to release other types

of resources (e.g., CPU caches), so that a co-located VM controlled by the attacker

may use more of the latter resources. Grunwald and Ghiasi [103] studied the effect of

trace cache evictions on the victim’s execution with Hyper-Threading enabled in an

Intel Pentium 4 Xeon processor and showed that a malicious thread can slow down

the victim’s performance by a factor of 10-20. Woo and Lee [242] explored frequently

flushing shared L2 caches on multi-core platforms to slow down a victim program.

They studied saturation and locking of buses that connect L1/L2 caches and the

main memory [242]. Moscibroda and Mutlu [160] studied contention attacks on the

schedulers of memory controllers.

The third case is DoS on the I/O resources and networking. I/O resource contention

can also bring performance degradation to the victim. For network resources, Bedi

et al. [44] proposed a network-initiated DoS attack where an attacker VM causes

contention in the Network Interface Controller to degrade the victim’s performance.

For disk resources, Yang et al. [253] proposed a method to reverse-engineer the I/O

scheduling in the virtualization platform, which assists the attacker to design specific

39



Denial-of-Service attacks on the disk I/O resources. Chiang et al. [67] designed a

more efficient adaptive attack, which identifies the I/O usage pattern of the victim,

and synchronizes the attack phase with the victim. Huang and Lee [117] proposed

cascading performance attacks, in which an attacker VM exhausts the I/O processing

capabilities of the Xen Dom0, thus degrading the victim VM’s performance. Similarly,

Alarifi and Wolthusen [31] exploited VM migration to deplete Dom0’s capability of

I/O processing.

The last case in consideration is DoS for power. An attacker can deplete the host

server’s power consumption to make the victim’s cloud services, or even the whole

server break down. Xu et al. [249] designed a power attack to destroy a datacenter

using the power over-subscription technique. The idea is to launch instances on the

host server and run power-hungry programs to make the server reach power peak

capacity. So the overall power consumption will exceed the quota, making the power

unit fail and the server shut down.

2.1.5.2 Shared Infrastructure Defenses

Avoiding co-location. One method to eliminate vulnerabilities caused by shared

infrastructure is to avoid or reduce the possibility of co-location between attacker

and victim domains. This goal can be achieved via static VM launch or dynamic

VM migration. During VM launch, some cloud providers offer dedicated VM options,

in which the customers’ VMs can use a dedicated server exclusively without sharing

with other VMs. New VM placement policies were designed [36, 113] to reduce the

probability that the attacker and victim VMs are sharing the same cloud server. At

VM runtime, some work [272, 138, 159] proposed using Moving Target Defense to

frequently migrate the VMs to add difficulty of VM co-location for attackers.

Reducing side-channel leakage. There are several directions for the cloud

providers to defeat cache side-channel attacks in the clouds. The first one is to

40



prevent cache sharing by dividing the cache into different zones for different VMs or

applications. This can be achieved by software or hardware methods. For software,

some work [180, 200] exploited the page coloring technique to partition the cache.

Kim et al. [131] designed STEALTHMEM to partition the LLC. It provides each VM

a number of stealth pages which can not be replaced in the cache. For a software

method using recent hardware performance feature, Liu et al. [141] exploited the

Intel Cache Allocation Technology to protect the victim VM’s critical data from

being replaced by the attacker VM in the LLC. New hardware caches were designed

[238, 83] to partition the caches by ways or sets to defeat side-channel attacks due to

cache evictions.

The second idea is to use randomization in the system design so the attackers

do not get any useful information. For software, system clock measurements were

fuzzed to disrupt the attackers’ observations [229, 139]. Zhang et al. [271] designed

Duppel, which periodically performs cache cleansing during VM’s executions and to

add noise into the attacker’s observations. For hardware, new caches were designed to

randomize memory-to-cache mappings [238, 239, 143] and cache fetching [142].

Defeating row hammer attacks . Cross-VM row hammer attacks can be defeated

via hardware or software solutions. For hardware, the Error-Correcting Code (ECC)

memory can correct one single-bit error and detect 2-bit errors. This makes the row

hammer attacks much harder [133]. For software, Brasser et al. [55] proposed two

solutions: the first one is to extend the system bootloader to identify vulnerable

memory pages. Row hammer exploitation tools [132, 105] are executed offline to

discover the memory pages that could be tampered with by the row hammer attacks.

Then the bootloader marks these vulnerable memory pages unavailable at boot-time

so these pages will not be used at runtime. The second one is to extend the OS kernel

to enforce a strong isolation of the physical memory of different system entities, e.g.,

user and kernel spaces. It ensures that memory between different entities is physically

41



separated by at least one row, so one entity cannot affect the memory of another entity.

Irazoqui et al .[121] designed MASCAT, a static code analysis tool to scan application

binaries and detect potential microarchitectural attacks, such as row hammer attacks.

This tool leverages the signature-based detection technique to search the binary files

for implicit characteristics that microarchitectural attacks usually exhibit in their

design. In row hammer attacks, the attacker needs to continuously bypass the cache

and access a fixed DRAM location. This is used as the signature of row hammer

attacks.

Optimizing resources. To alleviate DoS attacks caused by resource contention, the

cloud provider can optimize the resource usage between different domains and reduce

performance interference. For memory contention, one method is to partition the

hardware memory resources between different domains (e.g., Intel Cache Allocation

Technology [8]). For I/O contention, the cloud server can monitor and manage the

bandwidth of I/O traffic to prevent resource depletion. It can also use Direct Device

Assignment [256] to physically eliminate I/O interference between each VM. These

solutions are widely adopted by public cloud providers. For the power resource,

Li et al. [137] proposed PAD to defeat datacenter power attacks under the over-

subscription setting. PAD creates a virtual battery pool to enable load sharing and

adjust power utilization of each rack. It can detect and shave power spikes to avoid

power consumption failure.

2.1.6 Cloud Services

Malicious parties can abuse the cloud services to conduct large-scale attacks.

2.1.6.1 Cloud Service Attacks

Cloud abuse attacks . In an IaaS cloud system, the attackers can deploy a large

number of VMs and use these VMs as botnets for cybercrime. Miao et al. [157]

42



identified several popular attacks in the clouds through analyzing the network flow logs.

These attacks include Denial-of-Service attacks, email spam attacks which send email

spam to multiple SMTP servers, brute-force password attacks which try to connect to

the victim VM via SSH and guess the password, SQL injection attacks which send

different SQL queries to exploit software vulnerabilities, and port scan attacks which

scan for the active ports in the victim VM and figure out the applications or services

it is running.

2.1.6.2 Cloud Service Defenses

Preventing abuse of cloud services. There are different ways to prevent cyber-

crime from happening in the cloud systems. The first way is to detect the misuse

of the cloud services. Doelitzscher et al. [80] designed an anomaly detection system

to analyze the cloud usage behaviors of cloud customers and identify malicious VMs

in the IaaS clouds. It builds behavior models considering user-specific as well as

cloud-wide behaviors, and uses the machine learning technique to discover anomalous

VMs. The second way is to demotivate attackers by increasing the cost of cloud abuse

attacks. Szefer and Lee [218] designed a method, which requires the customers to pay

a small deposit using bitcoin before using the cloud services. If they use the service

legally, the cloud provider will pay back the deposit to the customers. If malicious

behaviors are detected, the cloud provider will keep the deposit as reimbursements.

So the attackers lose the motivation due to the increased attack cost.

2.1.7 What is Covered in This Dissertation

A cloud system may face threats from different attack vectors, as introduced above in

this section. In this dissertation, we attempt to study and address some security threats

caused by the shared infrastructure and virtualized system. These attacks and solutions

are unique to cloud computing. For the shared infrastructure threats, we consider the

43



Denial-of-Service attacks (availability) and side-channel attacks (confidentiality). The

root cause of these two types of attacks is hardware sharing due to the multi-tenancy

feature. For the virtualized system, we study the solutions of defeating inside VM

attacks (integrity) using the virtualization technology.

We do not cover the following threats. Threats from the service interface (e.g.,

web attacks) and networks (e.g., DoS attacks) are not new to cloud computing: they

were discovered long before the cloud era, and their mechanisms and solutions have

been well studied. So we do not consider these two attack vectors in this dissertation.

We trust the cloud providers in our threat model, so threats from malicious cloud

managers are not covered in this dissertation. Also the threats of abusing cloud service

for cybercrime are not in the scope of this dissertation.

We trust the cloud providers and assume that they can operate the cloud services

correctly and deploy new security services for customers. So threats from malicious

cloud managers are not covered in our threat model. This dissertation attempts to

protect customers’ VMs, not to defeat malicious customers. So the threats of cloud

service abuse are not in the scope of this dissertation.

In Chapters 4, 5 and 6, we discuss attacks and defenses of availability, confidentiality

and integrity properties.

Availability. In Chapter 4, we introduce novel DoS attacks caused by shared memory

system. On modern cloud servers, physical CPUs are usually not shared by different

VMs so CPU contention is not common. I/O contention is widely studied. However,

hardware memory system is widely shared by VMs and the severity of memory

contention is not well understood. Due to advances in computer hardware design,

caches and DRAMs are larger and their management policies more sophisticated, and

prior memory DoS attacks introduced in Section 2.1.5.1 may not work in modern

cloud settings. We propose new memory DoS attack techniques on modern cloud

servers. We evaluate the attacks in the lab and public cloud settings.

44



Past work offer solutions (Section 2.1.5.2) to achieve performance isolation and

fairness. However, these solutions are designed for benign applications. They may

fail to mitigate resource contention caused by intentional memory abuses. Besides,

they only focus on one specific resource and cannot solve all the resource contention

attacks. In Chapter 4, we present a novel and generalizable method to detect and

mitigate all known DOS attacks on the memory resources.

Confidentiality. Side-channel defenses in prior work (Section 2.1.5.2) require sig-

nificant modifications to the hardware, hypervisors or guest OSes, making them less

practical for deployment in current cloud datacenters. Besides, some of the solu-

tions are only effective for one specific type of attacks. In Chapter 5, we propose

a new method to detect the existence of side-channel threats, and then mitigate

them. Our method is based on the anomaly detection technique, and able to detect

different types of side-channel attacks with high fidelity. Our solution is designed as a

lightweight extension to the hypervisor, which does not require new hardware support

or hypervisor/OS modifications.

Integrity. VM introspection methods introduced in Section 2.1.4.2 can be used for

attack detection, malware analysis and forensics in cloud systems where the guest

VMs’ owners have full control of the privileged hypervisor. In public clouds, the

cloud provider has the opportunity to provide this service to customers. We show

how this can be done in Chapter 6. We integrate the VM introspection in a public

cloud framework and show how the cloud provider can use this technique to enhance

different aspects of security of customers’ VMs on demand, without allowing cloud

customers to control the hypervisor of the cloud server.

45



Vendors
Cloud Server Virtual Machine Inside VM Resource Multi-tenant

Integrity Checking Integrity Checking Monitoring Monitoring Attack Detection

Academia
CloudVerifier [191]

CloudVerifier [191]
Excalibur [189]

OpenStack
Trusted Computing

Monasca [20]
Pools [21]

Amazon Web
Inspector [3] CloudWatch [2]

Services
Microsoft Azure Antimalware [15] Application Insights[16]
Google Compute

Stackdriver [23]
Engine

Our Work Chapter 3 Chapter 3 Chapter 6 Chapter 3 Chapters 4, 5

Table 2.1: Comparisons between different cloud security platforms

2.2 Cloud Security Platforms

From the past work, we can see that security threats come from various entities and

activities in the clouds, and the corresponding solutions are designed specifically for

these threats. It is desirable for the cloud providers to use a unified cloud security

platform to monitor and protect customers’ VMs in comprehensive ways. In this

section, we review some of these platforms from both the research literature and from

commodity products, and make comparisons with our work in this dissertation. Table

2.1 shows such comparisons between different platforms from academia, open-source

communities, and public cloud vendors. We classify their functions into different

categories.

Cloud server integrity checking . This function is to verify the server configuration

and platform integrity before launching VMs. Some research papers proposed methods

to conduct such checking. Schiffman et al. [191] designed CloudVerifier, which checks

the integrity of the software stack on the cloud server before allocating VMs on

the server. Santos et al. [189] designed Excalibur, which checks each host server’s

configurations and allocates customers’ VMs on the servers whose configurations match

their specified policies. OpenStack designed the Trusted Computing Tool service [21],

which exploits the Intel TXT technology [10] for VM allocation. It measures the

integrity of the BIOS, the hypervisor and the host OS on each cloud server, and

46



guarantees that customers’ VMs are placed on the cloud servers with verified and

secure software stacks. Since our architecture is developed from OpenStack, it is also

capable of checking server integrity.

Virtual machine integrity checking . This function is to check the OS image before

launching the VM from it. CloudVerifier [191] proposed to measure the integrity of

the VM image and launch the VM only when the image is verified. Our CloudMonatt

architecture is also able to achieve the same function (Chapter 3).

Inside VM monitoring. This service is to detect vulnerabilities inside VMs at

runtime. Amazon Web Services designed Inspector [3]. Amazon Inspector requires cus-

tomers to install a security agent inside their VMs. Then the security agent monitors

the activities inside the VM, including the network, file system, and process activities.

Relevant data are collected, analyzed and compared to a set of security rules to check

if there are any suspicious activities inside the VMs. Amazon Inspector is able to

identify Common Vulnerabilities and Exposures (CVE), system mis-configurations,

authentication vulnerabilities, insecure network protocols, etc. Microsoft Azure de-

signed Antimalware [15]. It also requires customers to install security tools inside

their VMs. Then these tools are able to identify and remove viruses, spyware and

other malicious software, with configurable alerts when known malicious or unwanted

software attempts to install itself or run inside the VMs. Our architecture is also

able to achieve similar functions. Different from the above methods, our architecture

exploits the VM introspection method to monitor activities in an unmodified VM and

does not require customers to install or configure anything inside their VMs. (Chapter

6).

Resource monitoring . A lot of platforms provide customers with dynamic resource

usage statistics and allow them to define their own metrics related to these resource

statistics, and set alarms for resource consumptions. OpenStack designed Monasca

[20], a Monitor-as-a-Service solution to provide VMs’ resource consumption status

47



to customers. Monasca is able to monitor the VMs’ CPU, memory and disk usage.

Amazon Web Services designed CloudWatch [2], enabling customers to track VMs’

resource usage. It supports monitoring of CPU usage, disk read/write throughput,

inbound and outbound network traffic, etc. Microsoft Azure [16] also enables customers

to monitor CPU percentage, inbound and outbound network traffic, disk read/write

throughput. Google Compute Engine designed Stackdriver [23] to monitor the same

resource consumption. Such resource consumption information allows customers to

know how well their VMs or applications are performing, and helps them determine

performance bottlenecks and fine-tune the performance. Similar to the above systems,

our platform can use Hardware Performance Counters to measure VMs’ resource

consumption and provide such information to customers. Moreover, we are able to

detect potential security vulnerabilities for customers through collecting and analyzing

these performance values (Chapter 3). This is novel compared to both the existing

security platforms and to the performance monitoring platforms.

Multi-tenant attack detection. One big feature of our architecture is that we can

detect security vulnerabilities caused by the multi-tenancy feature. These include host-

based availability vulnerabilities (Chapter 4), and side-channel information leakage

(Chapter 5). These security services are missing in other platforms.

Our architectural framework is flexible in that it can support other security

protection solutions as well. Future work can explore the integration of the vulnerability

mitigation methods from Section 2.1, into our CloudMonatt platform.

2.3 Chapter Summary

In this chapter, we reviewed the related work on potential threats as well as new

defenses in cloud computing, summarized in Figures 2.2 and 2.3. We described these

attacks and defense solutions based on the attacker vectors, introduced in Section 1.3.

48



We also reviewed past work about cloud security platforms summarized in Table 2.1.

In this dissertation, we design a novel architectural framework, CloudMonatt (Chapter

3), that enables the cloud providers to deploy different security protection mechanisms,

and cloud customers to select different security properties for their virtual machines

based on their demands. We will show how the cloud providers can provide some

aspects of key security properties like availability (Chapter 4), confidentiality (Chapter

5) and integrity (Chapter 6) for customers, using this framework. We first begin with

the presentation of this CloudMonatt architecture in the next chapter, followed by

different security detection and mitigation cases in later chapters.

49



Chapter 3

VM Security Health Monitoring

and Attestation

Cloud customers need guarantees regarding the security of their virtual machines

(VMs), operating within an Infrastructure as a Service (IaaS) cloud system. However,

monitoring a VM’s security health is challenging: the security status of a VM is

determined by different factors while customers have limited privileges to collect the

corresponding measurements. Such a gap between the customers’ security requirements

and the measurements collected from the host server makes the monitoring task more

difficult.

In this chapter, we present CloudMonatt, an architecture to monitor and attest

virtual machine security health, with the ability to attest this to the customer in an

unforgeable manner (most parts of this chapter have been published in [262, 263]).

CloudMonatt monitors the security health of VMs over the VMs’ lifecycle. It provides

automatic remediation responses to failing security health indicated by negative

attestation results. We provide concrete examples to show how to bridge the semantic

gap between what the customer wants to know versus what can be measured in the

50



cloud. We show a concrete implementation of property-based attestation and a full

prototype based on the OpenStack open source cloud software.

3.1 Background

In an IaaS cloud, a customer requests to launch a virtual machine in the cloud system.

The cloud provider places the VM in a virtualized cloud server, and allocates a specified

amount of physical resources (CPU, memory, disk, etc.) to this VM. During the VM’s

lifetime, the customer would like to know if his VM has good security health.

The security health of a VM indicates the likelihood that the VM satisfies the

security properties the customer desires for his leased VM. For example, if the

customer stores sensitive data in the cloud server’s storage, a healthy VM enforces

confidentiality protection of the data from other VMs, or from physical attackers.

For another customer with time-critical service needs, a healthy VM means that

resources that have been contracted for in the Service Level Agreement (SLA) are

always available to the VM.

The security health of a VM depends on a variety of factors in the complicated

cloud environment. First, a VM can get infected with malware or OS rootkits at

runtime. Such inside-VM vulnerabilities can take complete control of the VM and

significantly compromise its security state. Second, cloud management software usually

have large code base sizes. This inevitably introduces bugs and gives adversaries

opportunities to conduct privilege escalation attacks and gain root privilege [173].

Then the adversaries have full control of the whole server, as well as the capability of

compromising any VM’s security health on this server. Third, cloud systems usually

adopt the “multi-tenancy” feature, where different customers share the same cloud

server, as co-tenants or co-resident VMs. These VMs may belong to competitors,

spies, or malicious attackers. Past work have shown that the “bad neighbor” VMs

51



are able to steal critical information through side-channel attacks [182, 269], thus

compromising the VM’s confidentiality health, or steal computing resources through

Resource-Freeing attacks [224] or Memory DoS attacks [265], thus compromising the

victim VM’s availability health. We call the threats from the host OS and co-located

VMs outside-VM vulnerabilities, which are hard for customers to defeat. Hence, a

VM’s security health depends on not only the activities inside the VM, but also the

VM’s interactions with its environment.

Monitoring the VMs’ security health poses a series of challenges in a cloud system.

First, the customer’s limited privileges prevent him from collecting comprehensive

security measurements to monitor his VM’s health securely. He only has access to

the VM, but not to the host server. For inside-VM vulnerabilities, once the VM’s

OS is compromised by the attacker, the customer may not get correct measurements.

For outside-VM vulnerabilities, the customer cannot collect information about the co-

resident VMs, hypervisor, etc. Second, the customer’s desired security requirements are

expressed in terms of a VM, but the security measurements usually involve the physical

server, the hypervisor and other entities related to this VM. This creates a semantic

gap between what the customers want to monitor and the type of measurements that

can be collected. Third, the VMs go through different lifecycle stages and may migrate

to different host servers. A seamless monitoring mechanism throughout the VMs’

lifetime is therefore highly desirable. Fourth, there are numerous entities between

the customers and the point of VM operations. It is important to collect, filter and

process the monitoring information securely to attest, i.e., pass on to the customer in

an unforgeable way, only the requested information.

In this chapter, we design a flexible architecture called CloudMonatt, to monitor

and attest the security health of customers’ VMs within a cloud system. CloudMonatt

is built upon the property-based attestation model (defined in detail in Section 3.1.2.1),

and provides several novel features. First, it provides a framework for monitoring

52



different aspects of security health. Second, it shows how to interpret and map

actual measurements collected to security properties that can be understood by the

customer. These bridge the semantic gap between requested VM properties and

the platform measurements for security health. Third, attestations can be done at

runtime and for VM migrations, not just at boot up and VM launch time. Fourth,

CloudMonatt provides remediation response strategies based on the monitored results.

To demonstrate the practicality of CloudMonatt, we implement a full prototype on

the OpenStack open source cloud platform.

Given that CloudMonatt is designed to monitor and report virtual machines’

security health, it is important and necessary to systematically check that it works

correctly as expected, with no vulnerabilities that could be exploited by attackers to

subvert its security scheme. As such, we conduct a systematical security verification

of CloudMonatt, proving that its VM health monitoring service is trustworthy and

adversaries have no chance to falsify the attestation report for the customer or the

cloud provider. Verifying a distributed cloud system like CloudMonatt is challenging

as it involves a variety of cloud servers. This requires us to consider the external

communication protocols between servers, as well as the internal activities inside each

server. To solve this, we break down the whole verification task into two parts, the

external network verification and the internal server verification. We model each

component as state machines, propose the security invariants for checking, and use

a protocol checking tool, ProVerif [51] to model the system protocols/operations

and verify the invariants. The verification results not only raise our confidence in

our CloudMonatt design, but also provide suggestions for further strengthening its

reliability and trustworthiness.

53



3.1.1 Security on Demand Framework

CloudMonatt is an outcome of the Security on Demand (SoD) cloud framework project

[124], which provides on-demand, customized VM security for the cloud customers.

Just as customers request computing resources in the Service Level Agreement (SLA),

they can also request different types and levels of security. Basically this framework

achieves three primary design goals: (1) enable customers to request customized

security for their VMs; (2) enable different secure server architectures to service

these customized security requests; and (3) provide persistent security for each VM

throughout its life-time in the cloud. Below we detail these three goals.

Customized security requests. In the SoD framework, customers are allowed to

choose among a range of security options that are most suitable for their VMs, where

each option is based on a specific underlying threat model. These security options

include two parts. The first one is security levels, which define different entities that

customers trust within the cloud. For example, customers can select to protect their

VMs from untrusted co-located VMs, hypervisor, hardware, cloud manager, guest OS

or applications. The second part is security properties. Customers can specify the

security properties they desire for their VMs, such as different aspects of confidentiality,

integrity, availability, etc.

Secure server architectures. The SoD framework leverages existing secure server

architectures to service these highly customized VM security requests. Numerous

secure hardware-software architectures have been proposed [217, 240, 61, 155, 186],

which can provide security protections under different threat models. The cloud

provider can install different types of secure servers in a datacenter, each capable

of providing different types of security. The cloud provider collects, monitors and

maintains these servers’ current security capabilities. Given a customer’s request for

certain types of security protection in his SLA, the cloud provider determines the most

54



appropriate type of secure server for the VM. Once the set of servers is determined,

the cloud provider deploys the VM on one of the selected servers.

Persistent security protection. The SoD framework provides lifetime VM security

using live VM migration. The security enforcement process for a given VM can be

disturbed by two events: (1) change in the security level requested by the cloud

customer; (2) an attack on the server on which the VM is running. When either of

these events occur, the VM is remapped to a new server capable of satisfying the new

security requirements, and it is live-migrated to the newly selected server. This process

is carried out throughout the lifetime of the VM to ensure persistent security. An

additional trigger and strategy for migration is based on the “Moving Target Defense”,

where VMs are moved to other servers every now and then so that attackers cannot

try to co-locate their malicious VMs on the same physical server.

Given a SoD environment, where a cloud customer can request and pay for extra

security services, how does the cloud customer check that he is getting these services?

This dissertation proposes CloudMonatt, an architecture, to answer the question in

terms of the security health of a VM the customer can request at any time. Similar to

SoD, CloudMonatt also allows customers to specify the security properties they desire

for their VMs. Then the cloud provider launches the VMs on the cloud servers that are

capable of monitoring the specified properties. Different from SoD, CloudMonatt keeps

attesting the VMs’ security health thoughout their life-time. If the security status of

the monitored VM violates the customer’s specification, CloudMonatt provides more

remediation solutions, in addition to live migration in the SoD framework (Section

3.2.5).

55



3.1.2 Related Work

3.1.2.1 Remote Attestation

Remote attestation is defined as “the procedure of making claims about the security

conditions of a targeted system based on the evidence supplied by that system” [72].

It often involves three entities: an attester is the targeted system which provides

the evidence; a verifier is an entity which requests an attestation report for a given

attester; an appraiser is an entity which makes decisions by evaluating the security

conditions based on the attester’s evidence. We review two types of attestations.

Binary attestation. Proposed by the Trusted Computing Group (TCG) [99],

binary attestation was a breakthrough development which helped enable attestation

of platform integrity of a remote server. The attester calculates binary hash values of

the platform configurations, and sends them to the verifier. The verifier, who typically

also plays the role of the appraiser, compares these values with reference or “good”

configurations, and determines whether the state of the attester is acceptable.

Many systems enabled with remote attestations have been designed, based on the

Trusted Computing Group’s binary attestation [99, 100]. Sailer et al. [186] proposed

the Integrity Measurement Architecture (IMA), to measure the integrity of executables

from BIOS to application level. Jaeger et al. [123] extended IMA to Policy Reduced

Integrity Measurement Architecture (PRIMA), which can measure the Mandatory

Access Control (MAC) Policy defined for controlling information flows across user

processes. Shi et al. [199] proposed the architecture of Binding Instructions aNd

Data (BIND) to realize fine-grained attestation on the integrity of code in distributed

systems. Seshadri et al. [195] proposed the Pioneer system, which can attest the

integrity of code executions on legacy computing systems. Garfinkel et al. [94] designed

Terra, an architecture with a trusted virtual machine monitor (TVMM) to provide a

secure computing environment by isolating critical application code in different VMs.

56



Binary attestation has certain shortcomings [184, 163]. First, binary measurements

sent to the verifier provide configuration and implementation details of the attester,

which is a privacy issue and may lead to fingerprinting attacks. Second, the verifier

(who is also the appraiser) must be aware of the correct configurations of the target

platform. Third, the target platforms may get updated leading to a change in

configurations, and thus requiring the verifier to be notified about it each time.

Property-based attestation. To address the above shortcomings, property-based

attestation was proposed [184], which attests security properties, functions and be-

haviors of systems. In property-based attestation, the verifier and the appraiser

are separate entities. The appraiser is a trusted third party, who is trusted by the

attester and the verifier. The appraiser has full knowledge of the attester. Its job is to

transform the attester’s measurements into properties and vice versa, and determine

if the attester satisfies a set of given properties. A common solution for realizing

an appraiser’s interpretation mechanism is delegation-based attestation [184, 63]. In

this approach, the appraiser can issue a property certificate, proving that a given

configuration fulfills a specific property demanded by the verifier. Other approaches

like proxy-based [177] are also proposed and implemented.

A variety of methods deriving from property-based attestation are explored, to

attest different security properties. Haldar et al. [111] proposed semantic attestation,

which monitors programs’ high-level dynamic behaviors and properties. Alam et al.

[30] proposed model-based behavioral attestation to attest the behaviors of security

policies associated with the platforms. Sirer et al. [201] proposed logical attestation,

which translates the programs’ high-level attributable properties to logical expressions

for verification.

Compared with binary attestation, the advantages of property-based attestation

are as follows: properties do not reveal the configuration and implementation details,

and thus do not violate the privacy of the attester; properties do not change as often

57



as the target platform’s configurations; properties are easier to understand and express.

However, the specification and interpretation of properties to be attested remain as

challenging, open problems [163]. They make it very difficult for computer architects

to convert the concept of property-based attestation into real architectures.

3.1.2.2 Attestation in Cloud Computing

Attestation of VM security health in the cloud environment is more complex. In IaaS,

the verifier is the customer who launches a VM in the cloud and the attester is the

VM. The health of the target VM depends on not only the applications and OS within

the VM, but also its interactions with the host environment. In addition, since a

VM experiences different activities during its lifecycle, it is important to consider

attestation throughout the VM’s life.

Direct attestation. Direct attestation allows the customers to talk to the VMs

directly. One example is the virtual Trusted Platform Module (vTPM) [45, 88, 185,

190, 230]. Since a physical TPM cannot be directly used by the VMs within virtualized

environments, vTPMs are designed to provide the same usage model and services to the

VMs. Then attestation can be carried out directly between the customers and virtual

machines by the vTPM instances. These instances can be realized by implementing

TPM emulators in the hypervisor or host OS, by modifying the hardware TPM to

enable TPM virtualization [45], or by combining both software and hardware TPMs

[88]. To overcome binary attestation’s shortcomings, Sadeghi et al. [185] proposed

virtual property-based attestation, in which the vTPM instances are assigned the

tasks of security property management and interpretations.

The virtual TPM solution raises some problems for VM monitoring: it cannot

attest the security conditions of the VM’s environments. Furthermore, the monitoring

tool resides in the guest OS, so it needs modification of the guest OS, and commodity

OSes are also highly susceptible to attacks.

58



Centralized attestation. To overcome the above problems, the concept of central-

ized attestation is introduced in the cloud system to manage the attestation procedure.

Schiffman et al. [191] implemented a centralized “cloud verifier” that can provide

the integrity attestations for customers’ VM applications. Customers issue the au-

thorization for the VM to access applications only when the integrity attestation

passes. Santos et al. [189] designed a centralized monitor to check the platform’s

configurations and map them to security attributes. This enables customers’ VMs

to be allocated on the platforms with specified attributes. Then Attribute-Based

Encryption is exploited to seal and unseal data between customers and cloud servers to

ensure they are not compromised. However, the above work are still based on binary

attestation for platform integrity and configuration checking, and do not consider

other security properties like confidentiality or availability, nor the VMs’ interactions

(intended or unintended) with the outside-VM environment.

3.1.2.3 Attestation Protocols

Remote attestation needs the support of cryptographic protocols. For binary attesta-

tion, the most basic protocol is the standard signature scheme which was originally

adopted by TCG (TPM specification v1.2) [99, 186]. Manufacturers burn a private key

into the micro-processor chip, and then the TPM generates the attestation key-pairs,

signs the public key, and sends it to the privacy certificate authority for a certificate.

The TPM specification v1.2 also includes the Direct Anonymous Attestation func-

tionality [56], which can preserve the anonymity of the attested platforms from the

verifier using the group signature scheme. Then TCG released TPM specification v2.0

[101, 64], which included multiple cryptographic functionalities and flexibly selective

cryptographic algorithms, e.g., anonymous signatures, pseudonym signatures, and

conventional signatures. Stumpf et al. [210] enhanced the TCG-based attestation

59



protocol by integrating Diffie-Hellman key exchange protocol to defeat masquerading

attacks.

For property-based attestation, Chen et al. [63] designed a provable and efficient

protocol with a delegation solution. This protocol holds the security features of

unforgeability (i.e., the signature can only be produced by the valid TPM) and

unlinkability (i.e., the verifier cannot deduce the specific configuration of the platform).

It also supports the revocation of invalid certifications. Chen et al. [65] proposed

another property-based attestation protocol based on the ring signature scheme.

This protocol can preserve the platform’s privacy and avoid the involvement of a

trusted third party to certify properties, which will be done by the attested platform.

Different from past work, the protocol in CloudMonatt involves four entities in a cloud

system. We design new protocols to provide unforgeability for attestation reports,

and anonymity for attested platforms. Anonymity will be discussed in Section 3.2.4.

3.2 CloudMonatt Architecture

3.2.1 Design Goals of the Architecture

The design goals of the CloudMonatt architecture are:

1. To provide a flexible distributed cloud architecture that can detect and monitor

the security health of the customers’ VM in the cloud, e.g., by detecting its vulner-

abilities, the vulnerabilities of the platform it is running on, or the vulnerabilities

due to co-resident VMs;

2. To provide a secure protocol to request and receive security property monitor-

ing measurements from the cloud’s secure servers, and produce an unforgeable

attestation report; and

60



Cloud Customer

Policy 
Validation 

Module

Cloud Controller

Response 
Module

Deployment 
Module

Property 
Interpretation 

Module

privacy
Certificate 
Authority

Attestation Server

Cloud Servers

...Launch Policy 
Attestation Request

Attestation Results

VM security 
lifecycle

Measurement 
Collection

VM Deployment

Countermeasure 
Deployment

Att. Client
Mgt. Client

Trust Mod
Mon. Mod

Server 1

Att. Client
Mgt. Client

Trust Mod
Mon. Mod

Att. Client
Mgt. Client

Trust Mod
Mon. Mod

Server 2

Server n

Property 
Certification

Module

Figure 3.1: Architectural overview of CloudMonatt

3. To interpret security health measurements, determine if a requested security prop-

erty is held for the VM, and enable different remediation responses when the VM’s

security health is appraised as inadequate.

In this section, we describe the main architecture for achieving goals (1) and

(2), which are independent of the specific security properties a server can implement

within the CloudMonatt architecture. Section 3.2.2 describes the main architectural

components. Section 3.2.3 describes the threat model, referring to these components.

Section 3.2.4 describes the monitoring and attestation protocols. Section 3.2.5 discusses

the attestation and response actions during VM lifecycle. Goal (3) depends on the

specific security property being monitored, and Section 3.3 gives several concrete

examples of property interpretations.

3.2.2 Architecture Overview

Figure 3.1 shows an overview of the CloudMonatt architecture. This includes four

entities: 1) Cloud Customer, 2) Cloud Controller, 3) Attestation Server and 4) Cloud

Server.

Cloud Customer: The customer is the initiator and end-verifier in the system. He

places a request for leasing VMs with specific resource requirements and security

61



Request API Description

startup attest current(Vid, P, N)
Invoke an attestation of VM Vid for security property P, before
launching the VM

runtime attest current(Vid, P, N) Invoke an immediate attestation of VM Vid for security property P

runtime attest periodic(Vid, P, freq, N))
Invoke a periodic attestation of VM Vid for security property P at
the frequency of freq or at random intervals

stop attest periodic(Vid, P, N)) Stop a periodic attestation of VM Vid for security property P

Table 3.1: Types of monitoring and attestation requests. (nonces N are added for
freshness for each request)

requests to the Cloud Controller. He can issue any number of security attestation

requests during his VM’s lifetime. Table 3.1 shows the attestation and monitoring APIs

provided to the customers. CloudMonatt allows customers to invoke the monitoring

and attestation requests at any time during the VM’s lifecycle. It also gives the

customers two modes of operation: one-time attestation and periodic attestation.

• One-time attestation: the customer can request the attestation at any time. Then

the Attestation Server performs the required attestation and sends back the results.

• Periodic attestation: the customer can ask for periodic attestations with specified

constant or random frequency (this can prevent the attacker from reverse-engineering

the attestation scheme and scheduling the attack phases to avoid detection). The

cloud server supplies the measurements, and the Attestation Server accumulates

and interprets the measurements periodically. The customer receives fresh results

periodically and can stop the process at any time.

Cloud Controller: The Cloud Controller acts as the cloud manager, responsible for

taking VM requests and servicing them for each customer. The Policy Validation

Module in the Controller selects qualified servers for customers’ requested VMs.

These servers need to both satisfy the VMs’ demanded physical resources, as well as

support the requested security properties and their property monitoring services. The

Deployment Module allocates each VM on the selected server.

During the VMs’ lifecycle, the customers may request the Cloud Controller to

monitor the security properties associated with their VMs. The Cloud Controller will

62



entrust the Attestation Server to collect the monitored security measurements from

the correct VMs, and send a report back to it. It then sends the results back to the

customers to keep them informed of their VMs’ security health. When these results

reveal potential vulnerabilities for the VMs, the Response Module in the Controller

carries out appropriate remediation responses.

Attestation Server: The Attestation Server acts as the attestation requester and

appraiser, and consists of two essential modules. 1) The Property Interpretation

Module is responsible for validating measurements, interpreting properties and making

attestation decisions. It needs a certificate from a privacy Certificate Authority

(pCA) to authenticate cloud servers. The privacy Certificate Authority may be

a separate trusted server already used by the cloud provider for standard certification

of public-key certificates that bind a public key to a given machine. 2) The Property

Certification Module is responsible for issuing an attestation certificate for the

properties monitored. It stores mappings of security property P to measurements M.

This gives a list of measurements M that can indicate the security health with respect

to the specified property P. There can be different Attestation Servers for different

clusters of cloud servers, enabling scalability of the CloudMonatt architecture.

We introduce the Attestation Server for security monitoring/attestation while

the Cloud Controller is responsible for management. This job split achieves better

scalability, since different attestation servers can be added to handle different clusters

of cloud servers. It consolidates property interpretation in the attestation servers,

rather than replicating this in each cloud server, or burdening the Cloud Controller.

This also achieves better “separation of duties” security, since the Cloud Controller

need only focus on cloud management while the Attestation Server focuses on security.

It also improves performance by preventing a bottleneck at the Cloud Controller if

it had to handle management as well as myriad attestation requests and security

property interpretations.

63



Hardware

Trust 
Module

Hypervisor Monitor 
Module

Host VM Guest VM Guest VM
Attestation 

Client
Management 

Client

VM Introspection 
Tool

VMM Profile 
Tool

Performance 
Monitor Unit

Integrity 
Measurement Unit

CPU

Disk NIC

CPUCPU

Cache

CPUCPU

Cache

CPU RAMRAMRAMRAM

DiskDisk NICNIC

Monitor 
Kernel

Identity Key Key Gen

RNG

Crypto 
Engine

Attest Key

Trust 
Evidence 
Registers

4

3

5
6

7

1

2

8

Figure 3.2: Server architectures enabling security monitoring include new trusted
hardware and software features (shown in grey) in a Trust Module and a Monitor
Module.

Cloud Server: The Cloud Server is the computer that runs the virtual machine

in question. It is the attester in the system. It provides different measurements for

different security properties. Figure 3.2 shows the structure of a cloud server with a

Type-I hypervisor (e.g., Xen [41]). This has the hypervisor sitting on bare metal, and

a privileged VM called the host VM (or Dom0) running over the hypervisor. Not all

the cloud servers in the cloud provider’s data center have to be trusted (almost all

existing ones are not), only those servers on which security monitoring is necessary

need to be secure. To support CloudMonatt ’s goals, a cloud server must include a

Monitor Module and a Trust Module.

The Monitor Module contains different types of monitors to provide comprehen-

sive and rich security measurements. These monitors can be software modules or

existing hardware mechanisms like performance counters or Intel TXT technology.

64



For example, the Performance Monitor Unit (present ubiquitously in Intel x86 [9]

and ARM processors [6]) has numerous Hardware Performance Counters to collect

runtime measurements of the VMs’ activities. An Integrity Measurement Unit (which

could use the Dynamic Root of Trust for Measurement in Intel TXT technology [10])

can be used to measure accumulated hashes of the system’s code and static data

configuration. In the hypervisor, a Virtual Machine Introspection tool (e.g., LibVMI

[12]) can be used to collect the information inside the specified VM, and the VMM

profile tool (e.g., xentrace [26]) can be used to collect dynamic information about each

VM’s activities.

We define a new hardware Trust Module in Figure 3.2. This Trust Module

is responsible for server authentication using the Identity Key, crypto operations

using the Crypto Engine, Key Generation and Random Number Generation (RNG)

blocks, and secure measurement storage using the Trust Evidence Registers. By

using new hardware registers to store the security health measurements (trust evidence),

we do not need to include the main DRAM memory in our Trusted Computing Base,

although trusted RAM can also be used instead of Trust Evidence Registers in

the Trust Module.

Figure 3.2 also shows the functional steps taken by the Monitor Module and the

Trust Module. The Cloud Server includes an Attestation Client in the host VM

that 1 takes requests from the Attestation Server to collect a set of measurements. It

invokes the Monitor Module 2 to collect the measurements and the Trust Module

3 to generate a new attestation key for this attestation session. This new attestation

key is signed by the Trust Module’s private identity key. The required measurements

of suspicious events or evidence of trustworthy operation are 4 collected from the

Monitor Module and 5 stored into new Trust Evidence Registers. These Trust

Evidence Registers are analogous to the performance counters used for evaluating

the system’s performance, except that they measure aspects of the system’s security.

65



The Trust Module then 6 invokes its Crypto Engine to sign these measurements

and 7 forwards the data to the Attestation Client which 8 sends it to the

Attestation Server. The Trust Module contains a Key Generator and a Random

Number Generator for generating keys and nonces.

3.2.3 Threat Model

The threat model is that of hostile VMs running in the cloud on the same cloud

server, or hostile applications or services running inside a VM, that try to breach the

confidentiality or integrity of a victim VM’s data or code. They may also try to breach

its availability, in spite of the cloud provider having allocated the VM its requested

resources. The cloud provider is assumed to be trusted (with its reputation at stake),

but may have vulnerabilities in the system. We assume that the Cloud Controller

and the Attestation Server are trusted — they are correctly implemented, with secure

bootup and are protected during runtime. However the Cloud Servers need not be

trusted, except for the Trust Module and Monitor Module in each server. Note that

the Cloud Controller and Attestation Server can be redundancy protected for reliability

and security, and are only a small percent of all the servers in the cloud’s data center.

Also, not all the thousands of cloud servers need to be CloudMonatt-secure servers.

We focus on two types of adversaries: (1) An adversary, who tries to exploit

vulnerabilities in the customers’ VMs, either from inside the VM, or from another

malicious VM co-resident on the same server. (2) An active adversary who has full

control of the network between different servers, as in the standard Dolev-Yao threat

model [82]. The adversary is able to eavesdrop as well as falsify the attestation

messages, trying to make the customer receive a forged attestation report without

detecting anything suspicious. With regard to this second adversary, CloudMonatt

needs secure monitoring and attestation protocols which we define next.

66



3.2.4 Monitoring and Attestation Protocols

In a distributed architecture where communication is over untrusted networks, the

protocols are an essential part of the security architecture: they establish trust between

the customer and the cloud provider, and between different computers in the cloud

system. In CloudMonatt, an attestation protocol must be unforgeable in spite of the

network attacker and the other attackers in the untrusted servers. This requires secure

communications among the four entities in Figure 3.1, and unforgeable signatures of

the measurements and the attestation report from the place of collection (in the Cloud

Server) through the Attestation Server, Cloud Controller and finally to the customer.

We first describe the main attestation protocol. Details of the cryptographic keys

involved, the secure communications and storage will be clarified later.

Figure 3.3 shows the attestation protocol in CloudMonatt.

1. The customer initially sends to the Cloud Controller the attestation requests

including the VM identifier Vid, the desired security property P and a nonce

N1. The nonce is an arbitrary number used only once in this session. It is used

to prevent replay attacks over the channel between the customer and the Cloud

Controller.

2. The Cloud Controller knows the current mapping of all VMs to their assigned cloud

servers. It discovers the host server of VM Vid, I, and sends to the Attestation

Server the request, which includes Vid, I, P and another nonce N2.

3. Given the property P, the Attestation Server identifies the required monitoring

measurements rM. Then it sends Vid, rM and its nonce N3 to the cloud server I

where the VM is running.

4. In the Cloud Server, the Monitor Module collects the required measurements M

and stores them into the Trust Evidence Registers. Then the Trust Module

calculates the quote Q3 as the hash value of (Vid, rM, M and nonce N3) (We

67



borrow the term “Quote” from TPM notation, to represent a cumulative hash

measurement), and sends to the Attestation Server a signature of Vid, rM, M,

N3 and Q3.

5. The Attestation Server verifies the signature and checks the integrity of the mea-

surements by calculating the hash value and comparing it with the quote Q3. Then

it interprets the measurements M and property P and generates the attestation

report R. The Attestation Server calculates the quote Q2 as the hash value of

(Vid, I, P, R and N2), and sends to the Cloud Controller a signature of Vid, I,

P, R, N2 and Q2.

6. The Cloud Controller verifies the signature and checks the integrity of the report

R via the hash value Q2. Then it generates the quote Q1 by hashing Vid, P, R

and N1, signs these values and sends the signature to the customer.

7. The customer verifies the signature and hash value. If they are correct, the customer

gets the correct report R.

Secure Storage and Communications. For secure storage, the Trust Module

provides Trust Evidence Registers for saving attestation measurements, which are

only accessible to the Trust Module and Monitor Module. Accesses to the databases

in the Cloud Controller and the Attestation Server are also protected to ensure data

confidentiality and integrity.

For secure communications over networks, the CloudMonatt architecture expects

the customer, Cloud Controller, Attestation Server and secure Cloud Servers to

implement the SSL protocol. Our contribution is defining the contents of the SSL

messages, and the keys and signatures required for unforgeable attestation reports

and Cloud Server anonymity.

Key Management. We now describe the keys used in Figure 3.3. The Cloud

Controller, Attestation Server and each secure Cloud Server must have one long-term

public-private key-pair that uniquely identifies it within the cloud system. This

68



Tr
us

t/M
on

ito
r

M
od

ul
e

A
tte

st
at

io
n 

C
lie

nt
A

tte
st

at
io

n 
Se

rv
er

N
on

ce
 N

3
M

ea
su

re
 M

Ve
rif

y 
Q

3
C

al
cu

la
te

Q
3=H

(V
id

||r
M

||M
||N

3)
G

et
 M

AT
TE

ST
AT

IO
N

 S
ER

VE
R

C
LO

U
D

 S
ER

VE
R

C
lo

ud
 

C
on

tr
ol

le
r

C
LO

U
D

 C
O

N
TR

O
LL

ER

Fi
nd

 s
er

ve
r I

N
on

ce
 N

2

Ve
rif

y 
Q

2

C
us

to
m

er

C
U

ST
O

M
ER

VM
 V

id
Pr

op
er

ty
 P

N
on

ce
 N

1

(V
id

,P
, N

1)
K

x
(V

id
,I,

P,
N

2)
K

y
(V

id
,rM

,N
3)

K
z

Vi
d,

rM
,N

3

[V
id

,rM
,M

,N
3,Q

3]A
SK

s

Ve
rif

y 
Q

1

C
al

cu
la

te
Q

2=H
(V

id
||I

||P
||R

||N
2)

([V
id

,rM
,M

,N
3,Q

3]A
SK

s )K
z

In
te

rp
re

ta
tio

n
G

et
 re

su
lt 

R

([V
id

,I,
P,

R
,N

2,Q
2]S

K
a )K

y

G
et

 R

C
al

cu
la

te
Q

1=H
(V

id
||P

||R
||N

1)
([V

id
,P

,R
,N

1,Q
1]S

K
c )K

x
G

et
 R

K
x

K
x

K
y

K
y

K
z

K
z

SK
cu

st
VK

cu
st

SK
c

VK
c

SK
a

VK
a

se
ss

io
n 

ke
y

cu
st

om
er

’s 
id

en
tit

y 
ke

y 
pa

ir
cl

ou
d 

co
nt

ro
lle

r’s
id

en
tit

y 
ke

y 
pa

ir

se
ss

io
n 

ke
y

se
ss

io
n 

ke
y

at
te

st
at

io
n 

se
rv

er
’s 

id
en

tit
y 

ke
y 

pa
ir

cl
ou

d 
se

rv
er

’s 
id

en
tif

y 
ke

y 
pa

ir

At
te

st
at

io
n 

si
gn

in
g/

 
ve

rifi
ca

tio
n 

ke
y 

pa
ir

A
SK

s
AV

K
s

SK
s

VK
s

F
ig

u
re

3.
3:

A
tt

es
ta

ti
on

P
ro

to
co

l
an

d
K

ey
M

an
ag

em
en

t
in

C
lo

u
dM

on
at

t.
W

e
u

se
th

e
n

ot
at

io
n

[M
] K

fo
r

a
p

ri
va

te
ke

y
op

er
at

io
n

w
it

h
ke

y
K

,
{M
} K

fo
r

a
p
u
b
li
c

ke
y

op
er

at
io

n
w

it
h

ke
y
K

,
an

d
(M

) K
fo

r
a

sy
m

m
et

ri
c

ke
y

op
er

at
io

n
w

it
h

sy
m

m
et

ri
c

ke
y
K

.
N
i

re
p
re

se
n
ts

a
N

on
ce

b
et

w
ee

n
tw

o
co

m
m

u
n
ic

at
io

n
p
ar

ti
es

.

69



is minimally what is required for SSL support, and is already present in all cloud

servers. Hence, each secure cloud server owns a pair of public-private identity keys,

{VKs, SKs}. The private key, SKs, can be burned into the Trust Module when

manufactured, or more preferably, securely inserted into a non-volatile and tamper-

proof register in the Trust Module when the server is first deployed in the cloud

data center. This private identity key is never released outside of the Trust Module.

The public key, VKs, can be used to authenticate the cloud server. A cloud server

mainly uses this identity key-pair to generate a temporary key pair for each attestation

request.

A new session-specific key-pair, {AVKs, ASKs}, is created by the Trust Module

whenever an attestation report is needed, so as not to reveal the location of a VM.

(An attacker may try to find the server which hosts the victim VM, then he can try

to co-locate his VM on the same server. We do not want our attestation protocol

to help an attacker do this [182]). The public attestation key AVKs is signed by

the Cloud Server’s SKs and sent to the pCA for certification. The pCA verifies the

signature via VKs and issues the certificate for AVKs for that server. This certificate

enables the Attestation Server to authenticate the Cloud Server “anonymously” for

this attestation.

For secure communications between the servers, SSL first authenticates sender and

receiver using their public-private key-pairs, then generates symmetric session keys

for encrypting the messages passed between each pair of servers. Hence, Figure 3.3

shows the communications between the customer and the Controller protected with a

symmetric session key Kx, between the Controller and the Attestation Server with a

symmetric session key Ky, and between the Attestation Server and Cloud Server with

symmetric session key Kz.

70



3.2.5 VM Lifecycle and Attestation Responses

Attestations can be performed at all stages of a VM’s lifecycle, during VM launch,

during its runtime, before and after any VM migrations and on VM termination.

VM Startup and Responses. Startup attestation can ensure that the VM is

correctly initialized and launched. This is an attestation of the integrity of the

platform and the VM image. If the platform’s integrity is compromised, CloudMonatt

will select another qualified server for hosting this VM. If the VM image is compromised,

then the VM launch request will be rejected. If both the VM and platform pass the

integrity checks, the VM will be successfully launched on this server.

VM Runtime and Responses. CloudMonatt provides a flexible protocol for

monitoring the VM’s runtime activities, as described in Section 3.2.4 and Table 3.1.

Customers can issue a one-time attestation request, or a periodic attestation request,

during the VM’s execution to monitor its health. CloudMonatt provides a set of

responses to a VM that is compromised, or under attack. Currently we implement:

• Termination: the cloud controller can shut down the VM to protect it from attacks.

• Suspension: the controller can temporarily suspend the VM when it detects the

platform’s security health may be questionable. Meanwhile, it can initiate further

checking and also continue to attest the platform. If the attestation results show

the cloud server has returned to the desired security health, the controller can

resume the VM from the saved state.

• Migration: when the security health of the current server is questionable or the

server has been compromised, the controller tries to find another secure cloud

server that can satisfy the VM’s security property requirements. If a suitable server

is found, the controller migrates the VM to that server. Otherwise, this VM is

terminated for security reasons.

71



VM Migration and Responses. A VM may need to migrate to other servers due

to resource optimization, or for security reasons. CloudMonatt finds a qualified server

that supports this VM’s resource demands and security and attestation needs. The

VM may need to be shut down if no server is found.

In the next section, we elaborate on what security health monitoring means for

different security properties like confidentiality and availability, in addition to integrity.

In past work, integrity has been the primary, if not the only security property measured

(and usually only on bootup). We give concrete examples to illustrate the definition

and monitoring of a broader range of security properties, including example attacks,

to illustrate potential security breaches in the cloud.

3.3 Case Studies

We define the Security Health of a virtual machine as an indication of the likelihood

of its security being affected by the actions of hostile VMs co-resident on the same

cloud server, or hostile applications, services or malware within the VM itself. Dif-

ferent indicators of different aspects of security health can be monitored. In our

context, these different aspects of security are the security properties requested by

the customer. These security properties can be monitored by the various monitors

in the server’s Monitor Module or collected by the Trust Evidence Registers in

the server’s Trust Module. The CloudMonatt architecture is flexible and allows the

integration of an arbitrary number of security properties and monitoring mechanisms,

including logging, auditing and provenance mechanisms.

To monitor and attest a security property, three requirements must be satisfied:

(1) the Attestation Server can translate the security property, requested for attestation

by the customer, to the measurements to request from the target cloud server; (2) the

target cloud server implements a Monitor Module that can collect these measurements,

72



and a Trust Module with a Crypto Engine that can securely hash and sign the

measurements and send them back to the Attestation Server. (3) the Property

Interpretation Module in the Attestation Server is able to verify the measurements

and auxiliary information, and interpret if the security property is satisfied.

Property Mapping and Interpretation. The Attestation Server has a mapping

of security property P to measurements M. This gives a list of measurements M

that can indicate the security health with respect to the specified property P. The

Attestation Server can also behave as the property interpreter and decision maker:

when it receives the actual measurements M’ from the server and VM, it can judge if

the customers’ requested security properties are being enforced. (A simpler Attestation

Server may just pass back the measurements M’ without performing any interpretation

or initiating any remediation responses.)

There are many possible security properties that a customer may want. They

may include specific properties related to the cornerstone security properties of

confidentiality, integrity and availability. We illustrate below with a few examples to

show that CloudMonatt is flexible enough to support a variety of detection mechanisms.

More complicated cases can be found in Chapters 4, 5 and 6. Other new methods can

easily be integrated into the CloudMonatt framework.

3.3.1 Startup and Runtime Integrity

A customer wants to check the integrity of both the host platform and the VM before

launching his VM in the cloud. Besides, he may also want to know if his VM is

infected with malware during runtime,

Example Attacks: Attackers (inside-VM or outside-VM) may try to launch a

malicious hypervisor, host OS, or guest OS. These software entities could have been

corrupted during storage or network transmission. Similarly, the VM image could

have been compromised, with malware inserted.

73



The attacker can spread a virus into the customer’s VM. Then the malware inside-

VM can compromise the customer’s critical programs. Once the malware gets root

privilege in the OS, it can compromise the whole VM.

Monitoring Mechanism: For VM launch integrity checking, the monitoring mech-

anism involves accumulated cryptographic hashes of the software that is loaded onto

the system, in the order that they are loaded. A standard TPM chip can be used,

and integrated into the hardware platform. The measurement is typically done in

two phases: First, the server’s platform configuration (hypervisor, host OS, etc.) is

measured (i.e., hashed) during server bootup. Second, the VM image is measured

before VM launch.

The Attestation Server can have full knowledge of the attested software, and the

correct pre-calculated hash values of its executable files. It can use these correct values

to check the hash measurements sent back by the cloud server, and issue the integrity

property attestation, if the hash values match. Alternatively, the Attestation Server

can use a trusted Appraiser system (like an Integrity Measurement Architecture (IMA)

[186]) to check if the measured hash values conform to the correct values for a pristine,

malware-free system, before sending the Startup Integrity Property attestation back

to the customer.

For VM runtime integrity checking, a common technique uses VM Introspection

(VMI) [95, 81, 93] implemented as a hypervisor-level monitor. VMI allows the hyper-

visor to monitor the VM from outside the VM, and examine the states of the target

VM. Different VMI tools have been designed to detect and analyze the malware inside

the VMs, such as VMwatcher [127] and Ether [79]. These tools can be integrated

into CloudMonatt. For example, when customers ask to check if there is malware

running as a background service and hiding itself in the target VM, the Attestation

Server can issue a request for getting the list of running tasks for that VM. The VM

Introspection Tool located in the hypervisor’s Monitor Module can probe into the

74



target VM’s memory region to obtain the running tasks list [127]. This information

will be written into the Trust Evidence Registers and transmitted back to the

Attestation Server. The customer can compare this actual task list in the returned

Attestation Report with the one he gets from querying the corrupted guest OS, to

detect the malware running in his VM. More examples of virtual machine introspection

can be found in Chapter 6.

3.3.2 Runtime Confidentiality Breach through Covert Chan-

nels

For VMs with confidential code or data, cryptography is typically used to protect con-

fidential data-at-rest and data-in-transit. However, during execution, the confidential

data is decrypted and any secret key being used is also decrypted. During this time,

although VMs are protected (isolated) from each other by the hypervisor, it may still

be possible to leak the secret crypto key used via a cross-VM covert or side channel.

In this section, we show how CloudMonatt detects the existence of micro-architectural

covert channels. Chapter 5 will demonstrate a method of detecting and mitigating

cache side channels.

Example Attacks: A covert channel exists when a colluding insider (e.g., a program

inside the victim VM) can use a medium not normally used for communications to

leak secret information to an unauthorized party in another VM. No security policies

are overtly broken by overt communications, but are broken by covert communications.

When VMs on the same server share physical resources, the contention for these

shared resources can leak information, e.g., in the form of timing features. Such

characteristics can be different cache operations (hit or miss) [182, 247], memory

bus activities (locked or unlocked bus) [244], or DRAM controller states (bandwidth

saturated or not). Figure 3.4a shows the covert channel information observed by the

receiver VMs, using each of the Last Level Cache (LLC), bus and DRAM as the covert

75



0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0

5 . 0 k
1 0 . 0 k
1 5 . 0 k
2 0 . 0 k
2 5 . 0 k
3 0 . 0 k
3 5 . 0 k

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0

3 . 0 k

6 . 0 k

9 . 0 k

1 2 . 0 k

1 5 . 0 k

1 8 . 0 k

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0

1 k

2 k

3 k

 

 

L L C

ac
ce

ss
 tim

e (
cy

cle
)

t i m e  ( m s )

 

 

B u s

ac
ce

ss
 tim

e (
cy

cle
)

t i m e  ( m s )

 

 
D R A M

ac
ce

ss
 tim

e (
cy

cle
)

t i m e  ( m s )

 

 

B e n i g n

ac
ce

ss
 tim

e (
cy

cle
)

t i m e  ( m s )
(a) Covert-channel attacks.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 %

1 0 %

2 0 %

3 0 %

4 0 %

 
 

pr
ob

ab
ilit

y d
ist

rib
uti

on

L L C

m e m o r y  b a n d w i d t hh i s t o g r a m  b i n sm e m o r y  b a n d w i d t hh i s t o g r a m  b i n sm e m o r y  b a n d w i d t hh i s t o g r a m  b i n sm e m o r y  b a n d w i d t hh i s t o g r a m  b i n s
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

0 %

1 0 %

2 0 %

3 0 %

4 0 %

 

 

pr
ob

ab
ilit

y d
ist

rib
uti

on
B u s

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 %

1 0 %

2 0 %

3 0 %

4 0 %

 

 

pr
ob

ab
ilit

y d
ist

rib
uti

on

D R A M

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 %

1 0 %

2 0 %

3 0 %

4 0 %

 

 

pr
ob

ab
ilit

y d
ist

rib
uti

on

B e n i g n

(b) Detection of covert channels.

Figure 3.4: Frequency distribution detection of three covert channels verses a benign
program.

channel communication medium. It also shows the receiver’s observations when the

sender VM runs a benign application (Apache).

Monitoring Mechanism: A key idea to detect these covert channels is that pro-

grams involved in covert channel communications give unique patterns of the events

happening on these hardware [62]. If a customer requests covert channel protection and

periodic attestation of this, CloudMonatt can use Hardware Performance Counters

to monitor the attested VM’s memory bandwidth every 0.1ms. After a certain moni-

toring period, CloudMonatt calculates the frequency distribution histogram for the

memory bandwidth used. Specifically, it divides the entire range of observed band-

width values into 20 bins with equal size, and then counts how many bandwidth values

fall into each bin. Then CloudMonatt uses 20 Trust Evidence Registers to store

the number of values in each bin to represent the memory bandwidth distribution.

76



These 20 values are sent as the security health measurements for detecting these LLC,

bus or DRAM covert channels. We use 20 bins in our experiment, but a different

number can be used to save space or increase accuracy.

Covert-Channel Property Interpretation: When the Attestation Server receives

the 20 values, the Property Interpretation Module calculates the probability dis-

tribution (shown in Figure 3.4b) of the memory bandwidth. If a covert channel

exists, the distribution graph gives two peaks: each peak representing the activity

of transmitting a “0” or a “1”, respectively. On the contrary, a benign application

tends to give multiple smaller peaks. The Attestation Server can use machine learning

techniques to conduct pattern recognition of covert channels. Once the Attestation

Server identifies the existence of attacks, it can perform further actions (e.g., sending

warnings to the customers and asking them to double check malicious processes) to

reduce false positives. This detection method might also introduce some false negatives

since it cannot cover all covert-channel attacks. More sophisticated detection methods

can be integrated into CloudMonatt to detect other types of attacks.

3.3.3 Runtime CPU Availability

Availability of the resources and services agreed upon by the cloud customer and the

cloud provider in the Service Level Agreement (SLA) is a very important security

problem in cloud computing. Even if over-provisioning is practiced, the cloud provider

is still responsible for providing a fair resource allocation for each VM based on its

SLA. During runtime, the customer wants to know if his VM is given the requested

resources as paid for. We now show an example of an availability attack, and how

CPU resource availability can be monitored.

Example Attacks: An attacker may try to get more resources to severely reduce

the availability of shared resources to a victim VM, thus degrading its performance.

This may be to improve the attacker’s own performance, or it may just be to attack

77



the victim and deny him his rightful use of cloud resources. We demonstrate a new

CPU resource availability attack, and use it as an example of resource availability

monitoring in CloudMonatt.

CPU resource availability attack: This attack targets the boost mechanism of Xen’s

credit scheduler algorithm. Specifically, each VM receives some credits periodically,

and the running VM pays out credits. The Xen scheduler wakes up the VM with extra

credits in Round-Robin order. However, when a VM is woken up by certain interrupts,

it always gets higher priority to take over the CPU. So the attacker’s strategy is to

launch a VM with multiple vCPUs and use them to keep sending and receiving Inter

Processor Interrupts (IPIs) to each other, so one of the attacker’s vCPUs always has

the highest priority. Since the attacker’s VM always has higher priority than the

victim VM, they consume a lot of CPU resources, thus starving the victim’s CPU

usage.

Figure 3.5a shows the results for the denial of CPU service attack. The attacker

VM and victim VM are located on the same CPU using a Xen hypervisor. The victim

VM runs three CPU-bound programs from the SPEC2006 benchmark suite. The

attacker VM runs different services typically done in the cloud, as well as the CPU

availability attack we designed. When the attacker is I/O-bound (File, Stream or

Mail servers), the attacker does not consume much CPU and the victim VM has no

performance degradation. When the attacker runs CPU-bound tasks (Database, Web

or App servers), the victim’s execution time is doubled since it can get a fair share of

50% of the CPU quota. However, when the attacker performs the CPU availability

attack described above, the victim’s performance is degraded by more than ten times.

Monitoring mechanism: The basic idea for availability monitoring is to measure

the resource usage of the attested VM, e.g., CPU usage in this example. During the

testing period for CPU availability, the VMM Profile Tool measures the attested

VM’s CPU time: it observes the transitions of each virtual CPU on each physical

78



b z i p 2 h m m e r a s t a r
0
2
4
6
8

1 0
1 2
1 4

 

 

Re
lat

ive
 Ex

ec
uti

on
 Ti

me

V i c t i m ’ s  P r o g r a m

 B a s e l i n e   D a t a b a s e   F i l e        W e b
 A p p           S t r e a m       M a i l       C P U _ a v a i l

(a) Performance under attacks.

I d l e
D a

t a B
a s e F i l e W e b A p

p
S t r

e a m M a i l
C P

U - a
v a i

l

I d l e
D a

t a B
a s e F i l e W e b A p

p
S t r

e a m M a i l
C P

U - a
v a i

l

I d l e
D a

t a B
a s e F i l e W e b A p

p
S t r

e a m M a i l
C P

U - a
v a i

l0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

1 2 0 %
( V i c t i m ’ s  p r o g r a m )

a s t a rh m m e r

 

 

Re
lat

ive
 C

PU
 us

ag
e

( A t t a c k e r ’ s  p r o g r a m )

 A t t a c k e r   V i c t i m
b z i p 2

(b) Measurements of vulnerability.

Figure 3.5: CPU availability attacks and detection

core, and keeps record of the virtual running time for the attested VM. After the

testing period, the VMM Profile Tool stops the measurements and calculates the

total virtual running time: CPU measure. This measurement is written into one

Trust Evidence Register, signed and sent back to the Attestation Server.

Availability Property Interpretation: The Attestation Server retrieves the at-

tested VM’s virtual running time and calculates the relative CPU usage as the ratio

of a VM’s virtual running time to real time. If the relative CPU usage is very small,

79



nova
scheduler

nova
database

Queue

nova
network

nova
volume

volume
provider

nova 
api

nova
attest_service

oat
interpreter

nova
response 

oat
database

oat
appraiser

oat
PrivacyCA

nova
compute

oat
TPModule

TPM
emulator

Monitor 
Kernel

customer

CUSTOMER CLOUD CONTROLLER ATTESTATION SERVER CLOUD SERVER

Unmodified module

Modified module
New module

oat api oat client

Monitor 
Tools

horizon

Figure 3.6: Implementation of attestation architecture.

then the Attestation Server interprets the VM’s CPU availability as compromised (as

shown in Figure 3.5b).

3.4 Evaluation

3.4.1 Prototype Implementation

We implemented our property-based cloud attestation on the OpenStack platform [19].

We integrated the OpenAttestation software (oat) [17] for host remote attestation

protocols. We integrated the TPM-emulator [209] and leveraged it to emulate the

functions of the Trust Module in the hardware. Our evaluation results in Section

3.4.2 show that the emulation of the Trust Module has little impact on the system

performance. We make CloudMonatt open-source and available online 1. Figure 3.6

displays our prototype implementation.

Cloud Controller. The Cloud Controller is implemented by the OpenStack. Open-

Stack is composed of different services. We modified two services. The first one

is horizon, which is implemented as OpenStack’s dashboard and provides a web-

based user interface to customers. The second one is nova, which is used to manage

computing services in cloud servers. We modify four modules in the Cloud Controller:

1https://github.com/eepalms/CloudMonatt.git

80



• horizon: We extend the VM launch interface with the monitoring and attestation

options: when launching VMs, the customers can specify which properties they

want to monitor for their VMs. When the cloud provider searches for a destination

machine for initial VM allocation or migration, it must choose servers which support

such properties. We also added new options (Table 3.1) for customers to monitor

the VM’s health. The customers provide the security properties they want to

monitor for their VM, and they will receive the attestation results.

• nova api : we modify this module to pass new VM launch options, monitoring

requests from horizon to nova, as well as attestation results from nova to horizon.

• nova database: We modify the controller’s database to enable it to store the

customers’ specifications about the security properties required for their VMs, from

nova api. We also add new tables in the database, which record each servers’

monitoring and attestation capabilities: i.e., what properties they support for

monitoring.

• nova scheduler : the nova scheduler is modified to implement the Policy

Validation Module and Deployment Module of the Cloud Controller in Figure

3.1. It is responsible for choosing the host for the VM during initial allocation and

migration. The default scheduler in OpenStack is to choose the server with the

most remaining physical resources, to achieve workload balance. We add a new

filter: property filter, to select qualified cloud servers to host VMs based on their

customers’ security properties, monitoring and attestation requirements.

We add two new modules in the controller:

• nova attest service: This essential module manages the attestation services. It

connects nova database (for retrieving security properties), oat api (for issuing

attestations and receiving results) and nova response (for triggering the responses).

81



• nova response: This implements the Response Module in Figure 3.1. It is respon-

sible for providing some responses if the attestation fails, as discussed in Section

3.2.5.

Attestation Server. The attestation server and client are realized by OpenAttesta-

tion. The Attestation Server has four main modules: oat database stores information

about the cloud servers and measurements; oat appraiser is responsible for triggering

attestations and reporting the measurements; oat PrivacyCA provides public-key

certificates for the cloud servers. We modify oat api and add a new module oat

interpreter :

• oat api: We extend the APIs with more parameters, i.e., security properties and

VM id.

• oat interpreter: This essential new module implements the Property Interpretation

and Certification Modules of the Attestation Server. It can interpret the security

health of the VM and make attestation decisions, based on the information of the

cloud server from the nova database and the security measurements from the oat

database.

Cloud Servers. In each cloud server, nova compute is the client side of OpenStack

nova. We modify oat client, the client side of OpenAttestation, to receive attestation

requests. We modify the TPM emulator to provide secure storage and crypto functions.

We add two new modules:

• Monitor Kernel can start the security measurements and store the values into the

TPM emulator, and

• Monitor tools can integrate different software VMI tools, VMM Profile tools or

other logging or provenance tools, into the server to perform the monitoring and

take measurements.

82



3.4.2 Performance Evaluation

Our testbed includes three Dell PowerEdge R210II servers, each with a quad-core 3.30

GHz Intel Xeon processor, 32GB RAM, and on-board dual Gigabit network adapter

with 1 Gbps speed. We select one server as the cloud controller, equipped with Nova

Controller and OpenAttestation Server. The other two servers are implemented as

cloud server nodes.

We consider two performance issues: the overhead of VM launching due to new

security requirements, and the overhead of attestation during runtime. We also

evaluate different responses for attestation failure recovery. OpenStack Ceilometer

[18] is exploited for timing measurements.

VM Launch: In the original OpenStack platform, VM launch involves the following

four steps:

• Scheduling : allocate VMs to appropriate servers based on customers’ requirements

and servers’ workloads.

• Networking : allocate the networks for VMs.

• Block device mapping : set up block devices for VMs.

• Spawning : start VMs on the selected servers.

Our OpenStack CloudMonatt architecture involves five steps for VM launching.

At the Scheduling stage, the controller needs to check oat database to find qualified

servers which have the security features that support the customer’s desired security

properties. Steps 2, 3, and 4 are the same as above. We add a fifth stage Attestation

after the Spawning stage. This stage will check if the VM has been launched securely.

Figure 3.7 shows the time for each stage of VM launching. We test three VM

images (cirros, fedora and ubuntu) with three VM flavors (small, medium and large).

This figure shows that the overhead of the Attestation stage is about 20%, which

83



s m a l l
m e d i u m

l a r g
e

s m a l l
m e d i u m

l a r g
e

s m a l l
m e d i u m

l a r g
e0

1

2

3

4

5

6  s c h e d u l i n g   n e t w o r k i n g   m a p p i n g
 s p a w n i n g     a t t e s t a t i o n

( f e d o r a ) ( u b u n t u )( c i r r o s )
 

 

 

Tim
e (

s)

Figure 3.7: Performance for VM launching.

is acceptable for VM launching. The main overhead of an attestation is from the

message transmitting in the network.

VM Runtime: During VM runtime, customers can monitor the VM at any time,

or periodically at a given frequency. To test the performance effect of periodic

runtime attestation, we ran different cloud benchmarks in one virtual machine, while

the customer issues the periodic runtime attestation request at different frequencies.

Figure 3.8 shows the effect of periodic runtime attestation at a frequency of 1 minute,

10 seconds and 5 seconds, on ubuntu-large VM.

This figure indicates that there is no performance degradation due to the execution

of runtime attestation. This is for CPU-resource monitoring, where the measurements

are taken during the VM switch – the VMM Profile Tool does not intercept the VM’s

execution. Whether runtime attestation causes performance degradation to the VM

execution time depends on the measurement collection mechanism. However, if the

periodic attestation frequency is low, then the performance effect is negligible.

Response: The effectiveness of attestation in preventing runtime security breaches

depends on two factors: (1) how long it takes to detect potential exploitation of

vulnerabilities. This is related to attestation time and mode; and (2) how long it

84



d a t a b a s e f i l e w e b a p p s t r e a m m a i l
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

1 2 0 %

 

 

Re
lat

ive
 Pe

rfo
rm

an
ce

C l o u d  B e n c h m a r k

 n o  a t t e s t   1 m i n   1 0 s   5 s

Figure 3.8: Performance effect of runtime attestation.

takes to perform the remediation responses. We evaluate the overhead of the defense

strategies described in Section 3.2.5.

Figure 3.9 shows the attestation time and reaction time for each response strategy,

providing insights into which strategy should be used. Two factors influence the

choice of a response: (1) The reaction time of the response should ideally be less than

the “damage time”, where we define “damage time” as the time from the point at

which the attack is detected to the point at which damage results from the attack.

In this respect, Termination is the fastest while Migration is the slowest. (2) The

response strategy should also be determined by the specific nature of the attacks and

the customers’ security needs and usage scenarios. For example, Termination sacrifices

VM availability as the customer cannot use the VM any more; Suspension enables the

customer to continue the VM only after the server recovers from security breaches;

Migration enables the customer to use the VM immediately after the migration is

done. So migration may be the best for service availability.

85



s m a l l
m e d i u m

l a r g
e

s m a l l
m e d i u m

l a r g
e

s m a l l
m e d i u m

l a r g
e0

5

1 0

1 5

2 0 M i g r a t i o n

S u s p e n s i o nT e r m i n a t i o n

 

 

Tim
e (

s)

V M  t y p e

 a t t e s t a t i o n
 r e s p o n s e

Figure 3.9: Attestation reaction times during VM runtime.

3.5 Appendix to Chapter 3: Security Verification

It is necessary to verify CloudMonatt to guarantee that there are no security vulnera-

bilities that could allow an attacker to subvert its protection. We conduct a security

evaluation and verification of CloudMonatt. We aim to address two questions: (1) can

CloudMonatt provide unforgeable VM health reports to customers as well as the cloud

provider? (2) What are the minimal security requirements (i.e., minimal Trusted

Computing Base) that can guarantee the security and correctness of CloudMonatt?

3.5.1 Verification Methodology

To verify a system’s protocols and operations, we first specify the verification goals

and invariants based on the system’s functionality. Then we build models for the

system, and identify the trusted and untrusted subjects in the system. We implement

the models and verification invariants in model checker tools and run the tools to

test if the invariants pass for every possible path through the system models from the

initial state to the end state. If an invariant fails in some cases, we try to find the

86



vulnerabilities and construct the corresponding attacks. We describe these steps of

verifying CloudMonatt in detail below.

Analyzing verification goals. CloudMonatt has two basic functionalities: (1)

reporting VMs’ potential security threats to the cloud provider so it can take the

corresponding countermeasure to mitigate the threats; (2) notifying the customers of

their VMs’ security health. So CloudMonatt must ensure that the cloud provider and

customers can receive the correct and unforgeable monitoring reports. These are the

two verification goals of CloudMonatt.

Figure 3.10 shows the structure of verification goals and their dependent conditions.

The two red blocks show the two main goals we want to verify: (1) the goal that the

customers can receive the correct reports depends on three conditions: the Cloud

Controller can receive the correct reports, process them correctly and transmit them

securely to the customers. (2) The goal that the Cloud Controller can receive the correct

reports also depends on three conditions: the Attestation Server can receive the correct

measurements, process them (i.e., generate correct reports) correctly, and transmit the

reports to the Cloud Controller securely. In addition to the above two main goals, the

condition that the Attestation Server can receive the correct measurements depends on

two conditions: the cloud server collects correct measurements, and such measurements

can be transmitted to the Attestation Server securely. The trustworthiness of each

server depends on two conditions: the critical software and hardware modules function

correctly, and messages are exchanged securely between these modules.

In order to verify the main goals in a scalable way, we classify these goals and

conditions into different types, and break the verification task into two steps, adapting

and extending the methodology from [216]. The first step is external verification,

which aims to verify the main verification goals (red blocks in Figure 3.10). In this

step, we treat each server as a blackbox (dashed boxes in Figure 3.10). For each server

we only consider the black block as a precondition and assume it is already satisfied,

87



Customers receive 
correct reports

Cloud Controller 
receives correct reports

Reports are 
securely transmitted

Attestation Server receives 
correct measurements

Measurements are 
securely transmitted

Reports are 
securely transmitted

Software modules 
function correctly

Inter-module messages 
are securely transmitted

Software modules 
function correctly

Inter-module messages 
are securely transmitted

Software/hardware 
modules function correctly

Inter-module messages 
are securely transmitted

Cloud Controller processes 
reports correctly

Attestation Server processes 
measurements correctly

Cloud server collects 
correct measurements

Figure 3.10: The structure of verification goals of CloudMonatt. Red blocks are the
main goals of external verification. Black blocks are the preconditions of external
verification, as well as the postconditions of internal verification. Grey blocks are the
basic preconditions.

while ignoring other basic preconditions (grey blocks) inside the boxes. Under such

preconditions and other basic preconditions outside of the blackboxes, we verify if the

main goals are held. The second step is internal verification in which we consider the

activities inside each server. In this step, the precondition we assume in the previous

step becomes the postcondition that we want to verify. We want to check if such

postcondition is held, i.e., the precondition we make in the previous step is correct,

under the basic preconditions inside the dashed box.

Modeling systems. To verify the above goals of CloudMonatt, we need to translate

the system protocols and the underlying architectures into representative yet tractable

models. We adopt the symbolic modeling method [52], where the cryptographic

primitives are represented by function symbols and perfect cryptography is assumed.

Specifically, we first specify subjects involved in this verification procedure. A subject

can be a customer or a server in the distributed system, or a hardware/software module

inside a server. For external verification, since we treat each server as a blackbox, then

88



we model each server and the customer as a subject. For internal verification, we need

to consider the internal activities inside the server, so we model each software and

hardware module involved in the system operation as a subject. Each subject has a

set of states with inputs and outputs based on the system operation. The transitions

between different states are also defined by the architecture designs and protocols.

Among all the subjects, there is an initiator subject that starts the system protocol

and a finisher subject that ends the protocol (The initiator and finisher could be the

same subject). This initiator subject has a “Start” state while the finisher subject

has a “Done” state. The verification procedure starts at the initiator’s “Start” state.

At each state in each subject, it takes actions corresponding to the transition rules.

It will exhaustively explore all possible rules and states to find all the possible paths

from the initiator’s “Start” state to the finisher’s “Done” state. Then we judge if the

verification goals are satisfied in all of these paths. The system is verified to be secure

if there are paths from initiator’s “Start” state to finisher’s “Done” state, and all the

verification goals are satisfied in any of these paths.

Specifying security invariants. Invariants are conditions that need to hold true for

there to be no violation of the verification goals or postconditions. The invariants can

be specified from the goals or postconditions that we want to verify. For CloudMonatt,

the goals of external verification are to ensure the customer and the Cloud Controller

receive the correct reports. So the invariants are that the reports received by the

customer and the Cloud Controller are always the ones matching the security property

and VM id they specify. The postconditions for internal verification are to ensure

that the servers process the data correctly. So the invariants are that the output (e.g.,

measurements, report) sent from the server are always the ones correctly mapped to

the input sent to the server.

Identifying preconditions. Preconditions refer to the basic requirements that are

needed to keep the security invariants true within the system protocols or operations.

89



Basically it specifies the necessary subjects (e.g., network links connecting different

servers, software or hardware modules inside the server) that should be trusted. For

external verification, the preconditions are the assumptions we make about each servers.

For internal verification, the preconditions are the subjects that should be included in

the Trusted Computing Base. The verification results can help us identify the minimal

TCB for CloudMonatt, i.e., the necessary and critical software/hardware modules or

servers that should be well protected to guarantee the correctness of CloudMonatt.

In the next two sections, we conduct the external verification and internal verifi-

cation separately. We use ProVerif [51] to model the system and verify the security

invariants. ProVerif is a software tool for checking security properties in cryptographic

protocols. It supports a variety of cryptographic primitives, e.g., symmetric and asym-

metric cryptography, digital signatures, hash functions, etc. If a security property is

proven unsatisfied, ProVerif can reconstruct the attacker execution trace that falsifies

the property. We show how to use ProVerif to check the system interactions, in

addition to network protocols.

3.5.2 External Verification

Modeling. We model each server involved in this distributed system as an interacting

state machine, as shown in Figure 3.11. Each subject is made up of some states. The

customer is the initiator as well as the finisher subject. The whole process starts

from the customer side, who sends to the Cloud Controller the attestation request

including the VM identifier Vid and the desired security properties P. Then the Cloud

Controller discovers the host cloud server, and forwards the request to the Attestation

Server, with the server identifier I. The Attestation Server identifies the necessary

monitoring measurements and sends the measurement request rM to the host cloud

server. The cloud server collects the required measurement, calculates the hash value,

Q, of the measurements requested and sends these values back to the Attestation

90



Customer

Start

Done Abort

Cloud Controller

Done Abort

Find host 
server

Attestation Server

Done Abort

Find measurements 
to take

Cloud Server

Done Abort

Take 
Measurements

Calculate and 
sign Quote

Verify signature, 
nonce and hash

Calculate and 
sign Quote

Verify signature
 and hash

Calculate and 
sign Quote

Verify signature, 
nonce and hash

(Vid,I,P,N2)Ky (Vid,rM,N3)Kz

([Vid,rM,M,N3,Q3]ASKs)Kz

NoYes([Vid,I,P,R,N2,Q2]SKa)Ky

NoYes([Vid,P,R,N1,Q1]SKc)Kx

NoYes

(Vid,P, N1)Kx

Figure 3.11: The external protocol in CloudMonatt. Kx, Ky and Kz are symmetric
keys between the customer and the Cloud Controller, between the Cloud Controller and
the Attestation Server, and between the Attestation Server and the cloud server. SKc,
SKa and ASKs are the private signing keys of the customer, the Cloud Controller,
the Attestation Server and the cloud server. N1, N2 and N3 are the nonces used by
the customer, the Cloud Controller and the Attestation Server.

Server, after which the cloud server reaches the “Done” state. The Attestation Server

checks the signature, the hash value and the nonce: if this check fails, the Attestation

Server goes to “Abort” state. Otherwise it interprets the measurements and the

property, and generates the attestation report R, as explained in Section 3.2.4. Then

the Attestation Server signs the report, transmits it to the Cloud Controller, and goes

to state “Done”. After receiving the report, the Cloud Controller checks the signature,

the hash value and the nonce. If anything is incorrect, the Cloud Controller goes to

state “Abort”. Otherwise it hashes and signs the report, and ends at state “Done”

after sending the report to the customer. If the customer finds the encrypted signature

of the report is correct, it goes to state “Done”. Otherwise, it goes to state “Abort”.

Security invariants. As we discussed in Section 3.5.1, the external verification

is to check if the customer and cloud provider can receive the correct attestation

reports. We identify several specific security invariants for this task in our modeled

state machines:

91



1 The Cloud Controller is able to reach state “Done”. When it is at state “Done”,

the attestation report R it receives is indeed the one for VM Vid with property

P, specified by the customer.

2 The customer is able to reach state “Done”. When he is at state “Done”, the

attestation report R he receives is indeed the one for VM Vid with property P,

specified by the customer.

Invariant 1 is to ensure the Cloud Controller gets the correct attestation reports.

Invariant 2 is to ensure the customer gets the correct attestation reports.

Preconditions. We make several preconditions about each server and check if

the above security invariants can be satisfied under these preconditions. These

preconditions indicate the subjects that should be included in the TCB. Verifying the

sufficiency and necessity of these preconditions can help us find the minimal TCB for

CloudMonatt.

(C1) The cloud server is trusted.

(C2) The Attestation Server is trusted.

(C3) The Cloud Controller is trusted

Here a “trusted” server means it will strictly follow the operations indicated in our

protocol. For instance, a trusted cloud server will collect and sign correct measurements;

a trusted Attestation Server will process the measurements and generate the reports

correctly; a trusted Cloud Controller will process the VM health reports correctly. In

addition, a trusted server will keep its secrets from attackers.

Implementation. We model the authentication and communication protocols of

external verification in ProVerif. Specifically, we declare each subject (the customer,

the Cloud Controller, the Attestation Server and the cloud server) as a process.

Inside the process we model the operations of state machines shown in Figure 3.11.

Each process keeps some secrets (e.g., cryptographic keys, attestation reports or

92



measurements). If the subject is trusted, then the attacker cannot get these secrets,

and we use the keyword private to denote these variables. Otherwise the variables

are declared as public and the attacker can obtain the values.

To model the network activities in this distributed system, we declare a channel

between each pair of subjects, to represent the untrusted communication channel.

These channels are under full control of the network-level adversaries, who can

eavesdrop or modify any messages transmitted in the channels.

We also use the cryptographic primitives from ProVerif to model the public key

infrastructure for digital certificate, authentication and key exchange. Then we model

all the steps in Figure 3.11 for an unbounded number of attestation sessions, i.e., the

customer keeps sending attestation requests to the cloud system and receiving the

reports. ProVerif can check if the adversary can compromise the integrity of the report

in any attestation session, and display the attack execution trace if a vulnerability is

found.

We can use ProVerif ’s reachability proof functionality to verify if the Cloud

Controller and customer is able to reach state “Done”. ProVerif allows us to define

an event E inside a process at one state, which specifies some conditions. Then we can

check if this event will happen when the protocol proceeds using the query statement:

“query event(E)”. ProVerif can enumerate all the possible execution traces and check

if this event is reachable in some cases. If so, this query statement returns true as

well as the trace that reaches the event. Otherwise the statement returns false. So

we can use the statement “query event(Done)” to check if the customer and Cloud

Controller can receive the attestation report.

ProVerif does not provide direct functionalities to prove integrity. However, we

can also use its reachability proof functionality to verify the integrity property of a

message. Specifically, to verify the integrity of the attestation report in invariant 1 ,

we check if the report received by the Cloud Controller, R’ is the correct one, R,

93



determined by the VM identifier Vid and the security property P, when the Cloud

Controller reaches state “Done”. Then we establish an event: “(R’6=R)” at state

“Done” to denote the integrity breach. We use the statement “query event(R’6=R)”

to verify the integrity. If this statement is false, it means the attacker has no means

to change the message R without being observed by the Cloud Controller. Then

the integrity of R holds. Similarly, to verify invariant 2 , we check if the report R’

received by the customer at state “Done”, is the correct one R.

Results. Proverif shows that state “Done” is reachable for both customers and

Cloud Controller. Then we verify if the security invariants 1 and 2 are satisfied

under the preconditions (C1) – (C3). First, ProVerif confirms that preconditions

(C1) – (C3) are sufficient to guarantee that the customer and the Cloud Controller

can receive the correct attestation reports. Note that as we put trust on the Cloud

Controller, the Attestation Server and the cloud server, we do not need to consider the

server-level adversaries. Even though the network-level adversaries can take control of

all the network channels between each server, they cannot compromise the integrity

of the messages without being observed, since all the messages are hashed, signed and

encrypted before being sent to the network.

Second, we check if preconditions (C1) – (C3) are necessary to keep the invariants

correct. ProVerif shows that it is necessary to place the subjects of (C1), (C2) and

(C3) in the TCB. Missing any precondition can lead to violations of some invariants:

if the cloud server is not trusted, then the server-level adversary can counterfeit wrong

measurements, causing the Attestation Server to make wrong attestation decisions,

and pass them to the Cloud Controller and the customer. So invariants 1 and 2

are not satisfied. If the Attestation Server is not trusted, then it can generate wrong

attestation reports for the customer and the Cloud Controller. So invariants 1 and

2 are not satisfied. If the Cloud Controller is untrusted, it can modify the attestation

reports before sending to the customer. So invariant 2 is not satisfied.

94



In the next section, we perform internal verification of the trusted servers, to show

which component in each of the servers should be trusted, in order to satisfy the

preconditions we assume in this section.

3.5.3 Internal Verification

From Section 3.5.2 we know that to satisfy the external verification goals, we need

to assume the correctness of the preconditions in each server, i.e., trusting the data

processing in the Cloud Controller, the Attestation Server and the cloud server.

However, we do not need to place the entire server into the TCB. On the one hand,

trusting each component in one server is not a necessary condition to satisfy the

precondition we assume for this server. Including all the components of the server

into the TCB would require stronger security protection for the entire server, which is

expensive and difficult to achieve. It is also impossible to trust every component in

the server, especially for the cloud server which hosts the guest VMs rented to the

customers. CloudMonatt cannot ensure that the guest VMs are trusted. As such, we

conduct the internal verification to identify which components inside the server need

to be trusted, to satisfy the preconditions we make in the external verification.

3.5.3.1 Cloud Server

First, we verify the system operation and interactions on the cloud server.

Modeling. We abstract the key components inside a cloud server, and model them

as state machines, as shown in Figure 3.12. Besides, we also include the Attestation

Server to interact with the cloud server. The Attestation Server is the initiator and

finisher subject in the internal protocol. The whole process starts when the Attestation

Server sends the measurement request to the cloud server. The Attestation Client

processes the request and passes it to the Monitor Module. The Monitor Kernel

inside the Monitor Module figures out the corresponding monitor tool and invokes it to

95



Attestation Server

Start

Done Abort

Monitor Kernel

Done Abort

choose monitor 
tools

Verify signature, 
nonce and hash

NoYes

Monitor Module
Monitor Tools

Take 
measurements

Vid,rM

process 
measurements

M

Attestation Client

Done Abort

Invoke 
measurements

Send signed 
measurements

Vid,rM,N3
Crypto Engine

Trust 
Evidence 
Registers

Trust Module

retrieve 
Attestation Key

Calculate Quote
Q3=H(Vid||rM||M||N3) Vid,rM,M,N3

Sign message ASKs

Done Abort

retrieve 
Measurements

Attest Key
[Vid,rM,M,N3,Q3]ASKs

Vid,rM,M,N3

(Vid,rM,N3)Kz

([Vid,rM,M,N3,Q3]ASKs)Kz

Cloud Server

Figure 3.12: Internal protocol (interactions) in the cloud server

collect the correct measurements. Then it stores the measurements together with other

related information in the Trust Evidence Registers. Then the Crypto Engine in

the Trust Module retrieves the measurements, calculates the quote (see Section 3.2.4)

and signs it using the Attestation Key. Then the signature is encrypted by the

Attestation Client and sent to the Attestation Server. After this all the subjects

inside the cloud server reach the state “Done”. The Attestation Server will check the

hash and signature. It goes to state “Done” if the check succeeds and state “Abort” if

the check fails.

Security invariants. the invariant for internal verification is to check if the cloud

server collects the correct measurements and sends these to the Attestation Server.

So we translate this invariant to the statement as below:

1 The Attestation Server is able to reach state “Done”. When it is at state “Done”,

the measurements M it receives are indeed the one for VM Vid with request rM,

which were sent to the cloud server.

Preconditions. We identify a set of possible preconditions to satisfy the above

invariant. We classify these preconditions as different modules and inter-module

communications. We check the necessity and sufficiency of these preconditions for

guaranteeing the integrity of measurements taken from the cloud server.

96



1. Attestation Client:

(C1.1) this module is trusted.

2. Monitor Module:

(C2.1) the Monitor Kernel is trusted.

(C2.2) the Monitor Tools are trusted.

(C2.3) the channel between the Monitor Kernel and the Monitor Tools is trusted.

3. Trust Module:

(C3.1) the Crypto Engine is trusted.

(C3.2) the Trust Evidence Registers are trusted.

(C3.3) the Attestation Key is securely stored.

(C3.4) the channel between the Attestation Key and the Crypto Engine is

trusted.

(C3.5) The channel between the Crypto Engine and the Trust Evidence

Registers is trusted.

4. Inter-module communication:

(C4.1) the channel between the Attestation Client and the Monitor Kernel is

trusted.

(C4.2) The channel between the Attestation Client and the Crypto Engine is

trusted.

(C4.3) The channel between the Monitor Kernel and the Trust Evidence

Registers is trusted.

Implementation. ProVerif does not provide functionalities for modeling and verifi-

cation of architecture-level interactions. However, we can model the server system

as a network system, and verify the server in a similar way as the network protocol

verification. Specifically, we can model a software or hardware component as a pro-

cess. Each component keeps some variables and operates as a state machine. If one

component is in the TCB, then its variables will be declared as private. Otherwise

97



its variables are public to attackers. If the attacker has the privilege to control the

communication between two components, then we declare a public channel for these

two components. On the contrary, if two modules are linked by one channel that is

trusted, then we combine the two processes into one process so that the two modules

can exchange messages directly without being compromised by third party attackers.

We model all the steps in Figure 3.12 for an unbounded number of sessions, i.e.,

the Attestation Server keeps sending measurement requests to the cloud server and

receiving the results. ProVerif enumerates all the possible states during the infinite

sessions and checks if the property is maintained.

Results. ProVerif shows that state “Done” is reachable for the Attestation Server.

Then We consider and verify the sufficiency and necessity of the above preconditions

that satisfy the security invariants. We use the same reachability functionality of

ProVerif to verify the integrity property under different preconditions.

For precondition (C1.1), ProVerif shows that the integrity property is still satisfied,

and the adversary cannot tamper with the messages, even if he takes control of the

Attestation Client. If the adversary changes Vid or rM before they are sent to

the Monitor Module, the Monitor Module will collect the wrong measurements M.

However, the Trust Module will also sign the modified Vid or rM. The Attestation

Server will notice this modification and go to state “Abort”. So (C1.1) is not a

necessary condition and can be removed from the TCB.

For (C2.1), (C2.2) and (C2.3), ProVerif shows that without any of the three

preconditions, the integrity checking of measurements will fail. ProVerif also shows

attack execution traces if one precondition is missing. For instance, if the Monitor

Kernel is untrusted, it can send a different Vid or rM to the Monitor Tools to

collect wrong measurements M. If the Monitor tools are untrusted, even they receive

the correct measurement request, they will give wrong measurements data. If the

communication channel is open to the adversary, he can easily modify the measurement

98



requests or results without being noticed by the other trusted subjects. So (C2.1),

(C2.2) and (C2.3) are necessary conditions to protect the measurements’ integrity, and

must be kept.

ProVerif shows preconditions (C3.1) – (C3.5) are also necessary to guarantee the

integrity of measurements. It also shows the attack execution traces without these

conditions. If the attacker compromises the Crypto Engine, the Attestation Key or

their communication channel, it can generate a fake signature over any measurements

using the signing key ASKS, while the Attestation Server will never detect this

integrity breach. If the Trust Evidence Registers or their connection with the

Crypto Engine are compromised, then a server-level adversary can easily tamper

with the security measurements stored in the untrusted Trust Evidence Registers

or transmitted in the untrusted channel, without being detected by the Attestation

Server.

Precondition (C4.1) is not necessary, with the same reason as precondition (C1.1).

Precondition (C4.2) is not necessary. The adversary cannot compromise the message

integrity since the message in this channel is signed. Precondition (C4.3) is necessary.

If this channel is not trusted, the adversary can modify the measurements, M, then

the Trust Module will store and sign the wrong measurement.

Based on the above results, the necessary conditions to guarantee the measurements’

integrity are: (1) the Monitor Module is trusted (i.e., the Monitor Kernel, the

Monitor Tools, and their communications); (2) the Trust Module is trusted (i.e.,

the Crypto Engine, the Attestation Key, the Trust Evidence Registers, and

their communications); (3) the communication channel between the Monitor Module

and the Trust Module is trusted. ProVerif shows that it is also sufficient for the

cloud server to maintain the property of measurements’ integrity if only these subjects

are included in the TCB of a cloud server. In particular, ProVerif shows that the

Attestation Client need not be trusted.

99



Cloud Controller

Abort

Property Interpretation 
Module

Done Abort

Find measurements 
to take

Cloud Server

Done Abort

Collect 
measurementsVerify signature, 

nonce and hash

Get 
measurements

Verify signature
 and hash

NoYes

No

Start

Property Certification
Module

Get certification
P

Done Abort

Generate 
report

Yes

Done

M’

Attestation Server

(Vid,I,P,N2)Ky

([Vid,I,P,R,N2,Q2]SKa)Ky

(Vid,rM,N3)Kz

([Vid,rM,M,N3,Q3]ASKs)Kz

Figure 3.13: Internal protocol (interactions) in the Attestation Server

3.5.3.2 Attestation Server

We use the same method to verify the Attestation Server.

Modeling. Figure 3.13 shows the state machines of the Attestation Server. The

Attestation Server has two modules: the Property Interpretation Module and the

Property Certification Module. The Property Interpretation Module is used

to invoke the attestation. The Property Certification Module is used to provide

the measurements certification for one security property.

Security invariants. The invariant for verification of the Attestation Server is to

check if the Attestation Server generates the correct attestation report and sends it to

the Cloud Controller:

1 The Cloud Controller is able to reach state “Done”. When it is at state “Done”,

the report R it receives is indeed the one for VM Vid with property P, which

were sent to the Attestation Server.

Preconditions. We identify a set of preconditions for the Attestation Server:

(C1) The Property Interpretation Module is trusted.

(C2) The Property Certification Module is trusted.

100



Customer

Start

Done Abort

Policy Validation 
Module

Done Abort

Find host 
server

Attestation Server

Done Abort

Cloud Server

Get attestation 
Report

Verify signature
 and hash

Calculate and 
sign Quote

Verify signature, 
nonce and hash

([Vid,I,P,R,N2,Q2]SKa)Ky

NoYes
([Vid,P,R,N1,Q1]SKc)Kx

NoYes

(Vid,P, N1)Kx

Depolyment
Module

Response
Module

Check VM health

Invoke 
countermeasure

Find correct 
countermeasure

Select host server
(resources, P, N0)Kx

Launch VM
resources, I

Conduct VM 
launch

Cloud Controller

(Vid,I,P,N2)Ky

Done

Conduct 
countermeasure

Figure 3.14: Internal protocol (interactions) in the Cloud Controller

(C3) The channel between the Property Certification Module and Property

Interpretation Module is trusted.

Implementation. We use ProVerif to verify the Attestation Server in a similar way

as the cloud server.

Results. We find that both of the two modules and their communications should

be placed into the TCB of CloudMonatt. If the Property Certification Module is

incorrect, it will give wrong property certifications. If the Property Interpretation

Module is compromised, it can invoke the wrong attestation requests or send wrong

attestation reports. Untrusted channels between these modules will bring the same

attack effects.

3.5.3.3 Cloud Controller

Modeling. In the Cloud Controller, we consider the interactions between three mod-

ules: the Policy Validation Module, Deployment Module and Response Module.

The state machines of these three modules are displayed in Figure 3.14. We consider

two events: the customer launches the VM, and issues runtime attestation requests.

101



Security invariants. The invariant for verification of the Cloud Controller is to

check if the Cloud Controller can send the the correct attestation report to the cloud

customer.

1 The customer is able to reach state “Done”. When he is at state “Done”, the

report R he receives is indeed the one for VM Vid with property P, specified by

the customer.

Preconditions. The preconditions for the Cloud Controller is related to the three

modules involved:

(C1) The Policy Validation Module is trusted.

(C2) The Deployment Module is trusted.

(C3) The Response Module is trusted.

(C4) The channel between the Policy Validation Module and Deployment Module

is trusted.

(C5) The channel between the Policy Validation Module and Response Module

is trusted.

Implementation. The verification of the above models is similar to the cloud server

and the Attestation Server.

Results. To guarantee the integrity of attestation reports, the Policy Validation

Module must be trusted. If this module is compromised, then the whole monitoring

service will be compromised. For the Deployment Module and the Response Module

and their communication channels with the Policy Validation Module, they are

not necessary to protect the integrity of attestation reports. However, they are used

to control VMs. So they should also be trusted to guarantee that the cloud system

functions correctly.

102



3.5.4 Verification Discussions

The external and internal verification results can help us verify and enhance the security

of CloudMonatt. We identify the components that are required in CloudMonatt ’s TCB.

Then we can use existing software-hardware solutions to protect these components.

In a cloud server, verification results show that the Monitor Module and Trust

Module of a cloud server should be included in the TCB. Normally, third party

customers only get guest VM privilege (ring 0) while the Monitor Module and Trust

Module have hypervisor privilege (ring -1). So a normal tenant has no capability

to subvert the security functions provided by these two modules. To enhance the

protection of CloudMonatt and defeat attacks (e.g., privilege escalation) caused by

the vulnerabilities of the original virtualized system other than CloudMonatt, we can

exploit some secure architectures. On the one hand, we can build CloudMonatt cloud

servers upon security-aware systems which are designed and verified to eliminate

potential vulnerabilities [134, 227, 108, 228]. On the other hand, we can leverage

some architectures and methodologies to specifically protect the critical modules of

CloudMonatt. For instance, we can use Bastion [61, 60] or Intel SGX [155, 32] to protect

the Monitor Module. Bastion can protect the execution of trusted software modules

within untrusted commodity software stacks. We can use a Bastion architecture as

a cloud server and implement the Monitor Kernel, software Monitor Tools, and

kernel modules/drivers of hardware Monitor Tools as the trusted software modules

that need protection. Then Bastion places these modules into secure execution

compartments isolated from the rest of the untrusted software stack, and enforces

memory access control as well as storage protection. Bastion provides the secure

inter-module control flow scheme to achieve secure communications between the

Monitor Kernel and the Monitor Tools. Alternatively we can also use Intel SGX,

and build isolated execution environments, i.e., enclaves, to protect the Monitor

103



Module from the untrusted software stacks. The Trust Module can also be protected

by Bastion or SGX secure enclaves. Alternatively, since some hardware extensions are

designed for the Trust Module, it can be placed into a separate chip. This achieves

isolation between the Trust Module and the main CPU cores, and reduces the Trusted

Computing Base.

In the Cloud Controller and the Attestation Server, all the critical modules should

be well protected. To achieve this, we can use Bastion or Intel SGX to protect these

software modules, as the cloud server. Besides, since these centralized servers are

used to manage cloud services, we can provide additional protections to enhance

their security. For example, we can disable scheduling guest VMs on these central

servers. This eliminates the possibility that an attacker launches VMs on these servers,

conducts privilege escalation attacks to get hypervisor-level privilege and compromises

the software entities in the host OS or hypervisor. We can also establish firewalls

on these servers to defeat network attacks. We can also provide redundancy in th

Attestation Servers and Cloud Controllers to enhance the availability of these critical

trusted servers. Since these central servers are just a small number of servers in the

cloud system, it is feasible to have special security protections for them.

3.6 Chapter Summary

In this chapter, we introduce CloudMonatt, an architecture that enables secure moni-

toring and attestation of security features provided by a cloud server for the customer’s

VMs. First, we describe the design of CloudMonatt and show its key advances over

prior work: (1) it is flexible and provides a rich set of security properties for VM

attestation; (2) it bridges the semantic gap between the security properties a customer

wants to request and the measurements collected from a cloud server; (3) it enables

initialization as well as runtime attestation during the lifetime of the VM; (4) it defines

104



a novel periodic attestation capability during VM runtime; (5) it provides automated

responses to bad attestation results to prevent potential, or further, security breaches;

(6) it is protected by secure attestation protocols with a set of cryptographic keys that

must be present or established; and (7) it is readily deployable: we leverage existing

cloud mechanisms and well-honed security mechanisms where possible, identifying the

minimal changes needed for a cloud system to implement our CloudMonatt architecture

on the OpenStack cloud software.

Second, we conduct security verification of CloudMonatt to validate the security and

correctness of this security-aware cloud architecture. To achieve scalable verification

of this large distributed system, we split the verification task into an external part

(considering the interactions between each server) and an internal part (considering

the interactions and operations inside the server). We identify the security invariants

and preconditions, model and verify each part using a cryptographic checking tool,

ProVerif. This verification not only raises our confidence in the design, but also helps

us understand which modules/servers are critical and guides us to further enhance the

security of CloudMonatt. Future work could be designing new security mechanisms

using secure architectures to realize the security preconditions we identified, and make

CloudMonatt more secure.

We show simple cases that can be integrated in our CloudMonatt. In the next

three chapters, we will show more complicated and interesting cloud-based detection

and mitigation mechanisms to protect different security properties of customers’ VMs.

We will also describe how these mechanisms can be integrated into the CloudMonatt

framework in each chapter (Sections 4.4.3, 5.4 and 6.5). In Section 7.1 and Figure

7.1, we will summarize these mechanisms and give a complete description of their

integrations in the CloudMonatt framework.

105



Chapter 4

Detection and Mitigation of

Availability Vulnerabilities

Memory DoS attacks are Denial of Service (or Degradation of Service) attacks caused

by contention for hardware memory resources on a cloud server. Despite the strong

memory isolation techniques for virtual machines (VMs) enforced by the software

virtualization layer in cloud servers, the underlying hardware memory layers are still

shared by the VMs and can be exploited by a clever attacker in a hostile VM co-located

on the same server as the victim VM, denying the victim the working memory he

needs.

In this chapter, we study the DoS attacks on the hardware memory resources (some

parts of this chapter have been published in [265]). We first show quantitatively the

severity of contention on different memory resources. We then show that a malicious

cloud customer can mount low-cost attacks to cause severe performance degradation for

a Hadoop distributed application, and 38× delay in response time for an E-commerce

website in the Amazon EC2 cloud.

Then, we design an effective, new defense against these memory DoS attacks,

using a statistical metric to detect their existence and execution throttling to mitigate

106



the attack damage. We achieve this by a novel re-purposing of existing hardware

performance counters and duty cycle modulation for security, rather than for improving

performance or power consumption. We implement a full prototype on the OpenStack

cloud system. Our evaluations show that this defense system can effectively defeat

memory DoS attacks with negligible performance overhead.

4.1 Background

To maximize resource utilization, cloud providers schedule virtual machines (VMs)

leased by different tenants on the same physical machine, sharing the same hardware

resources. While software isolation techniques, like VM virtualization, carefully isolate

memory pages (virtual and physical), most of the underlying hardware memory

hierarchy is still shared by all VMs running on the same physical machine in a multi-

tenant cloud environment. Malicious VMs can exploit the multi-tenancy feature to

intentionally cause severe contention on the shared memory resources to conduct

Denial-of-Service (DoS) attacks against other VMs sharing the resources. Moreover, it

has been shown that a malicious cloud customer can intentionally co-locate his VMs

with victim VMs to run on the same physical machine [182, 226, 248]; this co-location

attack can serve as a first step for performing memory DoS attacks against an arbitrary

target.

The severity of memory resource contention has been seriously underestimated.

While it is tempting to presume the level of interference caused by resource contention is

modest, and in the worst case, the resulting performance degradation is isolated on one

compute node, we show this is not the case. We present advanced attack techniques

that, when exploited by malicious VMs, can induce much more intense memory

contention than normal applications could do, and can degrade the performance of

VMs on multiple nodes.

107



To demonstrate that our attacks work on real applications in real-world settings,

we applied them to two case studies conducted in a commercial IaaS cloud, Amazon

Elastic Compute Cloud (EC2). We show that even if the attacker only has one VM

co-located with one of the many VMs of the target multi-node application, significant

performance degradation can be caused to the entire application, rather than just to

a single node. In our first case study, we show that when the adversary co-locates one

VM with one node of a 20-node distributed Hadoop application, he may cause up to

3.7× slowdown of the entire distributed application. Our second case study shows

that our attacks can slow down the response latency of an E-commerce application

(consisting of load balancers, web servers, database servers and memory caching

servers) by up to 38 times, and reduce the throughput of the servers down to 13%.

Despite the severity of the attacks, neither current cloud providers nor research

literature offer any solutions to memory DoS attacks. Our communication with cloud

providers suggests such issues are not currently addressed, in part because the attack

techniques presented in this chapter are non-conventional, and existing solutions to

network-based DDoS attacks do not help. Research studies have not explored defenses

against adversarial memory contention either. As will be discussed in Section 4.1.3.2,

existing solutions [77, 273, 251, 276, 29] only aim to enhance performance isolation

between benign applications. Intentional memory abuses that are evident in memory

DoS attacks are immune to these solutions.

Therefore, a large portion of this chapter is devoted to the design and implemen-

tation of a novel and effective approach to detect and mitigate all known types of

memory DoS attacks with low overhead. Our detection strategy provides a generalized

method for detecting deviations from the baseline behavior of the victim VM due

to memory DoS attacks. We collect the baseline behaviors of the monitored VM at

runtime, by creating a pseudo isolated period, without completely pausing co-tenant

VMs. This provides periodic (re)establishment of baseline behaviors that adapt to

108



changes in program phases and workload characteristics. Once memory DoS attacks

are detected, we show how malicious VMs can be identified and their attacks mitigated,

using a novel form of selective execution throttling.

We implemented a prototype of our defense solution on the opensource OpenStack

cloud software, and extensively evaluated its effectiveness and efficiency. Our evaluation

shows that we can accurately detect memory DoS attacks and promptly and effectively

mitigate the attacks. The performance overhead of persistent performance monitoring

is lower than 5%, which is low enough to be used in production public clouds. Because

our solution does not require modifications of CPU hardware, hypervisor or guest

operating systems, it minimally impacts the existing cloud implementations. Therefore,

we envision our solution can be rapidly deployed in public clouds as a new security

service to customers who require higher security assurances (like in Security-on-Demand

and CloudMonatt clouds [124, 262]).

4.1.1 Threat Model and Assumptions

We consider security threats from malicious tenants of public IaaS clouds. We

assume the adversary has the ability to launch at least one VM on the cloud servers

on which the victim VMs are running. Techniques required to do so have been

studied [182, 226, 248], and are orthogonal to our work. The adversary can run any

program inside his own VM. We do not assume that the adversary can send network

packets to the victim directly, thus resource freeing attacks [224] or network-based

DoS attacks [145] are not applicable. We do not consider attacks from the cloud

providers, or any attacks requiring direct control of privileged software on the host

server (e.g., hypervisor, host OS).

We assume the software and hardware isolation mechanisms function correctly as

designed. A hypervisor virtualizes and manages the hardware resources (see Figure

4.1) so that each VM thinks it has the entire computer. A server can have multiple

109



DRAM

Hypervisor

Core 0 Core 1 Core 2

Shared LLC

IMC

Core 0 Core 1 Core 2

Shared LLC

DRAM

Victim VM

Shared by vCPUs 0 and 1 Shared by vCPUs 0, 1 and 2

Attacker VM
vCPU 0 vCPU 1 vCPU 2 ……

Scheduler

InterPkg Bus IMC

Hardware

Figure 4.1: An attacker VM (with 2 vCPUs) and a victim VM share multiple layers
of memory resources.

processor packages, where all processor cores in a package share a Last Level Cache

(LLC), while L1 and L2 caches are private to a processor core and not shared by

different cores. All processor packages share the Integrated Memory Controller (IMC),

the inter-package bus and the main memory storage (DRAM chips). Each VM is

designated a disjoint set of virtual CPUs (vCPU), which can be scheduled to operate

on any physical cores based on the hypervisor’s scheduling algorithms. A program

running on a vCPU may use all the hardware resources available to the physical core

it runs on. Hence, different VMs may simultaneously share the same hardware caches,

buses, memory channels and DRAM bank buffers. We assume the cloud provider may

schedule VMs from different customers on the same server (as co-tenants), but likely

on different physical cores. As is the case today, software-based VM isolation by the

hypervisor only isolates accesses to virtual and physical memory pages, but not to the

underlying hardware memory resources shared by the physical cores.

110



… 

… … … 

Scheduling-based 
memory resources: 

Storage-based 
memory resources: 

Processor Package 

IMC 

DRAM 

LLC Ring Bus 

QuickPath Interconnect 
Memory Controller Bus 
Bank Scheduler 

Channel Scheduler 

DRAM Bus DRAM Bank Buffer 

DRAM Banks 

Core Core … 
… 

Processor Package 
Core Core … 

… … … 

IMC 

… … … … … 

Figure 4.2: Shared storage-based and scheduling-based hardware memory resources in
multi-core cloud servers.

4.1.2 Hardware Memory Resources

Figure 4.2 shows the hardware memory resources in modern computers. Using

Intel processors as examples, modern X86-64 processors usually consist of multiple

processor packages, each of which consists of several physical processor cores. Each

physical core can execute one or two hardware threads in parallel with the support

of Hyper-Threading Technology. A hierarchical memory subsystem, from the top

to the bottom, is composed of different levels of storage-based components (e.g.,

caches, the DRAMs). These memory components are inter-connected by a variety

of scheduling-based components (e.g., memory buses and controllers), with various

schedulers arbitrating their communications. Memory resources shared by different

cores are described below:

Last Level Caches (LLC). An LLC is shared by all cores in one package (older

processors may have one package supported by multiple LLCs). Intel LLCs usually

adopt an inclusive cache policy: every cache line maintained in the upper-level caches

(i.e., core-private Level 1 and Level 2 caches in each core — not shown in Figure 4.2)

also has a copy in the LLC. In other words, when a cache line in the LLC is evicted,

so are the copies in the upper-level caches. A subsequent access to the memory block

mapped to this cache line will result in an LLC miss, which will lead to the much

111



slower main memory access. On recent Intel processors (since Nehalem), LLCs are

split into multiple slices, each of which is associated with one physical core, although

every core may use the entire LLC. Intel employs static hash mapping algorithms to

translate the physical address of a cache line to one of the LLC slices that contains the

cache line. These mappings are unique for each processor model and are not released

to the public. So it is harder for attackers to generate LLC contention by accessing

a continuous memory buffer ([242]), since this buffer cannot exactly cover the entire

target cache.

Memory Buses. Intel uses a ring bus topology to interconnect components in the

processor package, e.g., processor cores, LLC slices, Integrated Memory Controllers

(IMCs), QuickPath Interconnect (QPI) agents, etc. The high-speed QPI provides

point-to-point interconnections between different processor packages, and between

each processor package and I/O devices. The memory controller bus connects the

LLC slices to the bank schedulers in the IMC, and the DRAM bus connects the IMC’s

schedulers to the DRAM banks. Current memory bus designs with high bandwidth

make it very difficult for attackers to saturate the memory buses. Also, elimination

of bus locking operations for normal atomic operations make bus locking attacks via

normal atomic operations (e.g., [242]) less effective. However, some exotic atomic bus

locking operations still exist.

DRAM banks. Each DRAM package consists of several banks, each of which can

be thought of as a two dimensional data array with multiple rows and columns. Each

bank has a bank buffer to hold the most recently used row to speed up DRAM accesses.

A memory access to a DRAM bank may either be served in the bank buffer, which is

a buffer-hit (fast), or in the bank itself, which is a buffer-miss (slow).

Integrated Memory Controllers (IMC). Each processor package contains one or

multiple IMCs. The communications between an IMC and the portion of DRAM it

controls are supported by multiple memory channels, each of which serves a set of

112



DRAM banks. When the processor wants to access the data in the DRAM, it first

calculates the bank that stores the data based on the physical address, then it sends

the memory request to the IMC that controls the bank. The processor can request

data from the IMC in the local package, as well as in a different package via QPI.

The IMCs implement a bank priority queue for each bank they serve, to buffer the

memory requests to this bank. A bank scheduler is used to schedule requests in the

bank priority queue, typically using a First-Ready-First-Come-First-Serve algorithm

that gives high scheduling priority to the request that leads to a buffer-hit in the

DRAM bank buffer, and then to the request that arrived earliest. Once requests

are scheduled by the bank scheduler, a channel scheduler will further schedule them,

among requests from other bank schedulers, to multiplex the requests onto a shared

memory channel. The channel scheduler usually adopts a First-Come-First-Serve

algorithm, which favors the earlier requests. Modern DRAM and IMCs can handle a

large amount of requests concurrently, so it is less effective to flood the DRAM and

IMCs to generate severe contention, as shown in [160].

4.1.3 Related Work

4.1.3.1 Resource Contention Attacks

Cloud DoS attacks. [145] proposed a DoS attack which can deplete the victim’s

network bandwidth from its subnet. [44] proposed a network-initiated DoS attack

which causes contention in the shared Network Interface Controller. [117] proposed

cascading performance attacks which exhaust hypervisor’s I/O processing capability.

[31] exploited VM migration to degrade the hypervisor’s performance. Our work

is different as we exploit failure of isolation in the hardware memory subsystem

(which has not been addressed by cloud providers), and not attacks on networks or

hypervisors.

113



Cloud resource stealing attacks. [224] proposed the resource-freeing attack, where

a malicious VM can steal one type of resource from the co-located victim VM by

increasing this VM’s usage of other types of resources. [274] designed a CPU resource

attack where an attacker VM can exploit the boost mechanism in the Xen credit

scheduler to obtain more CPU resource than paid for. Our attacks do not steal extra

cloud resources. Rather, we aim to induce the maximum performance degradation to

the co-located victim VM targets.

Hardware resource contention studies. [103] studied the effect of trace cache

evictions on the victim’s execution with Hyper-Threading enabled in an Intel Pentium

4 Xeon processor. [242] explored frequently flushing shared L2 caches on multicore

platforms to slow down a victim program. They studied saturation and locking of

buses that connect L1/L2 caches and the main memory [242]. [160] studied contention

attacks on the schedulers of memory controllers. However, due to advances in computer

hardware design, caches and DRAMs are larger and their management policies more

sophisticated, so these prior attacks may not work in modern cloud settings.

Timing channels in clouds. Prior studies showed that shared memory resources

can be exploited by an attacker to extract crypto keys from the victim VM using cache

side-channel attacks in cloud settings [269, 270, 144], or to transmit information, using

cache operations [182, 247] or bus activities [244] in covert channel communications

between two VMs. Unlike side-channel attacks, our memory DoS attacks aim to

maximize the effects of resource contention, while resource contention is an unintended

side-effect of side-channel attacks. To maximize contention, we addressed various new

challenges, e.g., finding which attacks cause greatest resource contention (e.g., exotic

bus locking versus memory controller attacks), maximizing the frequency of resource

depletion, and minimizing self-contention. To the best of our knowledge, we are the

first to show that similar attack strategies (enhanced for resource contention) can be

used as availability attacks as well as confidentiality attacks.

114



4.1.3.2 Eliminating Resource Contention

VM performance monitoring. Public clouds offer performance monitoring services

for customers’ VMs and applications, e.g., Amazon CloudWatch [2], Microsoft Azure

Application Insights [16], Google Stackdriver [23], etc. However, these services only

monitor CPU usage, network traffic and disk bandwidth, but not low-level memory

usage. To verify if a VM’s performance is affected by co-located VMs, we need to

measure the VM’s performance with and without contention. To measure a VM’s

performance without contention for reference sampling, past work offer three ways:

(1) collecting the VM’s performance characteristics before it is deployed in the cloud

[77, 273]; (2) measuring the performance of other VMs which run similar tasks

[267, 164]; (3) measuring the Protected VM while pausing all other co-located

VMs [110, 251]. The drawback of (1) and (2) is that it only works for programs with

predictable and stable performance characteristics, and does not support arbitrary

programs running in the Protected VM. The problem with (3) is the significant

performance overhead inflicted on co-located VMs. In contrast, we use novel execution

throttling of the co-located VMs to collect the Protected VM’s baseline (reference)

measurements with negligible performance overhead (Section 4.4.1). While execution

throttling has been used to achieve resource fairness in prior work [266, 86]; using it to

collect reference samples at runtime is, to our knowledge, novel.

QoS-aware VM scheduling. Prior research propose to predict interference between

different applications (or VMs) by profiling their resource usage offline and then

statically scheduling them to different servers if co-locating them will lead to excessive

resource contention [77, 273, 251]. The underlying assumption is that applications

(or VMs), when deployed on the cloud servers, will not change their resource usage

patterns. Unfortunately, these approaches fall short in defense against malicious

115



applications, who can reduce their resource uses during the profiling stage, then run

memory DoS attacks when deployed, thus evading these QoS scheduling mechanisms.

Load-triggered VM migration. Some studies propose to monitor the resource

consumption of guest VMs or the entire server in real-time, and migrate VMs to

different processor packages or servers when there is severe resource contention [50,

276, 29, 232]. By doing so these approaches can dynamically balance the workload

among multiple packages or servers when some of them are overloaded, and achieve

an optimal resource allocation. While they work well for performance optimization

of a set of fully-loaded servers, they fail to detect carefully-crafted memory DoS

attacks. First, the metrics in their methods cannot be used to detect the existence of

memory DoS attacks. These works measure the LLC miss rate [50, 276] or memory

bandwidth [29, 232] of guest VMs or the whole server. A high LLC miss rate or memory

bandwidth indicates severe resource contention for the VMs or servers. However, a

memory DoS attack does not need to cause high LLC miss rate or memory bandwidth

in order to degrade a victim’s performance. For instance, atomic locking attacks

(Section 4.2.3) lock the bus temporarily but frequently, which could incur decreased

LLC accesses and LLC misses in the victim VM. Our experiments show the victim

VM’s LLC miss rate does not change, and its memory bandwidth is even decreased.

So such micro-architectural measurement can never reveal severe resource contention,

or trigger VM migration in the above approaches. Second, these approaches aim to

balance the system’s performance. So they cannot guarantee to choose the victim

or attacker VMs for migration when they achieve optimal workload placement. For

instance, Adaptive LLC cleansing attacks (Section 4.2.2) can increase the victim VMs’

LLC miss rate. However, the above approaches have no means to figure out that

the victim VM has the strongest desire for migration. It is possible that there exists

another VM, which has even higher LLC miss rate than the victim VM, due to its

internal execution behaviors, not the interaction and contention with the attacker. So

116



the above approaches will migrate this VM instead of the victim VM, as this VM has

the highest miss rate. Then the victim VM will still suffer LLC cleansing attacks.

Performance isolation. While cloud providers can offer single-tenant machines

to customers with high demand for security and performance, disallowing resource

sharing by VMs will lead to low resource utilization and thus is at odds with the

cloud business model. Another option is to partition memory resources to enforce

performance isolation on shared resources (e.g., LLC [238, 188, 131, 73, 130, 8], or

DRAM [160, 162, 236]). These works aim to achieve fairness between different domains

and provide fair QoS. However, they cannot effectively defeat memory DoS attacks.

For cache partitioning, software page coloring methods [131] can cause significant

wastage of LLC space, while hardware cache partitioning mechanisms have insufficient

partitions (e.g., Intel Cache Allocation Technology [8] only provides four QoS partitions

on the LLC). Furthermore, LLC cache partitioning methods cannot resolve atomic

locking attacks (Section 4.2.3).

To summarize, existing solutions fail to address memory DoS attacks because they

assume benign applications with non-malicious behaviors. Also, they are often tailored

to only one type of attack so that they cannot be generalized to all memory DoS

attacks, unlike our proposed defense.

4.2 Memory DoS Attacks

4.2.1 Fundamental Attack Strategies

We have classified all memory resources into either storage-based or scheduling-based

resources. This helps us formulate the following two fundamental attack strategies for

memory DoS attacks:

117



• Storage-based contention attack. The fundamental attack strategy to cause

contention on storage-based resources is to reduce the probability that the victim’s

data is found in an upper-level memory resource (faster), thus forcing it to fetch

the data from a lower-level resource (slower).

• Scheduling-based contention attack. The fundamental attack strategy on a

scheduling-based resource is to decrease the probability that the victim’s requests

are selected by the scheduler, e.g., by locking the scheduling-based resources tem-

porarily, tricking the scheduler to improve the priority of the attacker’s requests, or

overwhelming the scheduler by submitting a huge amount of requests simultaneously.

We systematically show how memory DoS attacks can be constructed on different

layers of memory resources (LLC in Section 4.2.2, bus in Section 4.2.3, memory

controller and DRAM in Section 4.2.4). For each memory component, we first study

the basic techniques the attacker can use to generate resource contention and affect

the victim’s performance. We measure the effectiveness of the attack techniques on

the victim VM with different vCPU locations and program features. Then we propose

some practical attacks and evaluate their impacts on real-world benchmarks.

Testbed configuration. To demonstrate the severity of different types of memory

DoS attacks, we use a server configuration, representative of many cloud servers,

configured as shown in Table 4.1. We use Intel processors, since they are the most

common in cloud servers, but the attack methods we propose are general, and applicable

to other processors and platforms as well.

In each of the following experiments, we launched two VMs, one as the attacker

and the other as the victim. By default, each VM was assigned a single vCPU. We

select a mix of benchmarks for the victim: (1) We use a modified stream program

[153, 160] to explore the effectiveness of the attacks on victims with different features.

This program allocates two array buffers with the same size, one as the source and the

other as the destination. It copies data from the source to the destination in loops

118



Table 4.1: Testbed Configuration

Server Dell PowerEdge R720
Processor Packages Two 2.9GHz Intel Xeon E5-2667 (Sandy Bridge)
Cores per Package 6 physical cores, or 12 hardware threads with Hyper-Threading
Core-private L1 I and L1 D: each 32KB, 8-way set-associative;
Level 1 and Level 2 caches L2 cache: 256KB, 8-way set-associative
Last Level Cache (LLC) 15MB, 20-way set-associative, shared by cores in package, divided

into 6 slices of 2.5MB each; one slice per core
Physical memory Eight 8GB DRAMs, divided into 8 channels, and 1024 banks

Hypervisor Xen version 4.1.0
VM’s OS Ubuntu 12.04 Linux, with 3.13 kernel

repeatedly, either in a sequential manner (resulting a program with high memory

locality) or in a random manner (low memory locality). We chose this benchmark

because it is memory-intensive and allows us to alter the size of memory footprints

and the locality of memory resources. (2) To fully evaluate the attack effects on

real-world applications, we choose 8 macro benchmarks (6 from SPEC2006 [22] and 2

from PARSEC [48]) and cryptographic applications based on OpenSSL as the victim

program. Each experiment was repeated 10 times, and the mean values and standard

deviations are reported.

4.2.2 Cache Contention (Storage Resources)

Of the storage-based contention attacks, we found that the LLC contention results

in the most severe performance degradation. The root vulnerability is that an LLC

is shared by all cores of the same CPU package, without access control or quota

enforcement. Therefore a program in one VM can evict LLC cache lines belonging to

another VM. Moreover, inclusive LLCs (e.g., most modern Intel LLCs) will propagate

these cache line evictions to core-private L1 and L2 caches, further aggravating the

interference between programs (or VMs) in CPU caches.

119



4.2.2.1 Contention Study

Cache cleansing. To cause LLC contention, the adversary can allocate a memory

buffer to cover the entire LLC. By accessing one memory address per memory block

in the buffer, the adversary can cleanse the entire cache and evict all of the victim’s

data from the LLC to the DRAM.

The optimal buffer used by the attacker should exactly map to the LLC, which

means it can fill up each cache set in each LLC slice without self-conflicts (i.e., evicting

earlier lines loaded from this buffer). For example, for a LLC with ns slices, nc sets in

each slice, and nw-way set-associativity, the attacker would like ns × nc × nw memory

blocks to cover all cache lines of all sets in all slices. There are two challenges that

make this task difficult for the attacker: the host physical addresses of the buffer to

index the cache slice are unknown to the attacker, and the mapping from physical

memory addresses to LLC slices is not publicly known.

Mapping LLC cache slices: To overcome these challenges, the attacker can first

allocate a 1GB Hugepage which is guaranteed to have continuous host physical

addresses; thus he need not worry about virtual to physical page translations which

he does not know. Then for each LLC cache set Si in all slices, the attacker sets up an

empty group Gi, and starts the following loop: (i) select block Ak from the Hugepage,

which is mapped to set Si by the same index bits in the memory address; (ii) add Ak

to Gi; (iii) access all the blocks in Gi; and (iv) measure the average access latency per

block. A longer latency indicates block Ak causes self-conflict with other blocks in Gi,

so it is removed from Gi. The above loop is repeated until there are ns × nw blocks in

Gi, which can exactly fill up set Si in all slices. Next the attacker needs to distinguish

which blocks in Gi belong to each slice: He first selects a new block An mapped to set

Si from the Hugepage, and adds it to Gi. This should cause a self-conflict. Then he

executes the following loop: (i) select one block Am from Gi; (ii) remove it from Gi;

120



(iii) access all the blocks in Gi; and (iv) measure the average access latency. A short

latency indicates block Am can eliminate the self-conflict caused by An, so it belongs

to the same slice as An. The attacker keeps doing this until he discovers nw blocks

that belong to the same slice as An. These blocks form the group that can fill up set

Si in one slice. The above procedure is repeated till the blocks in Gi are divided into

ns slices for set Si. After conducting the above process for each cache set, the attacker

obtains a memory buffer with non-consecutive blocks that map exactly to the LLC.

Such self-conflict elimination is also useful in improving side-channel attacks [144].

To test the effectiveness of cache cleansing, we arranged the attacker VM and

victim VM on the same processor package, thus sharing the LLC and all memory

resources in lower layers. The adversary first identified the memory buffer that maps

to the LLC. Then he cleansed the whole LLC repeatedly. The resulting performance

degradation of the victim application is shown in Figure 4.3. The victim suffered from

the most significant performance degradation when the victim’s buffer size is around

10MB (1.8× slowdown for the high locality program, and 5.5× slowdown for the low

locality program). When the buffer size is smaller than 5MB (data are stored mainly

in upper-level caches), or the size is larger than 25MB (data are stored mainly in the

DRAM), the impact of cache contention on LLC is negligible.

The results can be explained as follows: the maximum performance degradation

can be achieved on victims with memory footprint smaller than, but close to, the LLC

size, which is 15MB, because the victim suffers the least from self conflicts in LLC

and the most from the attacker’s LLC cleansing. Moreover, as a low locality program

accesses its data in a random order, hardware prefetching is less effective in enhancing

the program’s access speed. So the program accesses the cache at a relatively lower

rate. Its data will be evicted out of the LLC by the attacker with higher probability.

That is why the LLC cleansing has a larger impact on low locality programs than on

high locality programs.

121



H - 1 M H - 5 M H - 1 0 M H - 1 5 M H - 2 0 M H - 2 5 M H - 3 0 M L - 1 M L - 5 M L - 1 0 M L - 1 5 M L - 2 0 M L - 2 5 M L - 3 0 M
0
1
2
3
4
5
6

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

Figure 4.3: Performance slowdown due to LLC cleansing contention. We use “H-x” or
“L-x” to denote the victim program has high or low memory locality and has a buffer
size of x.

Takeaways. LLC contention is (more) effective when (1) the attacker and victim

VMs share the same LLC, (2) the victim program’s memory footprint is about the

size of LLC, and (3) the victim program has lower memory locality.

4.2.2.2 Practical Attack Evaluation

We improve this attack by increasing the cleansing speed, and the accuracy of evicting

(thus contending with) the victim’s data.

Multi-threaded LLC cleansing. To speed up the LLC cleansing, the adversary

may split the cleansing task into n threads, with each running on a separate vCPU

and cleansing only a non-overlapping 1/n of the LLC simultaneously. This effectively

increases the cleansing speed by n times.

In our experiment, the attacker VM and the victim VM were arranged to share the

LLC. The attacker VM was assigned 4 vCPUs. It first prepared the memory buffer

that exactly mapped to the LLC. Then he cleansed the LLC with (1) one vCPU; (2)

4 vCPUs (each cleansing 1/4 of the LLC). Figure 4.4 shows that the attack can cause

122



m c f
g o b m k

o m n e t p p a s t a r
s o p l e x l b m

c a n n e a l

s t r e a m c l u s t e r
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e  L L C  c l e a n s i n g  ( 1  t h r e a d )
 L L C  c l e a n s i n g  ( 4  t h r e a d s )

Figure 4.4: Performance slowdown due to multi-threaded LLC cleansing attack

1.05 ∼ 1.6× slowdown to the victim VM when using one thread, and 1.12 ∼ 2.03×

slowdown when using four threads.

Adaptive LLC cleansing. The basic LLC cache cleansing technique does not work

when the victim’s program has a memory footprint (<1MB) that is much smaller than

an LLC (e.g., 15MB), since it takes a long time to finish one complete LLC cleansing,

where most of the memory accesses do not induce contention with the victim. To

achieve finer-grained attacks, we developed a cache probing technique to pinpoint the

cache sets in the LLC that map to the victim’s memory footprint, and cleanse only

these selected sets.

The attacker first allocates a memory buffer covering the entire LLC in his own

VM. Then he conducts cache probing in two steps: (1) In the Discover Stage,

while the victim program runs, for each cache set, the attacker accesses some cache

lines belonging to this set and figures out the maximum number of cache lines which

can be accessed without causing cache conflicts. If this number is smaller than the

set associativity, this cache set will be selected to conduct adaptive cleansing attacks,

because the victim has frequently occupied some cache lines in this set; (2) In the

123



Algorithm 4.1: Adaptive LLC cleansing
Input:

1 cache set{}: all the sets in the LLC
2 cache buffer{}: cover the entire LLC
3 cache assoc num: the associativity of LLC
4 begin
5 /* Discover Stage */
6 victim set=∅
7 for each set i in cache set{} do
8 Find out j, s.t., accessing j cache lines in set i from cache buffer{} has no cache conflict (low

accessing time), but accessing j +1 cache lines in set i from cache buffer{} has cache conflict (high
accessing time)

9 if j<cache assoc num then
10 add i to victim set{}
11 end

12 end

13 /* Attack Stage: */
14 while attack is not finished do
15 for each set i in victim set{} do
16 access cache assoc num cache lines in set i from cache buffer{}
17 end

18 end

19 end

A E S

B L O W F I S H R C 4
R S A D S A

H M A C M D 5
S H A

0

1

2

3

4

5

6

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e  C o m p l e t e  L L C  c l e a n s i n g  ( 1  t h r e a d )
 C o m p l e t e  L L C  c l e a n s i n g  ( 4  t h r e a d s )
 A d a p t i v e  L L C  c l e a n s i n g  ( 1  t h r e a d )
 A d a p t i v e  L L C  c l e a n s i n g  ( 4  t h r e a d s )

Figure 4.5: Performance slowdown due to adaptive LLC cleansing attacks

Attack Stage, the attacker keeps accessing these selected cache sets to cleanse the

victim’s data. Algorithm 4.1 shows the steps to perform the adaptive LLC cleansing.

Figure 4.5 shows the results of the attacker’s multi-threaded adaptive cleansing

attacks against victim applications with cryptographic operations. While the basic

124



cleansing did not have any effect, the adaptive attacks can achieve around 1.12 to 1.4

times runtime slowdown with 1 vCPU, and up to 4.4× slowdown with 4 vCPUs.

4.2.3 Bus Contention (Scheduling Resources)

The availability of internal memory buses can be compromised by overwhelming or

temporarily locking down the buses. We study the effects of these techniques.

4.2.3.1 Contention Study

Bus saturation. One intuitive approach for an adversary is to create numerous

memory requests to saturate the buses [242]. However, the bus bandwidth in modern

processors may be too high for a single VM to saturate.

To examine the effectiveness of bus saturation contention, we conducted two sets of

experiments. In the first set of experiments, the victim VM and the attacker VM were

located in the same processor package but on different physical cores (Figure 4.6a).

They accessed different parts of the LLC, without touching the DRAM. Therefore

the attacker VM causes contention in the ring bus that connects LLC slices without

causing contention in the LLC itself. In the second set of experiments, the victim

VM and the attacker VM were pinned on different processor packages (Figure 4.6b).

They accessed different memory channels, without inducing contention in the memory

controller and DRAM modules. Therefore the attacker and victim VMs only contend

in buses that connect LLCs and IMCs, as well as the QPI buses. The attacker and

victim were assigned increasing number of vCPUs to cause more bus traffic. Results

in Figure 4.6 show that these buses were hardly saturated and the impact on the

victim’s performance was negligible in all cases.

Bus locking. To deny the victim from being scheduled by a scheduling resource,

the adversary can temporarily lock down the internal memory buses. Intel processors

provide locked atomic operations for managing shared data structures between multi-

125



H - 1 c H - 2 c H - 3 c H - 4 c H - 5 c L - 1 c L - 2 c L - 3 c L - 4 c L - 5 c
0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

 

 
No

rm
ali

ze
d e

xe
cu

tio
n t

im
e

(a) Same package

H - 1 c H - 2 c H - 3 c H - 4 c H - 5 c L - 1 c L - 2 c L - 3 c L - 4 c L - 5 c
0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

(b) Different packages

Figure 4.6: Performance slowdown due to bus saturation contention. We use “H-xc”
or “L-xc” to denote the configuration that the victim program has high or low locality,
and both of the attacker and victim use x cores to contend for the bus.

processors [9]. Before Intel Pentium (P5) processors, the locked atomic operations

always generate LOCK signals on the internal buses to achieve operation atomicity.

So other memory accesses are blocked until the locked atomic operation is completed.

For processor families after P6, the bus lock is transformed into a cache lock: the

cache line is locked instead of the bus and the cache coherency mechanism is used to

ensure operation atomicity. This causes much smaller scheduling lockdown times.

However, we have found two exotic atomic operations the adversary can still use

to lock the internal memory buses: (1) Locked atomic accesses to unaligned memory

blocks : the processor has to fetch two adjacent cache lines to complete this unaligned

memory access. To guarantee the atomicity of accessing the two adjacent cache lines,

the processors will flush in-flight memory accesses issued before, and block memory

accesses to the bus, until the unaligned memory access is finished. (2) Locked atomic

accesses to uncacheable memory blocks : when uncached memory pages are accessed in

atomic operations, the cache coherency mechanism does not work. Hence, the memory

bus must be locked to guarantee atomicity. Listings 4.1 and 4.2 show the codes for

126



Listing 4.1: Attack using unaligned atomic operations

1 char *buffer = mmap(0, BUFFER_SIZE, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

2

3 int x = 0x0;

4 int *block_addr = (int *)(buffer+CACHE_LINE_SIZE-1);

5 while (1) {

6 __asm__(

7 "lock; xaddl %%eax, %1\n\t"

8 :"=a"(x)

9 :"m"(*block_addr), "a"(x)

10 :"memory");

11 }

Listing 4.2: Attack using uncached atomic operations

1 char *buffer = mmap(0, BUFFER_SIZE, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

2 syscall(__NR_UnCached, (unsigned long)buffer);

3 int x = 0x0;

4 int *block_addr = (int *)buffer;

5 while (1) {

6 __asm__(

7 "lock; xaddl %%eax, %1\n\t"

8 :"=a"(x)

9 :"m"(*block_addr), "a"(x)

10 :"memory");

11 }

issuing unaligned and uncached atomic operations. The two programs keep conducting

the addition operation of a constant (x) and a memory block (block addr) (line 5

– 11): in line 7, the lock prefix indicates this operation is atomic. The instruction

xaddl indicates this is an addition operation. The first operand is the register eax,

which stores x (line 9). The second operand is the first parameter of line 9 (data

denoted by the address block addr). The results will be loaded to the register eax

(line 8). In Listing 4.1, we set this memory block as unaligned (line 4). In Listing

4.2, we added a new system call to set the page table entries of the memory buffer as

cache disabled (line 2).

127



To evaluate the effects of bus locking contention, we chose the footprint size of the

victim program as (1) 8KB, with which the L1 cache was under-utilized, (2) 64KB,

with which the L1 cache was over-utilized but the L2 cache was under-utilized, (3)

512KB, with which the L2 cache was over-utilized but the LLC was under-utilized,

and (4) 30MB, with which the LLC was over-utilized. The attacker VM kept issuing

unaligned atomic or uncached atomic memory accesses to lock the memory buses.

For comparison, we also run another group of experiments, where the attacker kept

issuing normal locked memory accesses. We considered two scenarios: (1) the attacker

and victim shared the same processor package, but run on different cores; (2) they

were scheduled on different processor packages. The normalized execution time of the

victim program is shown in Figure 4.7.

We observe that the victim’s performance was significantly affected when the its

buffer size was larger than the L2 caches. This is because the attacker who kept

requesting exotic atomic memory accesses was only able to lock the buses within its

physical cores, the ring buses around the LLCs in each package, the QPI, and the

buses from each package to the DRAM. So when the victim’s buffer size was smaller

than the L2 cache, it fetched data from the private caches in its own core without

being affected by the attacker. However, when the victim’s buffer size was larger than

the L2 caches, its access to the LLC would be delayed by the bus locking operations,

and the performance is degraded (up to 6× slowdown for high locality victim programs

and 7× slowdown for low locality victim programs).

Takeaways. We explored two approaches to bus contention. Saturating internal

buses is unlikely to cause noticeable performance degradation. Bus locking shows

promise when the victim program makes heavy use of the shared LLC or lower layer

memory resources, whenever the victim VM and attacker VM are on the same processor

package or different packages.

128



H - 8 K H - 6 4 K H - 5 1 2
K

H - 3 0 M L - 8 K L - 6 4 K L - 5 1 2
K

L - 3 0 M
0

2

4

6

8

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e  N o r m a l  a t o m i c  a c c e s s
 U n a l i g n e d  a t o m i c  a c c e s s
 U n c a c h e d  a t o m i c  a c c e s s

(a) Same package

H - 8 K H - 6 4 K H - 5 1 2
K

H - 3 0 M L - 8 K L - 6 4 K L - 5 1 2
K

L - 3 0 M
0
2
4
6
8

1 0

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e  N o r m a l  a t o m i c  a c c e s s
 U n a l i g n e d  a t o m i c  a c c e s s
 U n c a c h e d  a t o m i c  a c c e s s

(b) Different packages

Figure 4.7: Performance slowdown due to bus locking contention. We use “H-x” or
“L-x” to denote the victim program has high or low memory locality and has a buffer
size of x.

4.2.3.2 Practical Attack Evaluation

To evaluate the effectiveness of atomic locking attacks on real-world applications,

we scheduled the attacker VM and victim VM on different processor packages. The

attacker VM kept generating atomic locking signals by (1) requesting unaligned atomic

memory accesses, or (2) requesting uncached atomic memory accesses. The normalized

execution time of the victim program is shown in Figure 4.8. We observe that the

129



m c f
g o b m k

o m n e t p p a s t a r
s o p l e x l b m

c a n n e a l

s t r e a m c l u s t e r
0

2

4

6

8

1 0

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e  U n a l i g n e d  a t o m i c  a c c e s s  
 U n c a c h e d  a t o m i c  a c c e s s

Figure 4.8: Performance slowdown due to bus locking attacks.

victim’s performance can be degraded as much as 7 times when the attacker conducted

exotic atomic operations.

4.2.4 Memory Contention (Combined Resources)

An IMC uses the bank scheduler and channel scheduler to select the memory requests

for each DRAM access. Therefore an adversary may contend on these two schedulers

by frequently issuing memory requests that result in bank buffer hits to boost his

priority in the scheduler. Moreover, each memory bank is equipped with only one

bank buffer to hold the recently used bank row, so the adversary can easily induce

storage-based contention on bank buffers by frequently occupying them with his own

data.

4.2.4.1 Contention Study

Memory flooding. Since channel and bank schedulers use First-Come-First-Serve

policies, an attacker can send a large amount of memory requests to flood the target

130



memory channels or DRAM banks. These requests will contend on the scheduling-

based resources with the victim’s memory requests. In addition, the attacker can issue

requests in sequential order, so sequential accesses will hit the same row in DRAM

banks. This can achieve high row-hit locality and thus high priority in the bank

scheduler, to further increase the effect of flooding. Furthermore, when the adversary

keeps flooding the IMCs, these memory requests can also evict the victim’s data out

of the DRAM bank buffers. The victim’s bank buffer hit rate is decreased and its

performance is further degraded.

To demonstrate the effects of DRAM contention, we configure one attacker VM

to operate a memory flooding program, which kept accessing memory blocks in the

same DRAM bank directly without going through caches (i.e., uncached accesses).

The victim VM did exactly the same with either high or low memory locality. We

conducted two sets of experiments: (1) The two VMs access the same bank in the

same channel (Same bank in Figure 4.9); (2) the two VMs access two different banks

in the same channel (Same channel in Figure 4.9). To alter the memory request rate

issued by the two VMs, we also changed the number of vCPUs in the attacker and

victim VMs. The normalized execution time of the victim program is shown in Figure

4.9.

Three types of contention were observed in these experiments. First, channel

scheduling contention was observed when the attacker and the victim access different

banks in the same channel. It was enhanced with increased number of attacker and

victim vCPUs, thus increasing the memory request rate (around 1.2× slowdown for

“H-5c” and “L-5c”). Second, bank scheduling contention was also observed when the

attacker and victim accessed the same DRAM bank. When the memory request rate

was increased, the victim’s performance was further degraded by an additional 70%

and 25% for “H-5c” and “L-5c”, respectively. Third, contention in DRAM bank buffers

was observed when we compare the results of “Same bank” in Figure 4.9 between high

131



locality and low locality victim programs — low locality victims already suffer from

row-misses and the additional performance degradation in high locality victims is due

to bank buffer contention (1.9× slowdown for H 5c verses 1.45× slowdown for L 5c).

H - 1 c H - 2 c H - 3 c H - 4 c H - 5 c L - 1 c L - 2 c L - 3 c L - 4 c L - 5 c
0 . 7 5
1 . 0 0
1 . 2 5
1 . 5 0
1 . 7 5
2 . 0 0

 

 
No

rm
ali

ze
d e

xe
cu

tio
n t

im
e  S a m e  c h a n n e l

 S a m e  b a n k

Figure 4.9: Performance slowdown due to memory channel and bank contention. We
use “H-xc” or “L-xc” to denote the configuration that the victim program has high or
low locality, and both of the attacker and victim use x cores to contend for the bus.

We consider the overall effect of memory flooding contention. In this experiment,

the victim VM runs a high locality or low locality stream benchmark on its only

vCPU. The attacker VM allocates a memory buffer with the size 20× that of the

LLC and runs a stream program which keeps accessing memory blocks sequentially in

this buffer to generate contention in every channel and every bank. To increase bus

traffic, the attacker employed multiple vCPUs to perform the attack simultaneously.

The performance degradation, as we can see in Figure 4.10, was significant when the

victim’s memory accesses footprint was mostly in the DRAM, and more vCPUs of the

attacker VM were used in the attack. The attacker can use 8 vCPUs to induce about

1.5× slowdown to the victim with the buffer size larger than LLC.

Takeaways. Contention can be induced in channel schedulers, bank schedulers and

bank buffers between different programs from different processor packages. This

132



H - 8 K H - 6 4 K H - 5 1 2
K

H - 3 0 M L - 8 K L - 6 4 K L - 5 1 2
K

L - 3 0 M
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e  1  v C P U   2  v C P U s   4  v C P U s   8  v C P U s

Figure 4.10: Performance slowdown due to memory flooding contention. We use “H-x”
or “L-x” to denote the victim program has high or low memory locality and has a
buffer size of x.

contention is especially significant when the victim program’s memory footprint is

larger than the LLC.

4.2.4.2 Practical Attack Evaluation

We evaluate two advanced memory flooding attacks.

Multi-threaded memory flooding. The attacker can use more threads to increase

the memory flooding speed, as we demonstrated earlier. We evaluated this attack on

real-world applications. The attacker and victim VMs are located in two different

processor packages, so they only share the IMCs and DRAM. The attacker VM issues

frequent, highly localized memory requests to flood every DRAM bank and every

channel. To increase bus traffic, the attacker employed 8 vCPUs to perform the attack

simultaneously. Figure 4.11 shows that the victim experiences up to a 1.22× runtime

slowdown when the attacker uses 8 vCPUs to generate contention (Complete Memory

Flooding bars).

133



Adaptive memory flooding. For a software program with smaller memory foot-

print, only a few memory channels will be involved in its memory accesses. We

developed a novel approach with which an adversary may identify memory channels

that are more frequently used by a victim program. To achieve this, the attacker

needs to reverse engineer the unrevealed algorithms that map the physical memory

addresses to memory banks and channels, in order to accurately direct the flows of

the memory request flood.

Mapping DRAM banks and channels: The attacker can leverage methods due

to Liu et al. [147] to identify the bits in physical memory addresses that index the

DRAM banks. The attacker first allocates a 1GB Hugepage with continuous physical

addresses, which avoids the unknown translations from guest virtual addresses to

machine physical addresses. Then he selects two memory blocks from the Hugepage

whose physical addresses differ in only one bit. He then flushes these two blocks out of

caches and accesses them from the DRAM alternatively. A low latency indicates these

two memory blocks are served in two banks as there is no contention on bank buffers.

In this way, the attacker is able to identify all the bank bits. Next, the attacker needs

to identify the channel bits among the bank bits. We design a novel algorithm which

is shown in Algorithm 4.2 to achieve this goal. The attacker selects two groups of

memory blocks from the Hugepage, whose bank indexes differ in only one bit. The

attacker then allocates two threads to access the two groups simultaneously. If the

different bank index bit is also a channel index bit, then the two groups will be in two

different channels, and a shorter access time will be observed since there is no channel

contention.

Then the attacker performs two stages: in the Discover Stage, the attacker

keeps accessing each memory channel for a number of times and measures his own

memory access time to infer contention from the victim program. By identifying the

channels with a longer access time, the attacker can detect which channels are heavily

134



Algorithm 4.2: Discovering channel index bits
Input:

1 bank bit{} // bank index bits
2 memory buffer{} // a memory buffer

Output:
3 channel bit{}
4 begin
5 channel bit{}=∅
6 for each bit i ∈ bank bit{} do
7 buffer A{}=memory buffer{}
8 buffer B{}=memory buffer{}
9 for each memory block d a ∈ buffer A{} do

10 m a = physical address of d a
11 if (m a’s bit i) 6= 0 then
12 delete d a from buffer A{}
13 break

14 end
15 for each bit j ∈ bank bit{} and i 6= j do
16 if (m a’s bit j ) 6= 0 then
17 delete d a from buffer A{}
18 break

19 end

20 end

21 end
22 for each memory block d b ∈ buffer B{} do
23 m b = physical address of d b
24 if (m b’s bit i) 6= 1 then
25 delete d b from buffer B{}
26 break

27 end
28 for each bit j ∈ bank bit{} and i 6= j do
29 if (m b’s bit j ) 6= 0 then
30 delete d b from buffer B{}
31 break

32 end

33 end

34 end
35 thread A: // access buffer A in an infinite loop
36 while (true) do
37 for each memory block d a ∈ buffer A{} do
38 access d a (uncached)
39 end

40 end
41 thread B:// access buffer B N times and measure time
42 for i=0 to N-1 do
43 for each memory block d b ∈ buffer B{} do
44 access d b (uncached)
45 end

46 end
47 total time = thread B’s execution time;
48 if total time<Threshold then
49 add i to channel bit{}
50 end

51 end
52 return channel bit{}
53 end

135



Algorithm 4.3: Adaptive memory flooding
Input:

1 memory channel{}: all the channels in the memory
2 memory buffer{}
3 begin
4 /* Discover Stage */
5 victim channel=∅
6 for each channel i in memory channel{} do
7 access the addresses belonging to channel i from memory buffer{}, and measure the total time

(repeat for a number of times)
8 if total time is high then
9 add i to victim channel{}

10 end

11 end

12 /* Attack Stage */
13 while attack is not finished do
14 for each channel i in victim channel{} do
15 access the addresses belonging to channel i from memory buffer{}
16 end

17 end

18 end

used by the victim. Note that the attacker only needs to discover the channels used

by the victim, but does not need to know the exact value of channel index bits for

a given channel. In the Attack Stage, the attacker floods these selected memory

channels. Algorithm 4.3 shows the two steps to conduct adaptive memory flooding

attacks.

Figure 4.11 shows the results when the attacker VM uses 8 vCPUs to generate

contention in selected memory channels which are heavily used by the victim. These

adaptive memory flooding attacks cause 3% ∼ 44% slowdown while indiscriminately

flooding the entire memory causes only 0.07 ∼ 22% slowdown.

4.3 Case Studies in Amazon EC2

We now evaluate our memory DoS attacks in a real cloud environment, Amazon EC2.

We provide two case studies: memory DoS attacks against distributed applications,

and against E-Commerce websites.

Legal and ethical considerations. As our attacks only involve memory accesses

within the attacker VM’s own address space, the experiments we conducted in this

136



m c f
g o b m k

o m n e t p p a s t a r
s o p l e x l b m

c a n n e a l

s t r e a m c l u s t e r0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5
1 . 6

 

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e  C o m p l e t e  m e m o r y  f l o o d i n g  ( 8  t h r e a d s )
 A d a p t i v e  m e m o r y  f l o o d i n g  ( 8  t h r e a d s )

Figure 4.11: Performance slowdown due to multi-threaded and adaptive memory
flooding attacks.

section conformed with the EC2 customer agreement. Nevertheless, we put forth our

best efforts in reducing the duration of the attacks to minimally impact other users in

the cloud.

VM configurations. We chose the same configuration for the attacker and victim

VMs: t2.medium instances with 2 vCPUs, 4GB memory and 8GB disk. Each VM

ran Ubuntu Server 14.04 LTS with Linux kernel version 3.13.0-48-generic, in full

virtualization mode. All VMs were launched in the us-east-1c region. Information

exposed through lscpu indicated that these VMs were running on 2.5GHz Intel Xeon

E5-2670 processors, with a 32KB L1D and L1I cache, a 256KB L2 cache, and a shared

25MB LLC.

For all the experiments in this section, the attacker employs exotic atomic locking

(Section 4.2.3) and LLC cleansing attacks (Section 4.2.2), where each of the 2 attacker

vCPUs was used to keep locking the memory and cleansing the LLC. Memory con-

tention attacks (Section 4.2.4) are not used since they cause much lower performance

degradation (availability loss) to the victim.

137



VM co-location in EC2. The memory DoS attacks require the attacker and

victim VMs to co-locate on the same machine. Past work [182, 226, 248] have proven

the feasibility of such co-location attacks in public clouds. While cloud providers

adopt new technologies (e.g., Virtual Private Cloud [4]) to mitigate prior attacks in

[182], new ways are discovered to test and detect co-location in [226, 248]. Specifically,

Varadarajan et al. [226] achieved co-location in Amazon EC2, Google Compute Engine

and Microsoft Azure with low-cost (less than $8) in the order of minutes. They verified

co-location with various VM configurations, launch delay between attacker and victim,

launch time of day, datacenter location, etc. Xu et al . [248] used similar ideas to

achieve co-location in EC2 Virtual Private Cloud. We also applied these techniques to

achieve co-location in Amazon EC2. In our experiments, we simultaneously launched

a large number of attacker VMs in the same region as the victim VM. A machine

outside EC2 under our control sent requests to static web pages hosted in the target

victim VM. Each time we select one attacker VM to conduct memory DoS attacks

and measure the victim VM’s response latency. Delayed HTTP responses from the

victim VM indicates that this attacker was sharing the machine with the victim.

4.3.1 Attacking Distributed Applications

We evaluate memory DoS attacks on a multi-node distributed application deployed

in a cluster of VMs, where each VM is deployed as one node. We show how much

performance degradation an adversary can induce to the victim cluster with minimal

cost, using a single co-located attacker VM.

Experiment settings. We used Hadoop as the victim system. Hadoop consists of

two layers: MapReduce for data processing, and Hadoop Distributed File System

(HDFS) for data storage. A Hadoop cluster includes a single master node and multiple

slave nodes. The master node acts as both the Job Tracker for scheduling map or

reduce jobs and the NameNode for hosting HDFS indexes. Each slave node acts as

138



both the Task Tracker for conducting the map or reduce operations and the DataNode

for storing data blocks in HDFS. We deployed the Hadoop system with different

numbers of VMs (5, 10, 15 or 20), where one VM was selected as the master node

and the rest were the slave nodes.

The attacker only used one VM to attack the cluster. He either co-located the

malicious VM with the master node or one of the slave nodes. We ran four different

Hadoop benchmarks to test how much performance degradation the single attacker

VM can cause to the Hadoop cluster. Each experiment was repeated 5 times. Figure

4.12 shows the mean values of normalized execution time and one standard deviation.

MRBench: This benchmark tests the performance of the MapReduce layer of the

Hadoop system: it runs a small MapReduce job of text processing for a number of

times. We set the number of mappers and reducers as the number of slave nodes for

each experiment. Figure 4.12a shows that attacking a slave node is more effective

since the slave node is busy with the map and reduce tasks. In a large Hadoop cluster

with 20 nodes, attacking just one slave node introduces 2.5× slowdown to the entire

distributed system.

TestDFSIO: We use TestDFSIO to evaluate HDFS performance. This benchmark

writes and reads files stored in HDFS. We configured it to operate on n files with the

size of 500MB, where n is the number of slave nodes in the Hadoop cluster. Figure

4.12b shows that attacking the slave node is effective: the adversary can achieve about

2× slowdown.

NNBench: This program is also used to benchmark HDFS in Hadoop. It generates

HDFS-related management requests on the master node of HDFS. We configured it

to operate on 200n small files, where n is the number of slave nodes in the Hadoop

cluster. Since the master node is heavily used for serving the HDFS requests, attacking

the master node can introduce up to 3.4× slowdown to the whole Hadoop system, as

shown in Figure 4.12c.

139



5 1 0 1 5 2 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

 

 

No
rm

ali
za

tio
n e

xe
cu

tio
n t

im
e

#  o f  n o d e s

 A t t a c k i n g  t h e  m a s t e r
 A t t a c k i n g  o n e  s l a v e

(a) MRBench

5 1 0 1 5 2 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

 

 

No
rm

ali
za

tio
n e

xe
cu

tio
n t

im
e

#  o f  n o d e s

 A t t a c k i n g  t h e  m a s t e r
 A t t a c k i n g  o n e  s l a v e

(b) TestDFSIO

5 1 0 1 5 2 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

 

 

No
rm

ali
za

tio
n e

xe
cu

tio
n t

im
e

#  o f  n o d e s

 A t t a c k i n g  t h e  m a s t e r
 A t t a c k i n g  o n e  s l a v e

(c) NNBench

5 1 0 1 5 2 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

 

 

No
rm

ali
za

tio
n e

xe
cu

tio
n t

im
e

#  o f  n o d e s

 A t t a c k i n g  t h e  m a s t e r
 A t t a c k i n g  o n e  s l a v e

(d) TeraSort

Figure 4.12: Performance slowdown of the Hadoop applications due to memory DoS
attacks.

Terasort: We use this benchmark to test the overall performance of both MapReduce

and HDFS layers in the Hadoop cluster. TeraSort generates a large set of data and

uses map/reduce operations to sort the data. For each experiment, we set the number

of mappers and reducers to n, and the size of data to be sorted to 100n MB, where n

is the number of slave nodes in the Hadoop cluster. Figure 4.12d shows that attacking

the slave node is very effective: it can bring 2.8 ∼ 3.7 × slowdown to the entire

Hadoop system.

140



Summary. The adversary can deny working memory availability to the victim VM

and thus degrade an important distributed system’s performance with minimal costs:

it can use just one VM to interfere with one of 20 nodes in the large cluster. The

slowdown of a single victim node can cause up to 3.7× slowdown to the whole system.

4.3.2 Attacking E-Commerce Websites

A web application consists of load balancers, web servers, database servers and memory

caching servers. Memory DoS attacks can disturb an E-commerce web application by

attacking various components.

Experiment settings. We chose a popular open source E-commerce web application,

Magento [13], as the target of the attack. The victim application consists of five

VMs: a load balancer based on Pound for balancing network requests; two Apache

web servers to process and deliver web requests; a MySQL database server to store

customer and merchandise information; and a Memcached server to speed up database

transactions. The five VMs were hosted on different cloud servers in EC2. The

adversary is able to co-locate his VMs with one or multiple VMs that host the victim

application. We measure the application’s latency and throughput to evaluate the

effectiveness of the attack.

Latency. We launched a client on a local machine outside of EC2. The client

employed httperf [25] to send HTTP requests to the load balancer with different rates

(connections per second) and we measured the average response time. We evaluated

the attack from one or all co-located VMs. Each experiment was repeated 10 times

and the mean and standard deviation of the latency are reported in Figure 4.13a.

This shows that memory contention on database, load balancer or memcached servers

do not have much impact on the overall performance of the web application, with

only up to 2× degradation. This is probably because these servers were not heavily

used in these cases. Memory DoS attacks on web servers were the most effective (17×

141



1 0 2 0 3 0 4 0 5 0
0 . 5

1

2

4

8

1 6

3 2

 

 

No
rm

ali
ze

d l
ate

nc
y

R e q u e s t  r a t e  ( / s )

 l o a d - b a l a n c e r
 w e b
 d a t a b a s e
 m e m c a c h e d
 a l l

(a) Latency

l o a d - b a l a n c e r w e b
d a t a b a s e

m e m c a c h e d0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 %
8 0 %

 

 

No
rm

ali
ze

d t
hr

ou
gh

pu
t

S e r v e r
(b) Throughput

Figure 4.13: Latency and throughput of the Magento application due to memory DoS
attacks.

degradation). When the adversary can co-locate with all victim servers and each

attacker VM induces contention with the victim, the web server’s HTTP response

time was delayed by 38×, for a request rate of 50 connections per second.

Server throughput. Figure 4.13b shows the results of another experiment, where

we measured the throughput of each victim VM individually, under memory DoS

attacks. We used ApacheBench [1] to evaluate the load balancer and web servers,

SysBench [24] to evaluate the database server and memtier benchmark [14] to evaluate

the memcached server. This shows memory DoS attacks on these servers were effective:

the throughput can be reduced to only 13% ∼ 70% under malicious contention by the

attacker.

Summary. The adversary can compromise the quality of E-commerce service and

cause financial loss in two ways: (1) long response latency will affect customers’

satisfaction and make them leave this E-commerce website [176]; (2) it can cause

throughput degradation, reducing the number of transactions completed in a unit

142



time. The cost for these attacks is relatively cheap: the adversary only needs a few

VMs to perform the attacks, with each t2.medium instance costing $0.052 per hour.

4.4 Defense against Memory DoS Attacks

We propose a novel, general-purpose approach to detecting and mitigating memory

DoS attacks in the cloud. Unlike some past work, our defense does not require

prior profiling of the memory resource usage of the applications. Our defense can be

provided by the cloud providers as a new security service to customers. We denote as

Protected VMs those VMs for which the cloud customers require protection. To

detect memory DoS attacks, lightweight statistical tests are performed frequently to

monitor performance changes of the Protected VMs (Section 4.4.1). To mitigate

the attacks, execution throttling is used to reduce the impact of the attacks (Section

4.4.2). A novelty of our approach is the combined use of two existing hardware

features: event counting using hardware performance counters controllable via the

Performance Monitoring Unit (PMU) and duty cycle modulation controllable through

the IA32 CLOCK MODULATION Model Specific Register (MSR).

4.4.1 Detection Method

The key insight in detecting memory DoS attacks is that such attacks are caused by

abnormal resource contention between Protected VMs and attacker VMs, and such

resource contention can significantly alter the memory usage of the Protected VM,

which can be observed by the cloud provider. We postulate that the statistics of accesses

to memory resources, by a phase of a software program, follow certain probability

distributions. When a memory DoS attack happens, these probability distributions

will change. Figure 4.14 shows the probability distributions of the Protected VM’s

memory access statistics, without attacks (black), and with two kinds of attacks (gray

143



0 2 4 6 8 1 0 1 2 1 40 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 2 4 6 8 1 0 1 2 1 4 1 60 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 2 4 6 8 1 0 1 2 1 40 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 2 4 6 8 1 0 1 2 1 40 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

W e b

 

 

pr
ob

ab
ilit

y

m e m o r y  b a n d w i d t h  ( G B p s )

 w / o .  c o n t e n t i o n
 w / .  L L C  c l e a n s i n g
 w / .  a t o m i c  l o c k i n g

D a t a b a s e

 

 

pr
ob

ab
ilit

y

m e m o r y  b a n d w i d t h  ( G B p s )

 w / o .  c o n t e n t i o n
 w / .  L L C  c l e a n s i n g
 w / .  a t o m i c  l o c k i n g

M e m c a c h e d

 

 

pr
ob

ab
ilit

y

m e m o r y  b a n d w i d t h  ( G B p s )

 w / o .  c o n t e n t i o n
 w / .  L L C  c l e a n s i n g
 w / .  a t o m i c  l o c k i n g

L o a d - b a l a n c e r

 

 

pr
ob

ab
ilit

y

m e m o r y  b a n d w i d t h  ( G B p s )

 w / o .  c o n t e n t i o n
 w / .  L L C  c l e a n s i n g
 w / .  a t o m i c  l o c k i n g

Figure 4.14: Probability distributions of the Protected VM’s memory bandwidth.

and shaded), when it runs one of four applications introduced in Section 4.3.2, i.e.,

the Apache web server, Mysql database, Memcached and Pound load-balancer. When

an attacker is present, the probability distribution of the Protected VM’s memory

access statistics (in this case, memory bandwidth in GigaBytes per second) changes

significantly.

In practice, only samples drawn from the underlying probability distribution are

observable. Therefore, the provider’s task is to collect two sets of samples: [XR
1 ,

XR
2 , ..., XR

nR ] are reference samples collected from the probability distribution when

we are sure that there are no attacks; [XM
1 , XM

2 , ..., XM
nM ] are monitored samples

collected from the Protected VM at runtime, when attacks may occur. If these

two sets of samples are not drawn from the same distribution, we can conclude that

the performance of the Protected VM is hindered by its neighboring VMs. When

the distance between the two distributions is large, we may conclude the Protected

VM is under some memory DoS attacks.

We propose to use the two-sample Kolmogorov-Smirnov (KS) tests [152], as a

metric for whether two samples belong to the same probability distribution. The KS

144



statistic is defined in Equation 4.1, where Fn(x) is the empirical distribution function

of the samples [X1, X2, ..., Xn], and sup is the supremum function (i.e., returning the

maximum value). Superscripts M and R denote the monitored samples and reference

samples, respectively. nM and nR are the number of monitored samples and reference

samples.

DnM, nR = sup
x
| FM

nM(x)− FR
nR(x) | (4.1)

Dα
nM, nR =

√
nM + nR

nM × nR

√
−0.5× ln(

α

2
) (4.2)

Null hypothesis for KS test. We establish the null hypothesis that currently

monitored samples are drawn from the same distribution as the reference samples.

Benign performance contention with non-attacking, co-tenant VMs will not alter the

probability distribution of the Protected VM’s monitored samples significantly, so

the KS statistic is small and the null hypothesis is held. Equation 4.2 introduces α: We

can reject the null hypothesis with confidence level 1− α if the KS statistic, DnM, nR ,

is greater than predetermined critical values Dα
nM, nR . Then, the cloud provider can

assume, with confidence level 1− α, that a memory DoS attack exists, and trigger a

mitigation strategy.

While monitored samples, XM
i , are simply collected at runtime, reference samples,

XR
i , ideally should be collected when the Protected VM is not affected by other

co-located VMs. The technical challenge here is that if these samples are collected

offline, we need to assume the memory access statistics of the VM never change during

its life time, which is unrealistic. If samples are collected at runtime, all the co-locating

VMs need to be paused during sample collection, which, if performed frequently, can

cause significant performance overhead to benign, co-located VMs.

145



PROTECTED VM

Co-located VM1

Co-located VM2

Co-located VM3

WR

LR

WM

LM

Execution Throttling Reference sampling Monitored sampling

Co-located VM4

(a) Monitoring the Protected VM.

PROTECTED VM

Co-located VM1

Co-located VM2

Co-located VM4

Execution Throttling Reference sampling Monitored sampling

Attack VM

(b) Identifying co-located VM3 as the attacker VM.

Figure 4.15: Illustration of monitoring the Protected VM (a) and identifying the
attack VM (b). The blue “4” means the null hypothesis is accepted; while the red
“8” means the null hypothesis is rejected.

Pseudo Isolated Reference Sampling. To address this technical challenge, we

use execution throttling to collect the reference samples at runtime. The basic idea is

to throttle down the execution speed of other VMs, but maintain the Protected

VM’s speed during the reference sampling stage. This can reduce the co-located VMs’

interference without pausing them.

Execution throttling is based on a feature provided in Intel Processors called duty

cycle modulation [9], which is designed to regulate each core’s execution speed and

power consumption. The processor allows software to assign “duty cycles” to each

CPU core: the core will be active during these duty cycles, and inactive during the

non-duty cycles. For example, the duty cycle of a core can be set from 16/16 (no

throttling), 15/16, 14/16, ..., down to 1/16 (maximum throttling). Each core uses

146



a model specific register (MSR), IA32 CLOCK MODULATION, to control the duty cycle

ratio: bit 4 of this MSR denotes if the duty cycle modulation is enabled for this core;

bits 0-3 represent the number of 1/16 of the total CPU cycles set as duty cycles.

In execution throttling, the execution speed of other VMs will be throttled down and

very little contention is induced to the Protected VM. As such, reference samples

collected during the execution throttling stage are drawn from a quasi contention-free

distribution.

Figure 4.15a illustrates the high-level strategy for monitoring Protected VMs.

The reference samples are collected during the reference sampling periods (WR), where

other VMs’ execution speeds are throttled down. The monitored samples are collected

during the monitored sampling periods (WM), where co-located VMs run normally,

without execution throttling. KS tests are performed right after each monitored

sample is collected, and probability distribution divergence is estimated by comparing

with the most recent reference samples. Monitored samples are collected periodically

at a time interval of LM , and reference samples are collected periodically at a time

interval of LR. We can also randomize the intervals LM and LR for each period to

prevent the attacker from reverse-engineering the detection scheme and scheduling

the attack phases to avoid detection.

If the KS test results reject the null hypothesis, it may be because the Protected

VM is in a different execution phase with different memory access statistics, or it

may be due to memory DoS attacks. To rule out the first possibility, double checking

automatically occurs since reference samples are re-collected and updated after a time

interval of LR. If deviation of the probability distribution still exists, attacks can be

confirmed.

147



4.4.2 Mitigation Method

The cloud provider has several methods to mitigate the attack. One is VM migration,

which can be achieved either by reassigning the vCPUs of a VM to a different CPU

package, when the memory resource being contended is in the same package (e.g.,

LLC), or by migrating the entire VM to another server, when the memory resource

contended is shared system-wide (e.g., memory bus). However, such VM migration

cannot completely eliminate the attacker VM’s impact on other VMs.

An alternative approach is to identify the attacker VM, and then employ execution

throttling to reduce the execution speed of the malicious VM, while meanwhile the

cloud provider conducts further investigation and/or notifies the customer of the

suspected attacker VM of observed resource abuse activities.

Identifying the attacker VM. Once memory DoS attacks are detected, to mitigate

the threat, the cloud provider needs to identify which of the co-located VMs is

conducting the attack. Here we propose a novel approach to identify malicious VMs

based on selective execution throttling in a binary search manner : First, half of the

co-located VMs keep normal execution speed while the rest of VMs are throttled down

during reference sampling periods (Figure 4.15b, 2nd Reference Sampling period).

If in this case, reference samples and monitored samples are drawn from the same

distribution, then there are malicious VMs among the ones not throttled down during

the reference sampling period. Then, we select half of the remaining VMs to be

throttled while all the other VMs are in normal speed, to collect the next reference

samples. In Figure 4.15b, this is the 3rd Reference Sampling period, where only VM3

is throttled. Since the subsequent monitored samples have a different distribution

compared to this Reference Sample, VM3 is identified as the attack VM. Note that if

there are multiple attacker VMs on the server, we can use the above procedure to find

one VM each time and repeat it until all the attacker VMs are found. By organizing

148



Algorithm 4.4: Identifying and mitigating the attacker VMs that cause severe
resource contention.

Input:
1 VM[1,...,n] /* set of co-tenant VMs */

2 function IdentifyAttacker(sub VM)

3 /* sub VM: set of VMs to identify */
4 if sub VM.length() = 1 then
5 return sub VM[0]
6 else
7 imin = 0
8 imax = sub VM.length()-1
9 imid = d(imin+imax)/2e

10 ThrottleDown(sub VM[0,...,imid-1])
11 reference sample = DataCollect()
12 ThrottleUp(sub VM[0,...,imid-1])
13 monitor sample = DataCollect()
14 result = KSTest(reference sample, monitor sample)
15 if result = Reject then
16 return IdentifyAttacker(sub VM[0,...,imid-1])
17 else
18 return IdentifyAttacker(sub VM[imid,...,imax])
19 end

20 end

21 end

22 begin
23 vm = IdentifyAttacker(VM)

24 ThrottleDown([vm])

25 end

this search for the attacker VM or VMs as a binary search, the time taken to identify

the source of memory contention is O(log n), where n is the number of co-tenant VMs

on the Protected VM’s server. Algorithm 4.4 shows how to detect attacker VMs

using this selective execution throttling.

4.4.3 Implementation

We implement a prototype system of our proposed defense on the OpenStack platform.

Figure 4.16 shows the defense architecture overview. We adopt the CloudMonatt

architecture from Chapter 3 and [262] (Details about the integration of this defense in

CloudMonatt will be illustrated in Section 7.1). Specifically, the system includes three

types of servers. The Cloud Controller is the cloud manager that manages the VMs.

It has a Policy Validation Module to receive and analyze customers’ requests. It

also has a Response Module, which can throttle down the attacker VMs’ execution

149



HPCs
Hardware

Host OSPMU kernel

DetectorRegulator

Attestation Server Cloud Server

Customer Cloud Controller

Policy Validation 
Module

Protected
VM

Other 
VMs

I32_CLOCK_MODULATION

Hypervisor

Verification 
Module

Responce 
Module

Figure 4.16: Architecture overview.

speed to mitigate memory DoS attacks. The Attestation Server is a centralized server

for monitoring and detection of memory DoS attacks. It has a Verification Module

that receives Protected VM’s performance probability distribution, detects memory

DoS attacks and identifies malicious VMs.

On each of the cloud servers, we use the KVM hypervisor which is the default setup

for OpenStack. Other virtualization platforms, such as Xen and HyperV, can also be

used. Two software modules are installed on the host OS. A Detector measures the

memory access characteristics of the Protected VM using Performance Monitoring

Units (PMU), which are commonly available in most modern processors. A PMU

provides a set of Hardware Performance Counters to count hardware-related events. In

our implementation, we use the linux kernel API perf event to measure the memory

access statistics for the number of LLC accesses per sampling period. A Regulator is

in charge of controlling VMs’ execution speed. It uses the wrmsr instruction to modify

the IA32 CLOCK MODULATION MSR to control the duty cycle ratio.

In our implementation, the parameters involved in reference and monitored sam-

pling are as follows: WR = WM = 1s, LM = 2s, LR = 30s. These values were selected

to strike a balance between the performance overhead due to execution throttling

150



and detection accuracy. In each sampling period, n = 100 samples are collected, with

each collected during a period of 10ms. We choose 10ms because it is short enough to

provide accurate measurements, and long enough to return stable results. In the KS

tests, the confidence level, 1− α, is set as 0.999, and the threshold to reject the null

hypothesis is Dα = 0.276 (given α = 0.001). If 4 consecutive KS statistics larger than

0.276 are observed (the choice of 4 is elaborated in Section 4.4.4), it is assured that

the Protected VM’s memory access statistics have been changed. Then to confirm

that such changes are due to memory DoS attacks, reference samples will be refreshed

and the malicious VM will be identified.

4.4.4 Evaluation

Our lab testbed comprised three servers. A Dell R210II Server (equipped with one

quad-core, 3.30GHz, Intel Xeon E3-1230v2 processor with 8MB LLC) was configured

as the Cloud Controller as well as the Attestation Server. Two Dell PowerEdge R720

Servers (one has two six-core, 2.90GHz Intel Xeon E5-2667 processors with 15MB

LLC, the other has one eight-core, 2.90GHz Intel Xeon E5-2690 processor with 20MB

LLC) were deployed to function as VM hosting servers.

Detection accuracy. We deployed a Protected VM sharing a cloud server with

8 other VMs. Among these 8 VMs, one VM was an attacker VM conducting a multi-

threaded LLC cleansing attack with 4 threads (Section 4.2.2), or an atomic locking

attack (Section 4.2.3). The remaining 7 VMs were benign VMs running common

linux utilities. The Protected VM runs one of the web, database, memcached or

load-balancer applications in the Magento application (Section 4.3.2). The experiments

consisted of four stages; the KS statistics of each of the four workloads during the

four stages under the two types of attacks are shown in Figure 4.17.

In stage I, the Protected VM runs while the attacker is idle. The KS statistic in

this stage is relatively low. So we accept the null hypothesis that the memory accesses

151



1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

D
t  ( s )

W e b
I I I I I I I V

 

 

D

t  ( s )

D a t a b a s e
I I I I I I I V

 

 

D

t  ( s )

M e m c a c h e d
I I I I I I I V

 

 

D

t  ( s )

L o a d - b a l a n c e r
I I I I I I I V

(a) LLC cleansing attack

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

D

t  ( s )

W e b
I I I I I I I V

 

 

D

t  ( s )

D a t a b a s e
I I I I I I I V

 

 

D

t  ( s )

M e m c a c h e d
I I I I I I I V

 

 

D

t  ( s )

L o a d - b a l a n c e r
I I I I I I I V

(b) Atomic locking attack

Figure 4.17: KS statistics of the Protected VM for detecting and mitigating
memory DoS attacks.

of the reference and monitored samples follow the same probability distribution. In

stage II, the attacker VM conducts the LLC cleansing or atomic locking attacks. We

observe the KS statistic is much higher than 0.276. The null hypothesis is rejected,

signaling detection of potential memory DoS attacks. In stage III, the cloud provider

runs three rounds of reference resampling to pinpoint the malicious VM. Resource

152



9 4 %

9 6 %

9 8 %

1 0 0 %

1 0 2 %

 

 
tru

e p
os

itiv
e r

ate
 c h e c k i n g  1  s a m p l e
 c h e c k i n g  4  s a m p l e s

 

  0 . 9  0 . 9 5 0 . 9 7 5  0 . 9 9 0 . 9 9 5 0 . 9 9 9
C o n f i d e n c e  l e v e l  ( 1 - a )

K S  s t a t i s t i c ,  ( D a )0 . 1 7 0 . 1 9 0 . 2 1 0 . 2 3 0 . 2 4 0 . 2 8

(a) True positive

0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 %

 

 

fal
se

 po
sit

ive
 ra

te

  0 . 9  0 . 9 5 0 . 9 7 5  0 . 9 9 0 . 9 9 5 0 . 9 9 9

K S  s t a t i s t i c ,  ( D a )

C o n f i d e n c e  l e v e l  ( 1 - a )
 c h e c k i n g  1  s a m p l e
 c h e c k i n g  4  s a m p l e s

0 . 1 7 0 . 1 9 0 . 2 1 0 . 2 3 0 . 2 4 0 . 2 8

(b) False positive

Figure 4.18: Detection accuracy.

contention mitigation is performed in stage IV: the cloud provider throttles down the

attacker VM’s execution speed. After this stage, the KS statistic falls back to normal

which suggests that the attacks are mitigated.

We also evaluated the false positive rates and false negative rates of two different

criteria for identifying a memory access anomaly: 1 abnormal KS statistic (larger than

the critical value Dα) or 4 consecutive abnormal KS statistics. Figure 4.18a shows the

true positive rate of LLC cleansing and atomic locking attack detection, at different

confidence levels 1 − α. We observe that the true positive rate is always one (thus

zero false negatives), regardless of the detection criteria (1 vs 4 abnormal KS tests).

Figure 4.18b shows the false positive rate, which can be caused by background noise

due to other VMs’ executions. This figure shows that using 4 consecutive abnormal

KS statistics significantly reduces the false positive rate.

Effectiveness of mitigation. We evaluated the effectiveness of execution throttling

based mitigation. The Protected VM runs the cloud benchmarks from the Magento

application while the attacker VM runs LLC cleansing or atomic locking attacks. We

chose different duty cycle ratios for the attacker VM. Figures 4.19a and 4.19b show

153



1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5

0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5

No
rm

ali
ze

d T
hro

ug
hp

ut

No
rm

ali
ze

d T
hro

ug
hp

ut

No
rm

ali
ze

d L
ay

en
cy

No
rm

ali
ze

d L
ay

en
cy

1234567891 01 11 21 31 41 5

W e b

 

 

t h r o t t l i n g  r a t i o  ( * 1 / 1 6 )
1 6

1234567891 01 11 21 31 41 51 6

1234567891 01 11 21 31 41 51 6

1234567891 01 11 21 31 41 51 6

1234567891 01 11 21 31 41 51 6

 

D a t a b a s e

 

 

t h r o t t l i n g  r a t i o  ( * 1 / 1 6 )

M e m c a c h e d

 

 

t h r o t t l i n g  r a t i o  ( * 1 / 1 6 )

L o a d - b a l a n c e r

 

 

t h r o t t l i n g  r a t i o  ( * 1 / 1 6 )

(a) Throttling LLC cleansing attacks

1
2
3
4
5
6
7

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1
2
3
4
5
6
7W e b

 

 

t h r o t t l i n g  r a t i o  ( * 1 / 1 6 )
D a t a b a s e

 

 

t h r o t t l i n g  r a t i o  ( * 1 / 1 6 )

M e m c a c h e d

 

 

t h r o t t l i n g  r a t i o  ( * 1 / 1 6 )

No
rm

ali
ze

d L
ay

en
cy

No
rm

ali
ze

d L
ay

en
cy

No
rm

ali
ze

d T
hro

ug
hp

ut

No
rm

ali
ze

d T
hro

ug
hp

ut

L o a d - b a l a n c e r

 

 

t h r o t t l i n g  r a t i o  ( * 1 / 1 6 )
1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6

1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 61234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6

1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6

(b) Throttling atomic locking attacks

Figure 4.19: Normalized performance of the Protected VM with throttling of
memory DoS attacks.

the normalized performance of the Protected VM with different throttling ratios,

under LLC cleansing and atomic locking attacks, respectively. The x-axis shows the

duty cycle (x × 1/16) given to the co-located VMs, going from no throttling on

the left to maximum throttling on the right of each figure. The y-axis shows the

Protected VM’s response latency (for web and load-balancer) or throughput (for

memcached and database) normalized to the ones without attack. A high latency or

a small throughput indicates that the performance of the Protected VM is highly

154



1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 01 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0

 

 

lat
en

cy
 (m

s)

t  ( s )

 w / o  d e f e n s e
 w /  d e f e n s e

I I I I I I I V

(a) LLC cleansing attack

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

 

 

lat
en

cy
 (m

s)

t  ( s )

 w / o  d e f e n s e
 w /  d e f e n s e

I I I I I I I V

(b) Atomic locking attack

Figure 4.20: Request latency of Magento Application

taffected by the attacker VM. We can see that a smaller throttling ratio can effectively

reduce the attacker’s impact on the victim’s performance. When the ratio is set as

1/16, the victim’s performance degradation caused by the attacker is kept within 12%

(compared to 23% ∼ 50% degradation with no throttling) for LLC cleansing attacks.

It is within 14% for atomic locking attacks (compared to 7× degradation with no

throttling).

155



m c f
g o b m k

o m n e t p p a s t a r
s o p l e x l b m

c a n n e a l

s t r e a m c l u s t e r0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3

 

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e  1 0 s   2 0 s   3 0 s

Figure 4.21: Performance overhead of co-located VMs due to monitoring.

Latency increase and mitigation. We chose a latency-critical application, the

Magento E-commerce application as the target victim. One Apache web server was

selected as the Protected VM, co-locating with an attacker and 7 benign VMs

running linux utilities. Figure 4.20 shows the response latency with and without our

defense. The detection phase does not affect the Protected VM’s performance (stage

I), since the PMU collects monitored samples without interrupting the VM’s execution.

In stage II, the attack occurs and the defense system detects the Protected VM’s

performance is degraded. In stage III, attacker VM identification is done. After

throttling down the attacker VM in stage IV, the Protected VM’s performance is

not affected by the memory DoS attacks. The latency during the attack in Phase II

increases significantly, but returns to normal after mitigation in Phase IV.

We also evaluated the performance overhead of co-located VMs due to execution

throttling in the detection step. We launched one VM running one of the eight

SPEC2006 or PARSEC benchmarks. Then we periodically throttle down this VM

every 10s, 20s or 30s. Each time throttling lasted for 1s (the same value for WR and

WM used earlier). The normalized performance of this VM is shown in Figure 4.21.

156



We can see that when the server throttles this VM every 10s, the performance penalty

can be around 10%. However, when the frequency is set to be 30s (our implementation

choice), this penalty is smaller than 5%.

4.5 Chapter Summary

We presented memory DoS attacks, in which a malicious VM intentionally induces

memory resource contention to degrade the performance of co-located victim VMs.

We proposed several advanced techniques to conduct such attacks, and demonstrate

the severity of the resulting performance degradation. Our attacks work on modern

memory systems in cloud servers, for which prior attacks on older memory systems are

often ineffective. We evaluated our attacks against two commonly used applications

in a public cloud, Amazon EC2, and show that the adversary can cause significant

performance degradation to not only co-located VMs, but to the entire distributed

application.

We then designed a novel and generalizable method that can detect and mitigate all

known memory DoS attacks. Our approach collects the Protected VM’s reference

and monitored behaviors at runtime using the Performance Monitor Unit. This is

done by establishing a pseudo isolated collection environment by using the duty-

cycle modulation feature to throttle the co-resident VMs for collecting Reference

samples. Statistical tests are performed to detect differing performance probability

distributions between Reference and Monitored samples, with desired confidence levels.

Our evaluation shows this defense can detect and defeat memory DoS attacks with

very low performance overhead.

157



Chapter 5

Detection and Mitigation of

Confidentiality Vulnerabilities

In Chapter 3 we show the covert-channel attacks and their detection in CloudMonatt.

In this chapter, we consider another form of attacks on the confidentiality property:

cross-VM side-channel attacks. We present CloudRadar , a system to detect, and then

mitigate, cache-based side-channel attacks in multi-tenant cloud systems (most parts

of this chapter have been published in [264]). CloudRadar operates by correlating two

events: first, it exploits signature-based detection to identify when the protected virtual

machine (VM) executes a cryptographic application (e.g., encryption/decryption,

hash); at the same time, it uses anomaly-based detection techniques to monitor the co-

located VMs to identify abnormal cache behaviors that are typical during cache-based

side-channel attacks. We show that correlation in the occurrence of these two events

offer strong evidence of side-channel attacks. Upon attack detection, CloudRadar

can use VM migration to mitigate side-channel information leakage. CloudRadar is

designed as a lightweight patch to existing cloud systems, which does not require new

hardware support, or any hypervisor, operating system, or application modifications.

We demonstrate a prototype implementation of CloudRadar in the OpenStack cloud

158



framework. Our evaluation suggests CloudRadar achieves negligible performance

overhead with high detection accuracy.

5.1 Background

In a multi-tenant cloud server, virtualization technology is used to provide strong

resource isolation between different VMs so each VM’s memory content is not accessible

to other co-tenant VMs. However, confidentiality breaches due to cross-VM side-

channel attacks become a major concern. These attacks often operate on shared

hardware resources and extract sensitive information, such as cryptographic keys, by

making inferences on the observed side-channel events due to resource sharing. CPU

caches are popular attack medium used in cross-VM side-channel attacks. Several

prior work have shown the possibilities of cross-VM secret leakage via different levels

of CPU caches [269, 255, 122, 270, 107, 144, 120].

Mitigating side-channel attacks in the cloud is challenging. Past work on defeating

side-channel attacks have some practical drawbacks: they mostly require significant

changes to the hardware [238, 239, 83, 142], hypervisors [229, 200, 131, 271, 225, 139] or

guest OSes [271], making them impractical to be deployed in current cloud datacenters.

Other work have proposed to mitigate these attacks in cloud contexts by periodic VM

migrations to reduce the co-location possibility between victim VMs and potential

malicious VMs [272, 159]. These heavy-weight approaches cannot effectively prevent

side-channel leakage unless performed very frequently, making them less practical as

VM co-location takes on the order of minutes [226] while side-channel attacks can be

done on the order of milliseconds [255, 144].

In this chapter, we propose to detect side-channel attacks as they occur and prevent

information leakage by triggering VM migration upon attack detection. However, side-

channel attack detection is non-trivial. To do so, we must overcome several technical

159



challenges in the application of traditional detection techniques, like signature-based

detection and anomaly-based detection, to side-channel attacks. Signature-based

side-channel detection exploits pattern recognition to detect known attack methods

[78, 68, 114]. While low in false negatives for existing attacks, it fails to recognize new

attacks; anomaly-based detection flags behaviors that deviate significantly from the

established normal behaviors as attacks, which can potentially identify new attacks in

addition to known ones. However, differentiating side-channel attacks from normal

applications is difficult as these attacks just perform normal memory accesses which

resemble some memory intensive applications.

To overcome these challenges, we design CloudRadar , a real-time system to detect

the existence of cross-VM side-channel attacks in clouds. There are two key ideas

behind CloudRadar : first, the victim has unique micro-architectural behaviors when

executing cryptographic applications that need protection from side-channel attacks. So

the cloud provider is able to identify the occurrence of such events using a signature-

based detection method. Second, the attacker VM creates an anomalous cache behavior

when it is stealing information from the victim. Such anomaly is inherent in all side-

channel attacks due to the intentional cache contention with the victim to induce

side-channel observations. By correlating these two types of events, CloudRadar is

able to detect the stealthy cache side-channel attacks with high fidelity.

We implement CloudRadar as a lightweight extension to virtual machine monitors.

Specially, it (1) utilizes the existing host system facilities to collect micro-architectural

features from hardware performance counters that are available in all modern com-

modity processors, and (2) non-intrusively interacts with the existing virtualization

framework to monitor the VM’s cache activities while inducing little performance

penalty. Our evaluations show that it effectively detects side-channel attacks with

high true positives and low false positives.

160



Compared to past work, CloudRadar has several advantages. First, CloudRadar

focuses on the root causes of cache-based side-channel attacks and hence is hard to evade

using different attack code, while maintaining a low false positive rate. Our approach

is able to detect different types of side-channel attacks and their variants with a simple

method. Second, CloudRadar is designed as a lightweight patch to existing cloud

systems, which does not require new hardware support or hypervisor/OS modifications.

Therefore CloudRadar can be immediately integrated into modern cloud fabric without

making drastic changes to the underlying infrastructure. Third, CloudRadar exploits

hardware performance counters to monitor VM activities, which detects side-channel

attacks within the order of milliseconds with negligible performance overhead. Finally,

CloudRadar requires no changes to the guest VM or the applications running in it,

and thus is transparent to cloud customers.

5.1.1 Related Work

5.1.1.1 Cache Side-Channel Attacks

In cache-based side-channel attacks, the adversary exfiltrates sensitive information

from the victim via shared CPU caches. The sensitive information are usually

associated with cryptographic operations (e.g., signing or decryption), but may also

be extended to other applications [270]. Such sensitive information are leaked through

secret-dependent control flows or data flows that lead to attacker-observable cache

use patterns. The adversary, on the other hand, may exploit several techniques to

manipulate data in the shared cache to deduce the victim’s cache use patterns, and

thereby make inference on the sensitive information that dictates these patterns. Two

cache manipulation techniques are well-known for side-channel attacks:

Prime-Probe attacks: The adversary allocates an array of cacheline-sized, cacheline-

aligned memory blocks so that these memory blocks can exactly fill up a set of targeted

161



cache sets. Then the adversary repeatedly performs two attack stages: in the prime

stage, the adversary reads each memory block in the array to evict all the victim’s data

in these cache sets. The adversary waits for some time interval before performing the

probe stage, in which he reads each memory block in the array again, and measures

the time of memory accesses. Longer access time indicates one or more cache misses,

which means this cache set has been accessed by the victim between the prime and

probe stages. The adversary will repeat these two steps for a large number of times

to collect traces that, hopefully, overlap with the victim’s execution of cryptographic

operations, for offline analysis. This technique was first proposed by Percival [172],

and then applied to the cloud environment in [182, 269, 144, 120].

Flush-Reload attacks: This type of attacks assumes identical memory pages can

be shared among different VMs, so that the adversary and victim VMs may share the

same pages containing cryptographic code or data. The adversary carefully selects a

set of cacheline-sized, -aligned memory blocks from these shared pages. Then he also

conducts two stages repeatedly: in the flush stage, the adversary flushes the selected

blocks out of the entire cache hierarchy (e.g., using the clflush instruction). Then

it waits for a fixed interval in which the victim might issue the critical instructions

and fetch them back to the caches. In the reload stage, the adversary reloads these

memory blocks into the caches and measures the access time. A short access time for

one memory block indicates a cache hit, so this block has been accessed by the victim

during the interval. By repeating these two stages the adversary can obtain traces of

the victim’s memory accesses and deduce the confidential data. This Flush-Reload

technique was first proposed in [109], and further demonstrated in different virtualized

platforms with different variants [122, 270, 107, 106].

162



5.1.1.2 Defenses Against Side-channel Attacks

Previous studies propose to defeat cache-based side-channel attacks in one of these

ways:

Constant access time: A solution often suggested by software researchers is to

achieve constant time access or constant time encryption/decryption for any key

and any plaintext data. This is often very hard to achieve in practice, due to

variability in cache time and other hardware features. One brute-force way is to

disable the cache mechanism [168]. This makes each access time constant and there

is no information leakage via timing differences. However, this will incur a huge

unacceptable performance degradation to applications.

Program transformation: Past work [71, 74, 181, 151] designed methods to auto-

matically transform a program at compiling time to eliminate secret-dependent control

flows or data flows, which could cause side-channel vulnerabilities. These approaches

attempted to eliminate leakage sources of all timing channels, and usually yielded

high performance overhead.

Partitioning caches: One straightforward approach is to prevent the cache sharing

by dividing the cache into different zones by sets or ways for different VMs. This can

be achieved by hardware [238, 83, 141, 250] or software methods [200, 131, 275].

Randomization: This idea is to add randomization to the attacker’s measurements,

making it hard for him to get accurate information based on his observations. This

includes random memory-to-cache mappings [238, 239], randomized cache prefetching

[142], timers [229, 139] and cache states [271].

Avoiding co-location: New VM placement policies were designed [113, 36] to reduce

the co-location probability between victim and attacker VMs. Zhang et al. [272] and

Moon et al. [159] frequently migrated the VMs to add difficulty of VM co-location for

the attackers.

163



These approaches, when applied in the cloud setting, require significant modification

of computing infrastructure, and thus are less attractive to cloud providers for practical

adoption. In our study, we aim to build atop existing cloud framework a lightweight

side-channel attack detection system to detect, and then mitigate, the attacks as they

take place, and doing this without modifying guest OS, hypervisor or hardware.

5.1.1.3 Intrusion Detection Using Hardware Performance Counters

Hardware performance counters are a set of special-purpose registers built into x86

(e.g., Intel and AMD) and ARM processors. They work along with event selectors

which specify certain hardware events, and update a counter after a hardware event

occurs. Most modern processors provide a Performance Monitor Unit (PMU) that

enables applications to control performance counters. One of the basic working modes

of PMUs is the interrupt-based mode. Under this working mode, an interrupt is

generated when the occurrences of a given event exceed a predefined threshold or a

predefined amount of time has elapsed. Therefore, it makes both event-based sampling

and time-based sampling possible.

Performance counters were originally designed for software debugging and system

performance tuning. Recently, researchers exploited performance counters to detect

security breaches and vulnerabilities [150, 257, 245, 234, 78, 220, 38, 235]. The intuition

is that the performance counters can reveal programs’ execution characteristics,

which can further reflect the programs’ security states. Besides, performance counter

detection introduces negligible performance overhead to the programs. Related to,

but different from our work are signature-based side-channel attack detection methods

using performance counters [78, 68, 114], which, unfortunately, could be easily evaded

by smarter attackers by slightly changing the cache probing pattern.

164



5.1.2 Threat Model and Assumptions

We focus on cross-VM side-channel threats in public IaaS clouds based on Last Level

Caches (LLC) that are shared between processor cores. We assume the adversary is a

legitimate user of the cloud service who is able to launch VMs in the cloud and has

complete control of his VMs. We further assume the attacker is able to co-locate one

of his VMs on the same server as the victim VM, and the two VMs will share the

same processor package, thus the LLC, with non-negligible probability. We consider

both Prime-Probe side-channel attacks and Flush-Reload side-channel attacks,

which represent all known LLC side channels in modern computer systems.

5.2 Detection Method

5.2.1 Design Challenges and Overview

There are several technical challenges in the application of traditional detection

techniques, like signature-based detection and anomaly-based detection, to side-channel

attacks.

Signature-based detection approaches are widely used techniques in detecting

network intrusion and malware, by comparing monitored application or network

characteristics with pre-identified attack signatures. Similarly, to detect side-channel

attacks, signatures of side-channel attacks must be generated from all known side-

channel attack techniques and used to compare with events collected from production

systems. Prior work [78, 68] have preliminarily explored such ideas. Particularly,

Demme et al. [78] demonstrated in a simplified experiment setting that classification

algorithms could successfully differentiate normal programs from Prime-Probe attack

programs. The advantage of this approach is that they have a high true positive rate

in detecting known attacks. However, such a detection method is very fragile and easy

165



to evade by clever attackers. It also fails to recognize unknown attacks, with only

subtle changes from existing ones. For instance, the attacker can change the memory

access pattern (e.g., sequential order, access frequency) in a Prime-Probe attack to

evade signature-based detection.

In anomaly-based detection, the normal behaviors of benign applications are

modeled and any substantial deviation from such models are detected as attacks. To

detect side-channel attacks using such techniques, one can build models for benign

application behaviors. Then, for each VM to be monitored, we check if its behaviors

conform to the models in the database. Compared to signature-based detection,

anomaly-based detection can potentially identify “zero-day” attacks in addition to

known ones. However, the difficulty of applying the anomaly-based approach to

side-channel attacks stems from the challenge of precisely modeling benign application

activities. Cache side-channel attacks resemble benign memory intensive applications,

and therefore they are difficult to differentiate. False positive or false negative rates can

be extremely high due to imprecise application behavior modeling. We are not aware

of successful side-channel detection methods that are based on anomaly detection.

CloudRadar combines both anomaly-based and signature-based techniques to

detect side-channel attacks. The only features used by CloudRadar are hardware

event values read from the Hardware Performance Counters available in commercial

processors. The key insight that motivates CloudRadar is derived from prior research

in side-channel attacks: in cache side-channel attacks, to effectively exfiltrate secret

information from the victim’s sensitive execution, the attacker needs to repeatedly

conduct side-channel activities (e.g., Prime-Probe or Flush-Reload) and deduce

cache usage based on the execution time of his own interferring memory activities.

This enables him to make inferences on the victim’s cache usage by looking at the

statistics of his own cache hits and cache misses. As such, the attacker’s cache use

patterns must be different when the victim executes sensitive operations so that the

166



attacker can differentiate them in his own analysis. Our intuition is that if such

distinction can be detected by the attacker using timing channels, it can be detected

by the cloud provider using Hardware Performance Counters. Thus CloudRadar

monitors all suspected VMs running on a cloud server and collects their cache use

patterns using Hardware Performance Counters. Once anomalies in cache use patterns

are detected by CloudRadar , these anomalies will be correlated with the sensitive

operations (usually cryptographic operations) in the co-located protected VM (i.e.,

VMs owned by customers paying for such services). Strong correlation will serve as a

good indicator of cache-based side-channel attacks.

Two key technical challenges in our design are (1) identifying the execution of the

protected VM’s sensitive operations without asking the customers to modify their

applications, and (2) detecting untrusted VM’s abnormal cache use patterns. We aim

to achieve both by using only values read from Hardware Performance Counters. To do

so, we first propose to use signature-based techniques to detect sensitive applications

of the protected VM, because they are conducted by honest parties and will not

attempt to evade detection intentionally—a perfect target of signature-based detection

techniques. Second, we propose to use anomaly-based detection techniques to detect

abnormal cache patterns due to side-channel activities, as they are expected to vary

due to different attack techniques and intensity. As side-channel attack detection

is done via correlation with sensitive operations, false positives that are common

challenges in anomaly detection techniques can be ruled out. We will highlight our

design of these two components in Section 5.2.2 and 5.2.3.

5.2.2 Signature Detection of Cryptographic Applications

As sensitive operations that are targeted by side-channel attacks are usually crypto-

graphic operations, we consider detection of cryptographic applications in this section.

Our working hypothesis here is that all cryptographic applications have unique signa-

167



tures that can be easily identified by Hardware Performance Counters. In this section,

we validate our hypothesis by a set of preliminary experiments.

5.2.2.1 Cryptographic Signature Generation

To generate signatures for detecting cryptographic applications, we need to select a

proper hardware performance feature that uniquely characterizes a certain execution

phase [198] of such applications.

Feature selection. Modern processors allow a large number of events to be measured

and reported by Hardware Performance Counters. The signature generated from a

proper hardware event should satisfy two requirements: (1) uniqueness: the signa-

tures of different applications should be highly distinguishable; (2) repeatability : the

signature of a cryptographic application should be identical each time it is generated,

regardless of the platform’s configurations and the inputs.

We consider different events from three main categories: CPU events, cache events

and kernel software events. We use the Fisher Score [85] to test the repeatability and

uniqueness of these events in identifying cryptographic applications. The Fisher Score

is one of the most widely used methods to select features quickly. It finds the optimal

feature so that the distances between data points in the feature space of different

classes are maximized, while the distances between data points in the same class are

minimized.

To test the uniqueness of an event, we use Hardware Performance Counters to

measure the number of this event every 100µs during the execution of six representative

cryptographic applications (i.e., asymmetric cryptography: ElGamal and DSA from

GnuPG; symmetric cryptography: AES and 3DES from OpenSSL; hash: HMAC

from OpenSSL and SHA512 from GnuPG). We select 10 consecutive counter values

(collected from 10× 100µs) from the beginning of each application to form a timing

sequence as one training data point. We repeat this 100 times for each cryptographic

168



application. For each hardware event we considered, we calculate the Fisher Score

using 600 training data points from the six cryptographic applications to test the

uniqueness of this event in distinguishing different applications. Table 5.1 (Inter-class

F-Score column) shows the results. Note a larger inter-class F-Score indicates a

better uniqueness of this event. We can see some CPU events (instructions, branches

and mispredicted branch instructions) and cache events (L1I fetch misses) are better

candidates for signature generation. They vary significantly for different cryptographic

applications. The events that rarely happen during the cryptographic execution (e.g.,

context switches and page faults), or remain identical for different cryptographic

applications (e.g., CPU cycles or clock) fail to satisfy the uniqueness requirement.

To test the repeatability of an event, we repeat the above experiments on three

servers with different hardware and software configurations. For each cryptographic

application, we calculate the Fisher Score from 300 training data points collected

from three servers. Table 5.1 (Intra-class F-Score column) shows the average Fisher

Score of the six cryptographic programs. A smaller Intra-class F-Score indicates the

signature with this event is more repeatable. We are able to find some events with

good repeatability (e.g., instructions, branches and mispredicted branch instructions).

Based on the inter-class and intra-class Fisher Scores, we can choose the features

with both good uniqueness and repeatability for signature matching. For instance,

we can use instructions, branch instructions and mispredicted branch instructions to

conduct multi-feature classification. Further evaluations in Section 5.5 show one single

feature (i.e., branch instructions) is already enough to give good accuracy. So we will

collect the number of branch instructions as the feature to generate signatures in the

following sections.

Phase selection . It has been shown in prior studies that programs run in different

phases [198]. Therefore, another question we need to solve is which phase of the

cryptographic application we should use to generate the signature. The selected

169



Category Events
Inter-class Intra-class

F-Score F-Score

CPU events

instructions 1.49 0.13
branch instructions 1.55 0.14

mispredicted branch instructions 1.11 0.15
CPU cycles 0.01 0.30

Cache events

L1D load accesses 0.37 0.72
L1D load misses 0.69 0.42
L1I fetch misses 1.14 0.20

LLC load accesses 0.79 0.31
LLC load misses 0.05 0.36

iTLB load accesses 0.55 0.27
iTLB load misses 0.23 0.21

dTLB load accesses 0.22 0.63
dTLB load misses 0.36 0.62

Software events
context switches 0.00 0.00

page faults 0.00 0.00
CPU clock 0.01 0.50

Table 5.1: Fisher Scores for different events.

phase should be able to distinguish cryptographic applications from non-cryptographic

applications. It should also be independent of the inputs.

We conducted the following experiments: we ran the same six cryptographic appli-

cations as above. For each cryptographic application, the cryptographic keys and input

message (for signing or encryption) are randomly chosen each time the applications

are executed. We exploit the Hardware Performance Counters to record the number

of branch instructions taking place in the program within 100µs windows. Figure 5.1

shows the profiling results for each cryptographic application. For comparison, we also

show the profiling results for three non-cryptographic applications: Apache, Mysql

and the Network File System (NFS).

We observe that the cryptographic applications have different behaviors from the

non-cryptographic ones. Each cryptographic application exhibits three distinguishable

stages, labeled in Figure 5.1. (1) The first stage initializes the program and variables.

Specifically, it analyzes the application’s parameters, allocates buffers for the input

and output messages, retrieves keys from passphrase or salts, and sets up the cipher

context. This stage does not depend on the inputs. (2) The second stage computes the

170



0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k

��

 

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

�

�

(a) Elgamal

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k
1 6 0 . 0 k
1 8 0 . 0 k

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

���

�

(b) DSA

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k

 

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

 

���

�

(c) SHA512

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k
1 6 0 . 0 k

 

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

 

���

�

(d) 3DES

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k

 

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

���

�

(e) AES

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0

2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k
1 2 0 . 0 k
1 4 0 . 0 k
1 6 0 . 0 k

 

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

���

�

(f) HMAC

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

1 0 k
2 0 k
3 0 k
4 0 k
5 0 k
6 0 k
7 0 k
8 0 k

 

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

(g) Apache

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0

5 . 0 k

1 0 . 0 k

1 5 . 0 k

2 0 . 0 k

2 5 . 0 k

 

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

(h) Mysql

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

1 0 k

2 0 k

3 0 k

4 0 k

5 0 k

6 0 k

 

 

# o
f b

ran
ch

 in
str

uc
tio

ns

t  ( m s )

(i) NFS

Figure 5.1: Signatures of different applications based on the number of branches

cryptographic operations (e.g., multiply or square operations, checking lookup tables,

etc.), the characteristics of which are input dependent: the duration of this stage is

linearly related to the length of the plaintext/ciphertext, and the pattern depends on

the values of the cryptographic key and the plaintext/ciphertext blocks. (3) The last

stage ends the application, frees the memory buffer and reports the results. We chose

the first stage as the signature to represent a crypto application, because it is input

independent. The Fisher Score in Table 5.1 were also generated for this stage.

5.2.2.2 Cryptographic Application Detection

To detect the execution of the sensitive applications, CloudRadar only requires the

customers to provide the signature generated offline using Hardware Performance

171



Counters (not necessarily on the same hardware) or simply the executables for the

service provider to generate the signature. At runtime, CloudRadar keeps monitoring

the protected VM using the same set of Hardware Performance Counters. It then

compares the data points collected at runtime with the signature of the cryptographic

application. If a signature match is found, CloudRadar will assume the cryptographic

application is being executed by the protected VM (In fact, our evaluation in Section

5.5 shows high fidelity of this approach).

Because the cryptographic signatures and runtime measurements are temporal

sequences of performance counter values, we cast the signature detection problem as a

time series analysis problem: i.e., measuring the similarity between the two sequences

that represent the signature and the runtime measurement, respectively. We adopt the

Dynamic Time Warping (DTW) algorithm [187] to calculate the distance between the

two sequences. DTW is able to measure the similarity between temporal sequences

which may vary in speed: it tries different alignments between these sequences and

finds the optimal one that has the shortest distance. This distance is called the DTW

distance. We chose the DTW algorithm because the runtime sequence may be slightly

stretched or shrunk due to the difference of the computing environment (e.g., CPU

models, running speed, interruption, etc.). DTW is powerful enough to find the

similarity between two temporal sequences even with distortion.

Algorithm 5.1 shows how to calculate the DTW distance between the signature

sequence (s, of length n) and measurement sequence (p, of length m). We set an

adjustable locality constraint parameter (w) to reduce computing time complexity.

We consider a n×m matrix, where the (i, j) element of this matrix corresponds to the

distance between s[i] and p[j]. Then we retrieve the optimal path from (0, 0) to (n,

m) through the matrix that has the minimal total cumulative distance. This warping

path can be found using a dynamic programming method, and the minimal total

172



Algorithm 5.1: Calculate the normalized DTW distance between signature and
measurement sequences

Input:
1 s[1, ..., n] /* signature sequence */
2 p[1, ..., m] /* measurement sequence */
3 w /* locality constraint */

4 begin
5 /* calculate DTW between s[] and p[]*/
6 D[0, ..., n][0, ..., m]
7 w = max(w, |n−m|)
8 for i = 0 to n do
9 for j = 0 to m do

10 D[i][j] = +∞
11 end

12 end
13 D[0][0] = 0
14 for i = 1 to n do
15 for j = max(1, i-w) to min(m, i+w) do
16 cost = |s[i]− p[j]|
17 D[i][j] = cost + min(D[i-1][j], D[i][j-1], D[i-1][j-1])

18 end

19 end

20 return D[n][m]/
∑n
i=1 |s[i]|

21 end

cumulative distance is the DTW distance. Finally, we normalize the DTW distance

to the distance between the signature sequence and origin.

Figure 5.2 shows the normalized DTW distance of different cryptographic programs.

We observe that occurrence of cryptographic programs yields very small DTW distances,

which indicates a signature match. We defer a more systematic evaluation of the

signature-based cryptographic program detection technique to Section 5.5.

5.2.3 Anomaly Detection of Side-channel Activities

The cache usage patterns that CloudRadar monitors for anomaly detection are char-

acterized by the cache hit count and the cache miss count measured by the Hardware

Performance Counters: In Prime-Probe side-channel attacks, the attacker Probes

certain cache sets and measures if there are cache misses via timing the accesses to

the sets after the victim executes. It is expected that cache misses will be higher than

normal when the protected VM executes the cryptographic operations, since cache

misses will be the tell-tale signal for the attacker to detect these operations in the first

173



0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t o

 

 

DT
W

t  ( m s )

C r y p t o

(a) Elgamal

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

 

 

DT
W

t  ( m s )

(b) DSA

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

 

 

DT
W

t  ( m s )

(c) SHA512

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o
 

 

DT
W

t  ( m s )

(d) 3DES

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

 

 

DT
W

t  ( m s )

(e) AES

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

C r y p t oC r y p t oC r y p t o

 

 

DT
W

t  ( m s )

(f) HMAC

Figure 5.2: DTW distances of different cryptographic programs. The lowest distance
indicates a signature match.

place. In Flush-Reload side-channel attacks, the attacker Reloads certain cache

lines and tries to detect cache hits. Cache hits should occur more frequently during

the protected VM’s sensitive operations.

To validate this hypothesis, we conducted a set of experiments to show that

abnormal cache activities in the untrusted VM can be correlated with the protected

VM’s sensitive operations. We first consider a Prime-Probe attack against the

ElGamal cipher [144]. Figure 5.3a shows the DTW distance (low distance indicates a

signature match) between the runtime sequence and the signature sequence observed

on the protected VM (top figure), correlates with the attacker VM’s high cache miss

counts (bottom figure). We next consider a Flush-Reload attack against the RSA

cipher [255]. Figure 5.3b shows the low DTW distance of the protected VM correlates

with the high cache hit counts of the attacker VM. We align the top figures and the

bottom figures according to timestamps. Strong correlation can be observed in both

set of experiments, which suggest that this method can be used for side-channel attack

detection.

174



0 4 0 , 0 0 0 8 0 , 0 0 0 1 2 0 , 0 0 0 1 6 0 , 0 0 0 2 0 0 , 0 0 00 . 0
0 . 3
0 . 6
0 . 9
1 . 2
1 . 5
1 . 8

0 4 0 , 0 0 0 8 0 , 0 0 0 1 2 0 , 0 0 0 1 6 0 , 0 0 0 2 0 0 , 0 0 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0

 

 

DT
W

t  ( u s )

 

 

# o
f c

ac
he

 m
iss

es

t  ( u s )
(a) Prime-Probe attack

0 4 0 , 0 0 0 8 0 , 0 0 0 1 2 0 , 0 0 0 1 6 0 , 0 0 0 2 0 0 , 0 0 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

0 4 0 , 0 0 0 8 0 , 0 0 0 1 2 0 , 0 0 0 1 6 0 , 0 0 0 2 0 0 , 0 0 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0

 

 

DT
W

t  ( u s )

 

 

# o
f c

ac
he

 hi
ts

t  ( u s )
(b) Flush-Reload attack

Figure 5.3: Monitoring cache activities under side-channel attacks

To describe our detection algorithm more precisely, when CloudRadar detects

that the victim VM starts executing crypto applications (a low DTW distance), two

short sub-sequences are selected from the entire monitored runtime sequences in the

untrusted VMs: S, data points of size w before the DTW distance reaches its minimum,

and S′, data points of size w after the minimum points of DTW distance, where w

is a parameter of the detection system. If CloudRadar detects that the difference

between any value in S′ and any value in S is larger than a pre-determined threshold

T , CloudRadar will raise an alarm of a possible side-channel attack. This rule can

be formally expressed in Equation 5.1. We will further evaluate this side-channel

detection method in Section 5.5.

Alarm: v′ − v > T, ∀v ∈ S, v′ ∈ S′ (5.1)

5.3 Mitigation Methods

When a side-channel adversary is detected, CloudRadar will cut off the side channel

by migrating the identified adversary VM to a different processor socket. There can

175



be other ways to mitigate the threat. For instance, the cloud provider can migrate the

adversary VM to a different server when the server has only one processor socket. This

triggered migration will be more effective than past work [272, 138, 159]. The cloud

provider can also partition the LLC between the victim VM and the adversary VM. It

can even shut down the adversary VM and block the attacker’s account. Side-channel

detection makes mitigation solutions easier.

5.4 Architecture

5.4.1 Architecture Overview

CloudRadar is provided by the cloud operator as a security service to the customers

who are willing to pay extra cost for better security, as in the CloudMonatt cloud

framework [124, 262]. Figure 5.4 shows the architecture of CloudRadar , and the

workflow of detecting side-channel attacks. We implement CloudRadar into the

CloudMonatt framework (Details about the integration of this defense in CloudMonatt

will be illustrated in Section 7.1). Three types of servers, the Cloud Controller, the

Attestation Server and regular cloud servers, are relevant to our discussion.

The Cloud Controller is the cloud manager, responsible for taking VM detection

requests and servicing them for each customer. The Attestation Server is a dedicated

server to manage the provided security services and coordinate the interaction between

the Cloud Controller and the cloud servers. The Signature Database is used to store

signatures of crypto programs.

CloudRadar ’s functionality within a cloud server is tightly integrated with the host

OS. As shown in Figure 5.4, CloudRadar consists of three modules, with each one

running on a dedicated core. The Victim Monitor is responsible for collecting the

protected VM’s runtime events, which will be fed to Signature Detector to detect the

cryptographic programs using our signature-based technique; The Attacker Monitor

176



HPCs

Hardware

Host OSPMU kernel

Victim 
Monitor

Attacker 
Monitor

Signature Detector

Guest OS Guest OSGuest OS

Crypto Attack Apps
Step 1
Step 2
Step 3

Attestation Server

Step 4

Cloud Server

Customer

Signature 
Database

Cloud Controller

Policy 
Validation 
Module

Hypervisor

Figure 5.4: Architecture Overview of CloudRadar

is responsible for collecting cache activities of the other VMs, using anomaly-based

detection approach to identify side-channel attackers. We used the Linux perf event

kernel API for the PMU to manage the Hardware Performance Counters, therefore no

change is needed to the hypervisor itself.

5.4.2 System Operations

CloudRadar includes four steps, as shown in Figure 5.4 with different paths. Each

step is described below:

Step 1: generating cryptographic signature. In this step, the customer who

seeks side-channel detection services for his protected VM can indicate to the Cloud

Controller what sensitive applications to be protected, by providing the signatures

generated offline using Hardware Performance Counters (not necessarily on the same

hardware) or simply the executables. Then the Cloud Controller will run these crypto

programs on a dedicated server with the same configuration as the Cloud Server that

hosts the protected VM, and use Hardware Performance Counters to generate the

signatures for the customer. The signatures will be stored in the Signature Database

177



in the Attestation Server for future reference. They will also be sent to the cloud

server that hosts this VM.

Step 2: detecting cryptographic applications. This step takes place at run-

time. In this step, the Victim Monitor monitors the protected VM using Hardware

Performance Counters. It periodically (e.g., every 100µs) records the event counts

(e.g., branch instructions) as a time sequence, while the Signature Detector keeps

comparing the most recent window of data points in the sequence with the signature.

If a signature match is found, the Signature Detector can identify the protected

VM is performing a cryptographic application, and signal this result to the Attacker

Monitor.

Step 3: monitoring cache activities. This step happens concurrently with Step

2. The Attacker Monitor exploits Hardware Performance Counters to monitor all

untrusted VMs simultaneously. One challenge is that not enough performance counters

are available on the servers to monitor all VMs, if this number is large: most of the

Intel and AMD processors support up to six counters, and the number of counters

does not scale with the number of cores. So when there are a lot of VMs on the server,

the Attacker Monitor cannot monitor them concurrently.

To solve this problem, we use a time-domain multiplexing method: the Attacker

Monitor identifies active vCPUs that share LLC with the protected VM as the

monitored vCPUs, and then measures each of them in turn. Specifically, in each

period, the Attacker Monitor uses a kernel module to check the state and CPU

affinity of each vCPU of each VM from its task struct in the kernel. The Attacker

Monitor marks the vCPUs in the running state that are sharing the same LLC with

the protected VM as monitored. Then it sets up Hardware Performance Counters to

measure each monitored vCPU’s cache misses and hits in turn. When the Attacker

Monitor is notified that a cryptographic application is happening in the protected

VM, it will compare each monitored vCPU’s cache misses and hits before and during

178



the cryptographic application, as specified in Section 5.2.3. If one vCPU has an abrupt

increase in the number of cache misses or hits during the cryptographic application,

the Attacker Monitor will flag an alarm.

Step 4: eliminating side channels. Once the Attack Monitor notices that one

co-tenant VM has abnormal cache behavior exactly when the protected VM executes

cryptographic applications, it will raise alarm for side-channel attacks. It will adopt the

methods from Section 5.3 to cut off the cache side channels. In addition, the Attestation

Server will report this incident to the Cloud Controller for further processing, such as

shut down the malicious VM or eventually block the attacker’s account.

5.5 Evaluation

We used four servers to evaluate the security and performance of CloudRadar . A Dell

R210II Server (equipped with one quad-core, 3.30GHZ, Intel Xeon E3-1230v2 processor

with 8GB LLC) is configured as the Controller Server as well as the Attestation Server.

Two Dell PowerEdge R720 Servers are deployed as the host cloud servers: one is

equipped with one eight-core, 2.90GHz Intel Xeon E5-2690 processor with 20GB LLC;

one is equipped with two six-core, 2.90GHz Intel Xeon E5-2667 processors with 15GB

LLC. We also use another Dell 210II server as the client machine outside of the cloud

system to communicate with cloud applications. Each VM in our experiments has

one virtual CPU, 4GB memory and 30GB disk size. We choose Ubuntu 14.04 Linux,

with 3.13 kernel as the guest OS.

5.5.1 Detection Accuracy

We measure the detection accuracy of cryptographic signature detection and cache

anomaly detection.

179



Accuracy of cryptographic application detection. To detect a cryptographic

application, we used the branch instruction counts as the signature. We consider the

detection of a cryptographic application as a binary classification, and measure its

true positive rate and false positive rate. True positive happens when a cryptographic

application is correctly identified as such. We used the same six cryptographic

applications from Section 5.2.2.1. CloudRadar first generates a signature for each

application. In the detection phase, the victim VM generates a random memory block

and feeds it to the crypto application. We run the experiment 100 times, and measure

the number of times CloudRadar can correctly identify the cryptographic program

under different thresholds. False positive is defined as non-cryptographic applications

identified as cryptographic programs. We select 30 common linux commands and

utilities which do not contain cryptographic operations. In each experiment the victim

VM runs these commands in a random order. We repeated the experiment 100 times

and measured the number of times false positives take place under different thresholds.

We plot the ROC (Receiver Operating Characteristic) curves to show the relationship

between the true positive rate and false positive rate.

We explored the effect of changing performance counter sampling granularities

(i.e., interval between taking performance counter values) on detection accuracy. We

choose two different sampling granularities: 100µs and 1ms. Figure 5.5 shows the

ROC curves of the six cryptographic applications under these two granularities. From

this figure we can see 100µs gives better accuracy than 1ms: CloudRadar can achieve

close to 100% true positive rate with zero false positive rate when the DTW threshold

is set between 0.3 and 0.4. For 1ms, Elgamal and DSA application can be detected

with less accuracy, while SHA512, AES, HMAC and 3DES cannot be differentiated

from non-cryptographic applications with reasonable false positive and false negative

rates at the same time.

180



0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 1 0 0 u s
 1 m s

(a) Elgamal

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 1 0 0 u s
 1 m s

(b) DSA

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 1 0 0 u s
 1 m s

(c) SHA512

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 1 0 0 u s
 1 m s

(d) 3DES

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 1 0 0 u s
 1 m s

(e) AES

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 1 0 0 u s
 1 m s

(f) HMAC

Figure 5.5: ROC curve of crypto detection under two sampling intervals.

The optimal sampling granularity depends on the length of the cryptographic

application’s initialization stage: if the sampling period is much shorter than the

initialization stage, the signature will contain more data points, thus yielding more

accurate results. In our experiments, the initialization stages of Elgamal, DSA,

SHA512, AES, HMAC and 3DES last for 10ms, 5ms, 1.6ms, 2ms, 2ms and 2ms

respectively. So a granularity of 100µs can give good results for all the six applications,

while 1ms granularity performs worse, especially for SHA512, AES, HMAC and 3DES

whose signatures only contain two data points.

Accuracy of cache side-channel attack detection. We measured the true posi-

tive rate and false positive rate of side-channel attack detection. True positive is the

case where side-channel attacks are correctly identified. We tested the Prime-Probe

attack [144] and Flush-Reload attack [255]. False positive is defined as benign

programs that are falsely identified as attacks. We select different common linux

181



0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 w = 1
 w = 3
 w = 5

(a) Prime-Probe attack

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 w = 1
 w = 3
 w = 5

(b) Flush-Reload attack

Figure 5.6: ROC curve of attack detection under different window lengths.

commands and utilities as benign applications. We changed the threshold and drew

the ROC curves to show the relations between true positive and false positive rates.

We first considered different window sizes w for S and S′ (Setion 5.2.3). Figure

5.6 shows the attack detection accuracy under three window sizes: w = 1, 3 and 5.

In these experiments, we set the sampling granularity as 1ms (this sampling rate is

different from that of signature detection). From these results we see that CloudRadar

has an excellent true positive rate: with appropriate thresholds (100 ∼ 300 events per

1ms), the true positive rate can be 100%. However, it also has false positives. When

w = 1, the false positive rate can be as high as 20% ∼ 30%. False positives are caused

by the coincidence that a benign application experiences a phase transition at exactly

the same time as the victim application executes a crypto operation. CloudRadar

will observe changes in the benign application’s cache behavior and think it is due to

interference with the victim. Then it will flag this benign VM as malicious. We can

increase w to reduce the false positive rate without affecting the true positive rate:

when w = 5, the false positive rate is close to 0 while true positive rate is 100%.

We also tested different sampling granularities. Figure 5.7 shows the ROC curves

of detecting two attacks under two different sampling intervals: 1ms and 100µs. The

window size is 5 data points. We can see the 1ms interval is better than the 100µs.

182



0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 1 m s
 1 0 0 u s

(a) Prime-Probe attack

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 

 

tru
e p

os
itiv

e r
ate

f a l s e  p o s i t i v e  r a t e

 1 m s
 1 0 0 u s

(b) Flush-Reload attack

Figure 5.7: ROC curve of attack detection under different sampling intervals.

This is because when the sampling interval is small, the number of cache events

occurring within a sampling period is comparable to the measurement noise. So the

measurements under this sampling granularity are not very accurate. It is interesting

to note that we need different granularities to sample the victim’s CPU events (100µs)

and attacker’s LLC events (1ms). This is because the victim’s CPU events occur more

frequently than the attacker’s LLC events. So at the granularity of 100µs, sampling

the victim can give finer information, while sampling the attacker will introduce large

Signal-to-noise ratio (SNR), making the results less accurate.

5.5.2 Performance

Detection latency. Table 5.2 reports the detection latency of CloudRadar under

different window sizes w and sampling granularities. This detection latency is defined

as the period from the time the victim VM starts to execute sensitive operations

(i.e., start of the second stage in Figure 5.1) to the time an alarm for side-channel

attacks is flagged. We see that CloudRadar can identify the attack on the order

of milliseconds. Considering side-channel attackers usually need at least several

cryptographic operations to steal the keys, this small latency can achieve our real-time

183



(µs)
granularity = 1ms granularity = 100µs

w = 1 w = 3 w = 5 w = 1 w = 3 w = 5
Prime-Probe 1021.41 3065.86 5110.04 120.49 361.97 603.03
Flush-Reload 1021.50 3064.38 5107.57 122.48 363.27 605.30

Table 5.2: Detection latency (µs) under different window sizes and sampling intervals

Workload Description Metric

Data Analytics Perform machine learning analysis in a hadoop system 1/throughput
Data Caching Stress a Memcached system latency
Data Serving YCSB benchmarks on Apache Cassandra system 1/throughput
Graph Analytics Perform graph analysis using PowerGraph completion time
Media Streaming Stress a Darwin Streaming Server using Faban 1/throughput
Software Testing Perform parallel software testing using Cloud9 completion time
Web Search Stress the Nutch search engine using Faban latency
Web Serving Stress the Apache, Nginx and Mysql servers using Faban 1/throughput

Table 5.3: CloudSuite Benchmarks

design goal. We also observe that smaller window sizes and finer granularity can

effectively reduce the detection latency, at the cost of slightly lower accuracy.

Performance overhead. We selected a mix of benchmarks and real-world applica-

tions to evaluate the performance of CloudRadar . Our benchmarks can be categorized

into three types: (1) crypto programs (AES, SHA, HMAC, Blowfish and MD5 from

OpenSSL; ElGamal, RSA and DSA from GnuPG); (2) CPU benchmarks (mcf, gobmk,

omnetpp, astar, soplex and lbm from SPEC2006; canneal and streamcluster from

PARSEC); (3) cloud applications from CloudSuite [89] (data analytics, data caching,

data serving, graph analytics, media streaming, software testing, web searching and

web serving) (see Table 5.3).

We tested the performance penalty due to CloudRadar and show the normalized

performance of each of the benchmark applications in Figure 5.8 (results are average

of 5 runs, error bars show one standard deviation). The results suggest CloudRadar

has little impact on the performance of the monitored VM: even in the worst case,

performance overhead is within 5%.

184



0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

C l o u d S u i t eC P U  b e n c h m a r k s

 1 m s
 1 0 0 u s

 

 

no
rm

ali
ze

d p
erf

or
ma

nc
e

s e r .s e a .t e s .s t r .a n a .s e r .c a c .a n a . w e bw e bs o f .m e d .g r a .d a t .d a t .d a t .s t r .c a n .l b m .s o p .a s t .o m n .g o b .m c fD S AR S AE L G .B FM D 5H M A .S H A .A E S

C r y p t o

Figure 5.8: Performance of different benchmarks under CloudRadar

5.6 Discussions

5.6.1 Detecting Other Side Channels

One can extend CloudRadar to detect cache-based side-channel attacks in other

cloud models (e.g., PaaS [270]), or in non-virtualization environments. The only

change we need to make is to use Hardware Performance Counters to monitor the

processes or threads instead of VMs. Besides, this method can be applied to other

micro-architectural side-channel attacks that exploit resource contention. We can use

Hardware Performance Counters to count the corresponding events that the attacker

uses to retrieve information. For instance, we can monitor the DRAM bandwidth

event to detect the DRAM side-channel attacks in [236]. Generalization of this method

beyond cache-based side-channel attacks can be future work.

5.6.2 Potential Evasive Attacks

There can be potential evasive attacks against CloudRadar . To evade the detection of

CloudRadar , a side-channel attacker can try to reduce the cache probing speed, so

the abnormal increase in cache misses or hits may not be observed by CloudRadar .

However, the attacker needs a much longer time to recover the keys, making side-

185



channel attacks more difficult and less practical. An attacker can also try to evade

the detection by adding noise to CloudRadar ’s observations. However, such noise can

also blur the attacker’s observations, making it more difficult to extract side-channel

information. How to design efficient evasive attacks and how to detect such attacks

can also be future work.

5.6.3 Limitations

CloudRadar may be limited in several aspects. First, each of its three modules (Victim

Monitor, Attacker Monitor and Signature Detector) requires an exclusive use of

one physical CPU core as they keep conducting data collection and analysis at full CPU

speed. This can potentially reduce the server’s capacity for hosting VMs. However, as

many cloud servers today are equipped with dozens of CPU cores, the impact is not

as big as one might imagine. Besides, public clouds usually have low server utilization

(< 20%) for preserving VMs’ QoS [146]. So using three cores will not affect most

VMs’ performance. Second, due to the limited number of Hardware Performance

Counters available in modern processors, CloudRadar has to multiplex the monitoring

for each VM using the same counter. When the number of monitored vCPUs scales

up, CloudRadar may miss attacks. We expect future generations of processors will

incorporate more Hardware Performance Counters and CloudRadar can make use of

different counters to monitor different VMs at the same time.

5.7 Chapter Summary

This chapter presents CloudRadar , a real-time detection system to detect cache-

based side-channel attacks in clouds. CloudRadar leverages the existing Hardware

Performance Counter feature to both monitor a victim VM’s cryptographic operations

and capture a potential attacker VM’s abnormal behavior during this time. CloudRadar

186



is designed as a lightweight extension to the cloud system and does not require new

hardware, hypervisor/OS or application modifications. The feasibility of CloudRadar

is validated by our implementation on the OpenStack framework. Our evaluation

shows CloudRadar can detect cache-based side-channel attacks with high fidelity, while

introducing little overhead to the cloud applications.

187



Chapter 6

Detection and Mitigation of

Integrity Vulnerabilities

In addition to binary attestation of startup integrity (Chapter 3), CloudMonatt can also

detect and mitigate system integrity breaches during runtime. In this chapter, we show

how existing techniques (e.g., virtual machine introspection) can be readily integrated

into the CloudMonatt framework to protect VMs’ system integrity. Specifically, we

present CloudGuard, a framework that provides runtime protection of VM system

integrity as a security service to customers. CloudGuard has the following features.

First, it provides a rich set of protection options for customers. Second, it leverages

the VM introspection technique to achieve more trustworthy and reliable integrity

protection. Third, it offers prompt mitigation solutions once security breaches are

detected, so customers do not have to worry about deploying security measures by

themselves. We show a concrete implementation of CloudGuard on the OpenStack

open source software. We select and implement several security tools from past

work to enhance different aspects of the security of guest VMs. We evaluate our

implementation and show that the performance overhead of the monitored VM caused

by CloudGuard is within 8%, which is acceptable.

188



6.1 Background

Customers are concerned about the security of their VMs running in the remote

datacenter. They expect that their VMs are protected from being compromised by

remote network attackers or malicious programs in the VMs during runtime. However,

with the proliferation of malware and attacks, customers’ data and computations in

the cloud face tremendous integrity threats. First, the large code sizes of operating

systems inevitably introduce vulnerabilities that adversaries can exploit to compromise

the VMs. The Common Vulnerabilities and Exposures (CVE) database [7] keeps

reporting OS bugs that enable attackers to take control of the VMs. Past work

[39, 261] showed that VM images in public clouds may contain lots of malware and

software vulnerabilities. Second, modern attacks are designed to be more sophisticated

and harder to defeat. For instance, advanced malware can leverage social engineering

techniques to trick victim users into offering access to their systems [27]. Malware can

easily spread in a variety of ways, e.g., phishing websites, phishing email attachments,

etc. Third, cloud computing is a type of network-based computing service. Customers

deliver their computation tasks and data to the remote datacenters via networks. They

also deploy cloud applications for end users to use through networks. Since malware

is usually delivered over networks, virtual machines in the cloud can also get infected

with the malware. Once the malware intrudes into the VMs, they can compromise

the VMs’ data and code.

It is necessary for public cloud providers to protect the VMs’ system integrity for

customers. One typical solution is to install security tools (e.g., anti-virus applications,

intrusion detection systems (IDS), firewalls, etc.) inside VMs to detect and defeat

potential vulnerabilities. Amazon Web Services introduces Inspector [3] to realize this

type of security service. Amazon Inspector requires customers to install a security

agent inside their VMs. The security agent monitors the activities (e.g., network,

189



file system, process activities) inside the VM. It can identify threats from the CVE

database, system mis-configurations, authentication vulnerabilities, insecure network

protocols, etc. Microsoft Azure designed Antimalware [15] to achieve similar functions.

Antimalware also requires customers to install security tools inside the VM. These

tools are able to identify and remove viruses, spyware and other malicious software,

and alert users when malicious or unwanted software attempts to install itself or run

inside the VMs.

However, the above solutions have one big drawback: since the security tools are

located in the vulnerable system, they are highly susceptible to attacks [112, 84, 219,

40, 90]. Once attackers intrude into the VM and gain root privilege, they can easily

discover and compromise these security tools, making them ineffective in protecting

the VM’s security. To overcome this, researchers proposed to use Virtual Machine

Introspection (VMI) [95] to detect vulnerabilities inside a VM. The basic idea is to

move the security tools from the guest VM to the hypervisor or host OS. These tools

then have root privilege to monitor the internal execution, state and data of the guest

VM. They can produce more trustworthy and reliable results, as malware running in

the guest OS cannot tamper with the hypervisor layer.

In this chapter, we present CloudGuard, a cloud architecture to protect a VM’s

system integrity at runtime. CloudGuard has several features. First, we leverage

the VM introspection technique to achieve trustworthy and reliable system integrity

protection. We identify the necessary architectural components and design to apply

VM introspection into public clouds. We demonstrate an end-to-end prototype

implementation of CloudGuard in OpenStack to show how the commercial cloud

provider can use the VM introspection to protect customers’ VMs. Second, similar

to Security-on-Demand cloud frameworks [124, 262], CloudGuard allows customers

to choose different types of protections as desired for their VMs. For instance, a

customer who deploys web applications in his VM can request monitoring and controls

190



on network sockets. Another customer who frequently runs programs from untrusted

sources can request malware scanning. Third, CloudGuard can automatically detect

and mitigate potential vulnerabilities on behalf of customers. CloudGuard exploits

the VM introspection functionality to actively change the VM’s state and data, thus

fixing the security breaches for the customers, where possible. By doing so, the cloud

provider will conduct both detection and mitigation for customers. This achieves a

one-click deployment of security protection for VMs and makes cloud service more

attractive to security-aware customers.

To better illustrate the features of CloudGuard, we implement several security

measures from past work to protect a guest VM from different security threats. The

first one is a kernel rootkits scanner. We check the integrity of critical kernel pointers

and codes at VM runtime and restore them once compromised. We also conduct

cross-view validation to detect hidden processes or network sockets. The second case is

anti-malware. We are able to conduct static analysis on each program’s image, as well

as dynamic analysis on the program’s execution traces. Such information can help us

identify malware using signature-based or anomaly-based detection approaches. The

third case is firewalls. We can filter and control any inbound and outbound network

connections to protect the VM’s network activities.

6.1.1 Related Work

Garfinkel and Rosenblum [95] first proposed the method of virtual machine introspec-

tion in detecting attacks. Since then, many architectures and tools have been designed

to advance the virtual machine introspection techniques. Payne et al. [169] designed

XenAccess, a monitoring library for VMI on Xen. Jiang et al. [126] designed a honey-

pot tool based on virtual machine introspection to detect and analyze network-based

attacks. It leverages the binary translation technique to intercept syscalls and collect

the associated context information. Quynh and Takefuji [178] designed XenKIMONO

191



to detect kernel-level rootkits in Xen-based servers. Jones et al. [128] introduced

Lycosid to detect hidden malicious processes. Payne et al. [170] designed Lares,

to realize the event notification technique by placing hooks inside the introspected

VM. Dinaburg et al. [79] designed Ether, which conducts the malware analysis using

virtual machine introspection. Lengyel et al. [136] built DRAKVUF, a dynamic

malware analysis system for Windows OS. It achieves fidelity and stealth using virtual

machine introspection, and scalability using VM cloning. This chapter attempts to

explore the possibility of applying VM introspection into public clouds, instead of

designing new introspection techniques. Actually due to the rapid development of VM

introspection, this technique is now quite mature. We will exploit some opensource

tools and methods from past work [169, 178, 128] to show the integration of VM

introspection in commercial clouds.

One big challenge of virtual machine introspection is the semantic gap between

the guest OS and the hypervisor. Jiang et al. [127] cast the guest VM’s view of the

OS into the hypervisor to systematically reconstruct internal semantic views of a VM

from the outside in a non-intrusive manner. Srinivasan et al. [204] designed a process

out-grafting method, which migrated a suspect process from inside the monitored

VM to a secure VM which runs the security monitoring tool. This can achieve

isolation and removes the semantic gap. Dolan-Gavitt et al. [81] designed Virtuoso to

automatically convert in-guest programs into out-of-guest programs that reproduced

the same behaviors. Fu et al. [93] designed VM-Space Traveler, which automatically

identified the critical data of the monitored VM and redirected the data from the

monitored VM to a secure VM for monitoring. It also automatically converted in-guest

inspection tools to an introspection tool. Carbone [59] inserted function calls into the

introspected VM from the hypervisor to obtain OS information, thus bridging the

semantic gap. How to eliminate the semantic gap in VM introspection is orthogonal

to our work. These methods can easily be integrated into the CloudGuard framework.

192



Some work designed VMI frameworks for public clouds, which are close to this

chapter. Yao et al. [254] designed CryptVMI, which encrypted introspection requests

and results to achieve confidentiality. Baek et al. [37] virtualized the introspection

interface and provided this to customers as a service to enhance VM security. However,

these work only gave high-level system abstractions without specific use scenarios

about what security protections the cloud provider can offer to customers. In this

chapter, we use concrete examples and implementation to show how CloudGuard

enables customers to select and enjoy different introspection services on demand with

great flexibility.

6.2 VM System Integrity Vulnerabilities

6.2.1 Kernel-level Rootkits

The OS kernel acts as the core trusted component in a virtual machine, providing

critical scheduling, memory partitioning, I/O and networking functions for applications

inside the VM. Unfortunately the OS kernel may not be trustworthy, and is frequently

compromised. If the kernel is compromised by malware (e.g., kernel rootkits), the

whole system will become vulnerable. Hence, it is critical to protect the OS kernel of

a VM.

Rootkits are malicious software that allow attackers to control the system and

hide their existence from the victim users. To install a rootkit into the kernel, the

attacker usually needs to first obtain root privilege. Then the attacker inserts the

rootkit into a kernel module which will be loaded into the kernel, or directly writes

the rootkit into the kernel memory. Once installed, the rootkit can compromise the

system integrity in two ways: it presents fake information to the victim users to mask

its existence; it also modifies the system’s control flow to establish backdoors for the

193



attacker to access the system in the future without authentication. Rootkits usually

employ the following techniques to achieve the above goals [178].

Modifying jump-tables . Jump-tables are widely adopted by many OS kernels.

Basically a jump-table is a list of entry points that serves as addresses of kernel

functions. Reference to one entry in jump-tables can be done via a numbered index.

Typical examples of jump-tables are the System-call Table and the Interrupt Descriptor

Table. A System-call table stores an array of function pointers, in which each pointer

corresponds to a system call handler that user-space processes can use to invoke kernel

functions and services. An Interrupt Descriptor Table (IDT) is used to transfer the

execution of a program to special software routines that handle interrupts, which might

be raised during the normal course of operation by hardware or to signal exceptional

conditions, such as a page fault or a hardware failure.

A rootkit can easily hijack the jump-table, modify some function pointers in the

table to redirect them to its own handlers, which intentionally conduct malicious

behaviors, and then jump back to the desired system call or interrupt handler. This

trick is widely used in many kernel rootkits.

Modifying kernel codes . Instead of changing the function pointers in the jump-

tables, the rootkit can change the kernel functions directly. For instance, a rootkit can

hijack a system call or interrupt handler by changing the first few bytes of its code

to the jmp instruction, which will jump to the rootkit’s malicious codes. By doing

so the integrity of the jump-table is maintained, but the malicious codes can still be

executed. This technique can evade the rootkit detectors that only check jump-table

integrity.

Modifying critical objects . Besides the jump-tables or kernel codes, a rootkit

can also modify some critical kernel objects. By doing so, the rootkit can hide

the existence of malicious processes or network connections. For instance, the proc

filesystem (procfs) is a special filesystem in Linux that establishes communication

194



between kernel space and user space. It presents information about OS kernel and

system to the user program. It also enables users to change kernel parameters at

runtime. However, a rootkit can tamper with the proc filesystem, and cause the

system to present wrong information to the users, thus hiding malicious processes or

network backdoors from victim users.

6.2.2 User-level Malware

In addition to kernel rootkits, malicious software in the user space can also compromise

the integrity of a victim system.

Malware includes a variety of hostile software with different features. For instance,

a computer virus usually spreads by inserting itself into other programs, and these

infected programs will perform malicious actions on the system. A worm is a stand-

alone malware program that actively transmits itself over a network to infect other

systems. A trojan is a malicious program which mispresents itself to appear useful and

interesting, but actually performs unauthorized actions. A spyware secretly monitors

user’s activity, extracts sensitive information and reports it to the hackers.

The most common way for malware to proliferate is through Internet: primarily

by e-mail and the world wide web. They are usually spread by some forms of social

engineering. For instance, a victim user can be tricked to download illegitimate

applications repackaged to appear as normal applications, click on phishing links that

download and install malware, or open email attachments with malicious files. Besides,

malware can also be delivered via physical devices, e.g., infected USB sticks or CDs.

Once malware gets into the victim’s system, it usually exploits security bugs in the

design of the applications, plugins or operating systems to conduct malicious behaviors.

These behaviors include self-replication in different parts of the file system, installing

applications that capture keystokes or commandeer system resources, blocking access

195



to files, applications or even the system itself for ransom, bombarding a browser or

desktop with ads, or breaking essential system components.

6.2.3 Network-level Application Attacks

As the network becomes increasingly important in the cloud infrastructure, the

attacks on the network also increase. Network-based attacks caused by malicious or

unauthorized users can cause severe disruption to the system.

Network adversaries can breach the VM’s integrity in several ways. First, when

the victim system deploys network-based applications or services, remote adversaries

can exploit the vulnerabilities inside the target applications to further control the

system. For instance, the SQL injection technique is used by the adversary to embed

malicious codes into the SQL statement as the input to the SQL database. If the

application does not handle the input correctly, the malicious codes will be executed

to conduct malicious actions in the database, such as disclosing or tampering with

existing data. Another example is Cross-Site Scripting (XSS): the adversary can inject

client-side scripts into web pages, which can bypass access control policies and take

control of the web applications. Second, a network-based adversary can exploit the

system’s vulnerabilities to intrude into the system. For instance, a server usually

enables network accesses via remote connection protocols like SSH, RDP (Remote

Desktop Protocol), and VNC (Virtual Network Computing). If the system uses

weak authentication and passwords, the attacker can just use the brute-force method

to conduct password guessing attacks and break into the system. Third, network

adversaries can abuse the cloud services or compromise the VMs to deploy them as

botnets to attack other systems, e.g., email spamming, Distributed Denial-of-Service

attacks, etc.

196



6.3 Detection and Mitigation

In this section, we describe some existing methods to detect and mitigate the integrity

vulnerabilities inside a VM.

6.3.1 Kernel-level Rootkits

Attacker model. We focus on the kernel-level rootkits that aim to compromise the

kernel by hijacking the kernel control flow or data structures. We assume that the

attacker can gain the root privilege by exploiting some OS vulnerabilities. Then the

attacker is able to insert kernel modules inside the kernel space and change critical

function addresses, codes, or data objects. By compromising the kernel the rootkits

are able to mask the existence of malicious processes, files and network sockets.

There are various ways to defeat kernel rootkits. The first method is to protect the

system from being infected with the rootkits. Since the installation of kernel rootkits

requires the attacker to obtain root privileges, we can enhance the system security and

reduce its vulnerabilities that the attacker can exploit to conduct privilege escalation

attacks. By doing so, the attacker has no opportunity to insert the rootkits into the

OS kernel. But the continuing rise in privilege escalation attacks indicates that this is

hard to achieve.

An alternative solution is to protect the critical kernel data, functions and objects

from being compromised by the rootkits. For example, we can set the Non-Writable

attribute for the critical memory regions that store the jump-tables or critical kernel

functions. Then the attacker is not able to modify the data inside these regions.

Another defense is to set the writable regions of the system’s memory as Non-Executable.

This can prevent attackers from injecting malicious codes into the system’s memory.

However, if the rootkits take control of the operating system, they can eliminate

these protection bits in the page table entries and make the critical memory regions

197



vulnerable again. Ge et al. [96] designed SPROBES to monitor if the permissions in

the page table entries are compromised or bypassed by the rootkits. This can prevent

rootkits from disabling the permission protections and then changing kernel data and

functions stealthily.

A third defense is to monitor the victim system to detect and mitigate the integrity

breach caused by kernel rootkits. Below we describe common detection and mitigation

methods widely used by past work.

6.3.1.1 Detection Methods

We detect kernel rootkits inside a VM in the following steps. First, we check the

integrity of the jump-tables ([175, 178, 148, 28]). Then we check the integrity of critical

kernel functions and handlers ([175, 178, 148]). Then we use cross-view validation to

check the integrity of critical kernel objects ([237, 178, 128]).

Integrity checking of jump-tables. Since rootkits usually modify the jump-tables

and redirect the function pointers to their own handlers, this step checks the integrity

of function addresses in the jump-tables. We consider two popular jump-tables: the

System-call Table and the Interrupt Descriptor Table. For each table, we find its

location in the memory, walk through each entry in the table and check whether the

pointer in the entry is the “good value” (the “good” value can be obtained from an

intact OS of the same version). A mismatch indicates that rootkits have changed this

function to its own handler.

Integrity checking of kernel codes. We check the memory regions of the kernel

that store critical functions and handlers. We calculate the hashes of the memory

regions and compare them with pre-calculated “good values”. As the hash function

guarantees the unique value for these kernel regions, any mismatch indicates the

memory section has been modified, and the kernel is being attacked by a rootkit.

198



Cross-view validation of critical objects. The rootkits usually compromise the

kernel objects and present wrong information to user-space applications, thus hiding

their presence. To detect the hidden objects, we can get a class of objects from two

perspectives. One is the untrusted view which is obtained from user space in the VM,

while the other one is the trusted view obtained from the kernel space that is unlikely

to have been subverted by an attacker. Then we check the consistency between the

two views. If an object appears in the trusted view but not in the untrusted view, we

can conclude that this object has been hidden.

We consider two cases. The first one is hidden process detection. We obtain two

views of process lists and cross-check the consistency between them. The untrusted

view is from the output of user-space applications that display process lists, while

the trusted view is from the kernel, e.g., the task list of the scheduler. If one process

exists in the trusted view, but not in the untrusted view, we know that this process is

hidden from the victim by a rootkit.

The second case is hidden network socket detection. Similarly we detect this by

comparing the socket lists from the kernel and from user-space applications. Any

network sockets in the kernel view list but not the user-space view list will be identified

as hidden sockets.

6.3.1.2 Mitigation Methods

Once we detect rootkits intrusion, the cloud provider can inform the cloud customers

of such security breaches. If pre-authorized by the users’ SLA in his Security on

Demand [124] requirements, the cloud provider can also eliminate the rootkits for the

customers using the following methods.

Repairing the compromised jump-tables. If the rootkits change the function

pointers to malicious handlers, the cloud provider can restore the original correct

199



addresses of these functions from an intact OS of the same version. Then the jump-table

integrity breach is fixed and malicious functions will not be invoked any more.

Repairing the compromised kernel codes. If the hash values of the critical kernel

codes do not match the “good values”, then we can simply remove the compromised

codes and restore the known correct ones from an intact OS. This can fix the kernel

code integrity breach caused by rootkits.

Fixing compromised critical objects. When we detect hidden objects (e.g.,

processes, network sockets), we can kill these malicious hidden objects and prevent

them from compromising the system. For hidden processes, we can get the process id

and then kill it. For network sockets, we can configure firewalls to prevent connections

to this stealthy malicious socket. We can also find out the malicious process that

established this socket and kill this process. Then this network socket will be disabled.

6.3.2 User-level Malware

Attacker model. We consider the malware launched from the user space. We

assume that the launch of malware follows the common routine as normal programs,

i.e., creating correct memory address spaces, invoking the correct system calls to start

execution, etc. We also assume that at runtime the malware do not compromise the

process management and execution routine inside the kernel. So the execution traces

(e.g., system calls, APIs) revealed to the OS always truly reflect the malware’s runtime

behaviors.

One typical solution to defeating malware is to use anti-malware software. Anti-

malware software is designed to protect the victim system by detecting and removing

malware inside the system.

200



6.3.2.1 Detection Methods

Malware detection techniques can be classified into two categories: anomaly-based

detection and signature-based detection. Anomaly-based detection usually consists of

two phases: a training phase and a detection phase. During the training phase the

detector attempts to learn the normal behavior. In the detection phase, the detector

monitors the inspected program and checks if its behavior deviates from the normal

behavior. A key advantage of anomaly-based detection is its ability to detect zero-day

attacks. However, it can have a high false positive rate and it is also difficult to

determine what is the “normal” behavior during the training phase. Signature-based

detection requires the detector to have knowledge of the characterization and features

of the various malware, called malware signatures. Then the detector judges if the

program under inspection is malicious by looking for signatures inside the program.

Signature-based detection has high detection accuracy of known attacks, but it cannot

detect zero-day attacks.

Each method can use either static or dynamic analysis to detect malware. The

two methods are described below:

Dynamic analysis. Dynamic analysis leverages runtime information of the program

under inspection. It usually happens during or after program execution. Such runtime

information includes the network payloads [233], traffic patterns [222, 194, 87], system

calls traces [135, 116, 166], or program states [193]. The detector gathers these runtime

behaviors from the program’s execution and compares them with the normal models

in anomaly-based detection or malware signatures in signature-based detection to

judge the maliciousness of this program.

Static analysis. Static analysis detects malware by examining the program source

code or binary executable. This analysis is usually done before the program executes.

A key advantage of static analysis is that it can detect malware without having to allow

201



it to execute on the victim system and cause damage. For anomaly-based detection,

static features usually include the structural byte composition or distribution [140],

the control flow graph or the APIs used [46, 47]. For detecting malware, we check

if the byte/API distribution, or control flow graph follows normal behaviors. For

signature-based detection, static features can be classified into two categories: byte

patterns [214, 70, 69] and hash sums [75]. The signature of byte patterns contains one

or more constant sequences of bytes, possibly separated by gaps of varying size. For

detecting malware, we identify the matching sequences in the inspected program. The

hash sum signature is the hash values (e.g., MD5) over complete files or parts of files.

For detecting malware, we check if the inspected program has the same hash value.

6.3.2.2 Mitigation Methods

When malware is detected, we can also perform some response to prevent it from

compromising the system. For static detection, since the program has not been

executed we can simply prevent this program from being launched, and delete the

malicious files from the system. For dynamic detection, since the procedure happens

during the program’s execution, we can immediately kill this malicious program to

prevent further damage.

6.3.3 Network-level Application Attacks

Attacker model. We consider network attacks in which a remote adversary attempts

to get unauthorized access to a server, or inject malicious codes into the server illegally.

These include backdoor attacks, SSH brute force attacks, XSS attacks, SQL injection

attacks, etc.

202



6.3.3.1 Detection Methods

One possible solution is to exploit an Intrusion Detection System (IDS) to detect

potential vulnerabilities via analyzing the network packets and traffic patterns. An IDS

can adopt the signature-based approach, where it compares the contents of network

packets with known attack signatures. It can also use the anomaly-based approach,

where it identifies abnormal network activities and behaviors.

6.3.3.2 Mitigation Methods

Once we find malicious network activities, we can use firewalls [167, 119] to defeat

network-level attacks. Firewalls are widely used to protect a system’s network against

attacks from the outside network. Usually firewalls monitor and control network traffic

based on predetermined security rules. These rules define the access control policies

based on source/destination IP addresses, source/destination port numbers, protocol

types, etc. Firewalls block network connections that disobey the pre-defined security

rules. By cutting off the system’s connections with untrusted parties, the system is

protected against network-level attacks. Besides, we can also identify and kill the

suspicious processes inside the system that send or receive illegal network packets.

A firewall should consider inbound traffic protection as well as outbound traffic

protection.

Inbound protection. This is used to protect and filter the incoming traffic to

the victim from the outside network. This can prevent remote parties from sending

malicious traffic to the victim server.

Outbound protection. This is used to control and manage the outgoing traffic

from the victim server to the outside network. This can prevent the server from

connecting to malicious websites, or sending out sensitive data [66].

203



6.4 CloudGuard Architecture

We aim to design an architecture that can provide runtime integrity protection of

virtual machines as a service in public clouds to customers who are concerned about

security and willing to pay extra cost for better security. We want an architecture that

fits into the CloudMonatt framework. We first describe the basic requirements that

such an architecture should have. Then we introduce CloudGuard, its architecture

overview and threat model.

6.4.1 Architecture Requirements

In order to support VM runtime protection in public clouds, the architecture must

satisfy the following requirements:

(1) Trustworthiness: the detection and protection results must be correct and reliable.

(2) Comprehensiveness: the architecture should be able to support protections of

different aspects of security.

(3) Automatic Detection: the architecture should be able to automatically detect

potential vulnerabilities without customers’ further involvement.

(4) Automatic Mitigation: the architecture should be able to automatically mitigate

the identified vulnerabilities without customers’ further involvement.

(5) Deployability: the protection mechanism can be easily integrated into current

commercial cloud systems.

(6) Non-interference: the protection activity should not interfere with the VM’s

execution. It should not interrupt VMs or cause non-negligible performance

overhead.

We design CloudGuard to achieve the above requirements. For requirement (1),

CloudGuard leverages VM introspection to detect and protect VMs from the hypervisor

204



layer. This method is trustworthy and resistant to attacks inside the guest VMs.

For extra security, we can apply Bastion-like hardware isolation architectures [61] for

protecting the hypervisor. For requirement (2), CloudGuard can protect customers’

VMs from a variety of security breaches. It provides the security services of a rootkit

scanner, anti-malware and firewalls that customers can choose from. For requirement

(3) and (4), once customers select the integrity protection services, CloudGuard

automatically deploys security detection as well as mitigation for the VMs. For

requirement (5), we integrate CloudGuard in the OpenStack cloud software to show

its deployability. For requirement (6), our evaluation indicates CloudGuard introduces

negligible performance cost to the platform and VMs.

6.4.2 Overview

As a security service, CloudGuard enables customers to select different protections

based on their demands and security requirements. Then it automatically deploys the

corresponding actions to monitor the VMs and mitigate the potential vulnerabilities.

CloudGuard keeps informing customers of their VMs’ security status. CloudGuard

can be integrated into the CloudMonatt framework as one type of security protection

(Details about the integration of this defense in CloudMonatt will be illustrated in

Section 7.1). Figure 6.1 shows the architecture, and workflow of CloudGuard. It

involves four entities:

Cloud customer : During VM launch, the customer places a request for leasing

VMs with specific resource requirements and security requirements to the Cloud

Controller. At VM runtime, the customer can choose different protection options

offered by CloudGuard, based on their demands. For instance, a VM which runs web

applications may need protection of network activities. Another customer frequently

downloading and running applications from untrusted sources may want malware

detection. Customers can select automatic mitigation of various attacks when these

205



Hardware

VMI Library

Guest OS Guest OS

Apps Apps

Cloud Controller Cloud ServerCustomer

VMI agent
OS Kernel 
Symbols 

Host OS

Security 
Rules

Request

Metadata,
Security rules

Result

Result

Hypervisor

Request,

Policy Validation 
Module

Attestation Server

Figure 6.1: Architecture Overview

are detected. This involves giving CloudGuard the right to modify the guest OS kernel

albeit only to known good values. For each protection, the customer identifies the

corresponding security rules and sends the protection requests to the Cloud Controller.

He can disable the selected service or add new a service at any time.

Cloud Controller : The Cloud Controller acts as the cloud manager, responsible

for taking VM resource and security requests, and servicing them for each customer.

When a customer selects a VM protection option, the Cloud Controller forwards the

protection request to the Attestation Server. When receiving the results, it sends

them back to the customer to keep him informed of the VMs’ security health.

Attestation Server : The Attestation Server is a centralized server for managing the

introspection services. It communicates with the target cloud server and invokes the

introspection. It stores kernel symbol files for different versions of OSes, which map the

exported kernel variables and functions to their virtual addresses. Such information

are required for VM introspection. If the customer requests a commodity OS, then the

Attestation Server can obtain this file from the OS. If the customer uses his own OS,

then the Attestation Server will request this mapping file from the customer during

VM launch. The Attestation Server also maintains different sets of security rules to

judge if a VM is secure or not. Some of these rules are publicly accepted. For instance,

206



one possible security rule for anti-malware is disallowing the execution of any malware

in a public malware database. Another rule for network firewalls can be disallowing

the VM’s connections to a pool of malicious websites. Customers can also define their

own rules for their VMs and pass them to the Attestation Server: they can specify a

whitelist of programs that are allowed to be executed in the VM, or IP addresses that

are allowed to be connected.

When receiving a VM protection option, the Attestation Server identifies the guest

virtual addresses of kernel variables or functions necessary for this protection. Then

it sends to the host server the corresponding introspection requests along with these

metadata and security rules. When the Attestation Server receives the results from

the host server, it sends them back to the Cloud Controller.

Cloud server : The cloud server is the computer that runs the VMs in question. It

is also responsible for deploying the desired security services for the customers’ VMs.

Figure 6.1 shows the architecture of a cloud server which adopts the Xen hypervisor.

CloudGuard leverages the technique of Virtual Machine Introspection (VMI) [95]

to monitor and detect vulnerabilities inside a VM. It implements the security tools in

the hypervisor layer. Then these tools will not be compromised by malware inside

the VMs. Besides, this does not require modification of customers’ VMs. Specifically,

the cloud server has a VMI agent in the host OS, which is responsible for taking and

parsing the requests from the Cloud Controller to conduct the corresponding VMI

monitoring service and interpreting the introspection results. Once violations against

the security rules are detected, the VMI agent will mitigate the vulnerabilities for

the customers if the customer has selected automatic mitigation in his security SLA.

Then it sends back the detection and mitigation results to the Cloud Controller. The

cloud server also has a VMI Library located in the hypervisor, which provides VMI

functions and APIs to the VMI agent. The VMI Library achieves these functions

207



using hardware and software virtualization techniques, e.g., pausing/resuming VMs,

reading/writing VMs’ data and changing memory permissions (Section 6.5.2).

6.4.3 Threat Model

We consider the threat model where hostile applications or services may be running

inside the customers’ VMs, gaining the guest OS privileges, and the capability of

compromising the whole VM. However, we assume that such hostile applications

cannot tamper with the host OS and hypervisor layer. Specifically, in each server,

the VMI agent is used to trigger and manage the introspection functions. The VMI

Library conducts the actual introspection functions. These two modules should be

trusted, as well as their communications. If the VMI agent or its communication

channel with the VMI Library is untrusted, a wrong introspection request can be sent

to the VMI Library. This violates the integrity of the introspection results. If the VMI

Library is untrusted, then it can also conduct an incorrect VM introspection. Worse

yet, the VMI Library has the capability to probe the guest VMs’ memory, or change

the guest VMs’ runtime behaviors, thus the confidentiality, integrity and availability

of the guest VMs are vulnerable to a malicious VMI Library. So the VMI agent and

VMI Library must be protected and mutually authenticated.

6.5 Implementation

6.5.1 CloudGuard Prototype

We implemented a prototype of CloudGuard by integrating it into the OpenStack

Newton platform [19]. OpenStack is composed of different modules, with each module

supporting a different service. We modified two modules. The first one is horizon, which

is implemented as OpenStack’s dashboard and provides a web-based user interface to

208



Figure 6.2: A screenshot showing the added protection service in the CloudGuard
OpenStack Dashboard.

other services of OpenStack. We modified this module to enable customers to select

VM protection for their VMs. Figure 6.2 shows the modified dashboard. CloudGuard

provides different sets of protections (detailed mechanisms of these protections will

be described in Section 6.5.3). Customers can start or stop any protection at any

time during VM runtime. CloudGuard will deploy the corresponding protection on

the VM and display the results to customers in the dashboard. The second module

is nova, which is used to manage computing services in cloud servers. We modified

the novaclient (nova API client) to pass protection requests from horizon to nova,

as well as results from nova to horizon. We also added a new file in nova to invoke

protection service on the host cloud server upon receiving the protection requests.

We integrated the OpenAttestation software tool [17] in the OpenStack system for

cloud server authentication and the inter-server communication protocol. The Cloud

Controller and cloud servers are exchanging information via the Representational state

transfer (RESTful) HTTPs web service [92], which allows the two parties to access and

209



manipulate textual representations of web resources using a uniform and predefined

set of stateless operations, such as GET, POST, PUT, DELETE, etc. On each cloud

server, we adopted the open-source LibVMI library [12] as the VMI Library. We

wrote a software module as the VMI agent for managing the introspection activities.

In total, we added 232 lines of Python code in OpenStack, 204 lines of Java code

in OpenAttestation, and 1569 lines of C code as VMI agent in each server.

6.5.2 VMI Functionalities

Many opensource tools and commercial applications were developed to conduct virtual

machine introspection in virtualization platforms (e.g., LibVMI [12], Libbdvmi [11],

HVI [49], VMIdbg [258]). These tools exploit hardware and software virtualization

support to monitor and audit VMs’ memory and activities from outside the guest OS.

We describe the functionalities that we use to monitor and mitigate vulnerabilities of

VMs.

6.5.2.1 Monitoring VMs

One basic functionality is to access the memory of guest VMs. The challenge is the

semantic gap between the high-level data observed by the guest OS and the low-level

data observed by the hypervisor. A process inside the guest OS accesses data via its

virtual address, which will be translated to the guest physical address by the guest

OS, and then the host physical address by the hypervisor. If the hypervisor attempts

to access data of a process in a guest VM at a specified guest virtual address, it has

to conduct the two levels of address translation without the context of the guest OS.

Address Translation. This can be achieved by the following steps:

1. The hypervisor obtains the base (guest physical) address of the process’s page

directory. If this process is a kernel process, then the kernel page directory is stored

in a fixed known guest physical address. If it is a user-space process, the hypervisor

210



first gets the process structure list stored in a fixed known guest physical address,

and then iterates this list until it finds the given process. From this structure, the

hypervisor can get the address of this process’s page directory.

2. The hypervisor translates the guest physical address of the page directory into

a host physical address, and then takes the desired guest virtual address and

translates it to the guest physical address using the page table.

3. The hypervisor then translates the guest physical address into host physical address,

and accesses the data from the host physical page.

Accessing guest VM registers. In addition to accessing the guest VM’s memory,

the hypervisor can also access a VM’s (virtual) registers. The hypervisor maintains a

set of data structures (e.g., VMCS in Intel processors, VMCB in AMD processors)

to save and restore register values for each VM’s virtual CPU during a VM context

switch. So the hypervisor can easily read or write any register values from its internal

structure.

Dynamic event capturing. A more powerful feature of VMI is to capture the

occurrence of some critical functions (e.g, syscalls, APIs). When one such function

occurs inside a VM, a VM exit will be invoked and the CPU is trapped into the

hypervisor. The hypervisor can achieve this functionality using the following steps:

1. Register the event : given the address of the monitored function inside the guest

virtual memory, the hypervisor can insert a breakpoint at this address using one of

the following two methods: (1) Extended Page Table (EPT) violation : the

hypervisor can set the memory page containing this function as Non-Executable

(NX) in the EPT entry. When the VM executes this function, an EPT violation

occurs and the processor is trapped into the hypervisor. (2) INT 3 interrupt :

the hypervisor can insert a debugging instruction (0xCC) at the address of this

function. When the VM calls this function, a software interrupt happens and traps

the processor to the hypervisor.

211



2. Handle the event : the hypervisor is notified of this event. It can conduct necessary

introspections into this VM’s memory. Then it clears the breakpoint in the

monitored function to allow the VM to proceed execution without being interrupted

again: for EPT violation, the hypervisor clears the NX flag in the EPT entry;

for INT 3 interrupt, the hypervisor clears the debugging instruction. Then the

hypervisor sets the Monitor Trap Flag (MTF) and the processor enters the single-

step operation mode: the VM can only execute one instruction and then yield to

the hypervisor.

3. Re-register the event : after the VM executes one instruction (i.e., calling the

monitored function), the processor is trapped into the hypervisor. The hypervisor

re-registers the event of monitoring the function by resetting the NX flag or re-

inserting the INT 3 instruction to the monitored function. It also resets the Monitor

Trap Flag to disable the single-step CPU mode. After all these are done, the VM

will continue execution till it calls the monitored function again, and the above

procedure is repeated.

6.5.2.2 Modifying VMs

Another technique is to actively change the VMs’ memory data or execution paths.

With this technique, CloudGuard can automatically and promptly take actions to

mitigate the integrity breach and prevent further damages once the breach is identified.

Repairing compromised data. Malware can compromise the integrity of the OS

by modifying security-critical data. When the guest OS kernel is compromised, the

hypervisor can restore the original correct data. For instance, malware can change a

kernel function pointer to their own malicious handler. To defeat this, the hypervisor

can change the function pointer back to its original one by referring to an intact OS

of the same version, then the malicious function will not be invoked.

212



Bypassing a function. When the guest VM starts to invoke malicious programs

or functions, we can modify the VM’s execution path to bypass the malicious code.

Specifically, in the guest VM when a function G attempts to call a malicious function

F, we aim to bypass the function F so that the VM will directly return to function G

without executing F.

Figure 6.3 shows the procedure of bypassing a function. By convention, the X86

system usually uses the register RIP to store the next instruction pointer, RBP to store

the base pointer (i.e., the start of the stack), RSP to store the stack pointer (i.e., the

current location in the stack), and RAX to store a function’s return value. In the

normal case, before calling function F, RIP stores the next instruction pointer after F

(denoted as old rip in Figure 6.3 ( 1 )), which is also the return address of F. Then

function G pushes the return address (old rip) into its stack frame pointed to by RSP

and then jumps to function F ( 2 ). Function F will establish its own stack frame by

pushing function G’s base pointer (stored in RBP, denoted as old rbp) to the stack,

and directing the base pointer (RBP) to the stack pointer (RSP) ( 3 ). After that F

starts to execute its code within its own stack. When finished, this function will pop

off the return address (old rip) and base pointer old rbp, and assign them to RIP and

RBP ( 4 ). Then it will jump back to G.

To bypass function F, we can first use the event capturing mechanism in Section

6.5.2.1 to capture the moment that function G jumps to function F (i.e., the completion

of 2 ). Then we can bypass step 3 in which function F establishes its stack, and

direct the processor to step 4 . Specifically, we pop off the return address old rip from

function G’s stack. This value is pointed to by RSP in 2 . We assign this value to RIP

( 4 ). We can also assign any return value we want for function F to RAX. By doing so,

after entering function F, this function will jump back to the return address directly

with our assigned return value. So function F will be bypassed and never executed.

213



…
…

…
…

RSP

RBP

RIP old_rip

…
…

…
…

RSP

RBP

RIP

old_rip

F

G F …
…

…
…

RSP
RBP

RIP

…
…

…
…

RSP

RBP

RIP

old_ripold_rip
old_rbp

……

old_rip

1 2 3 4

Normal case

Bypassing a function

G

……

Figure 6.3: Bypassing a function. The red blocks are bypassed

Killing a process. When a malicious process has been launched and running in

the guest VM, we aim to kill this active process immediately without interrupting

the VM’s execution. The idea is to insert the process killing function (e.g., sys kill

in Linux) in the VM’s code path, and set the function parameter as the malicious

process’s id. Then the VM will jump to the process killing routine and return to the

original code after killing the process.

Figure 6.4 shows the procedure of killing an active process. By convention, the

X86 system usually uses the register RDI to store the first parameter of a function,

and RSI to store the second parameter. Specifically, we need to insert the kernel

function sys kill in the kernel-space code path. To achieve this, we can choose one

of the most frequent kernel-space events (e.g., CPU scheduling function schedule),

and monitor this event using the mechanism from Section 6.5.2.1. When this event

occurs ( 1 ), the OS is in the kernel mode. Then we interrupt this VM and save the

CPU registers. We push the value of the instruction pointer register RIP (denoted as

old rip) to the memory stack pointed to by RSP, and change RIP to the address of

sys kill. We also set the first parameter of sys kill (stored in RDI) as the process

214



…
…

…
…

RSP

RBP

save contexts

…
…

…
…

RSP

RBP

RIP

old_rip

…
…

…
…

RSP
RBP

…
…

…
…

RSP

RBP

old_rip
old_rbp

……

1 2 3 4

schedule sys_kill

sys_kill
RDI pid
RSI 9

schedule

restore contexts

……

……

Normal case

Inserting a function
……

Figure 6.4: Killing a process. The red blocks are inserted routine

id, and the second parameter (stored in RSI) as the killing signal 9 ( 2 ). After that

the VM will jump to the sys kill kernel function ( 3 ) and kill the process. We

also monitor the event that the sys kill completes and returns. When this function

returns, we interrupt the VM, restore the registers and instructions ( 4 ). The VM

will continue its previous path.

6.5.3 Security Tools

We implemented different security tools in CloudGuard using the VM introspection

techniques from Section 6.5.2. These tools include a rookits scanner, an anti-malware

program and a firewall. We apply them to detect as well as mitigate integrity breaches

inside a guest VM. Other security tools can be integrated into CloudGuard similarly.

Testbed Configuration: Our case studies are based on a Dell R210II server. The

server is equipped with one quad-core, 3.30GHz Intel Xeon E3-1230v2 processor with

8MB LLC, and it supports Intel VT hardware-assisted virtualization technology, which

215



is necessary for VM introspection. We configure a Xen hypervisor (version 4.7.0) to

host fully virtualized guest VMs. Dom0 runs Ubuntu 14.0.4 OS with kernel version

4.2.0-42. The guest VM that we are testing runs an Ubuntu 10.10 server 64-bit OS

with kernel version 2.6.35-22.

6.5.3.1 Rootkit Scanner

A rootkit scanner can help check the integrity of a guest OS kernel and detect kernel

rootkits. We show how to detect and repair the malicious modifications of kernels

caused by rootkits, using the methods from Section 6.3.1

Integrity checking of jump-tables. We propose a security rule for checking jump-

table integrity: the address of each handler function indexed by the jump-tables should

match the “good” known one. So we need to get the address of each handler function

and check if it has been changed to an illegal one. In Linux, the base address of the

System-call Table is denoted by the symbol sys call table. The base address of the

IDT is stored in the register IDTR BASE, or denoted by the kernel symbol idt table.

With these virtual addresses, we can use the introspection method from Section 6.5.2.1

to iterate these jump-tables, get the address of each function handler and compare it

with the one from an intact OS kernel of the same version. If one address does not

match the corresponding “good” one, we can suspect that the rootkit has changed

this handler to its own malicious function.

When one function address is changed, we can get this function index based on its

location in the jump-table. We report the name of the hijacked function to customers.

By restoring the original function address in the jump-table we can fix this integrity

breach.

Integrity checking of kernel codes. We propose a security rule for detecting

kernel code integrity: the hash value of the critical memory region should match the

“good” known one. In Linux, the lower bound address of the kernel memory region that

216



stores the critical kernel functions is denoted by symbol stext and the upper bound

address is denoted by etext. We calculate the MD5 hash value of the data inside

this region [ stext, etext] and compare it with the one from an intact OS kernel

of the same version. Mismatched hash values indicate that certain kernel functions

inside this memory region have been compromised.

To mitigate this integrity breach, we can restore the original correct codes within

[ stext, etext] from an intact kernel. Then the integrity of the kernel codes is

maintained.

Cross-view validation of critical objects. We use cross-view validation to detect

objects hidden by rootkits. We get an untrusted view from the user-space programs,

and trusted view from the kernel space. We implemented the security rule: the two

views should give consistent results. We consider the detection of hidden processes,

and network sockets.

To detect if the VM has hidden processes, the hypervisor needs to get two views

of process lists inside this VM. The trusted view shows all the processes while the

untrusted view might be tampered with by the rootkits. Trusted view can be obtained

from the linked task list maintained by the OS kernel. We first obtain the virtual

address of the list head from the kernel symbol init task. Then we iterate this list,

and read each process’s information from the task struct kernel structure, e.g., comm

(process name); tasks (pointer to the next process); mm (memory descriptor); pid

(process id), etc. By doing so, we can get all the processes running in the OS. To

get the untrusted view of the process list, the hypervisor can issue a remote ps aux

command to the VM via SSH, which is a common way to execute commands on a

remote machine. Then the users’ view of the process list will be transmitted to the

hypervisor. By comparing the two lists, we can identify any hidden process’s name

and id.

217



Once detected, the hypervisor can directly kill this hidden process using the

method from Section 6.5.2.2, i.e., invoking the sys kill function in the code path

with the hidden process’s id as the parameter. Then this process will be killed without

interrupting the VM’s execution.

To detect if the VM has hidden network sockets, the hypervisor also needs to get

the trusted view and an untrusted view of active network sockets in this VM. For the

trusted view, the Linux kernel uses hashmaps to store the network sockets. The TCP

hashmap is denoted by the kernel symbol tcp hashinfo and the UDP hashmap is

denoted by the symbol udp table. We can get the virtual addresses of these hashmaps

from these symbols, and iterate the table to retrieve the trusted list of active sockets.

For the untrusted view, the hypervisor can issue a remote netstat command to the

VM via SSH, and retrieve the list of sockets from the user’s perspective. Through

comparing the two lists, we can find the hidden TCP or UDP sockets.

To prevent the connections from these hidden sockets, we can use a firewall in

Section 6.5.3.3 to block such connections and kill the malicious processes that establish

these sockets.

6.5.3.2 Anti-malware

We can leverage VM introspection to implement an anti-malware tool in the hypervisor

layer to monitor the programs’ images and execution inside the guest OS. This enables

static malware detection as well as dynamic detection.

Static analysis. The static detection method checks the program image before it

is launched. Specifically, when a VM attempts to launch a program, the hypervisor

checks if the image of this program is problematic by checking the control flow graph,

byte patterns or hash sums in the image. If the image is malicious, the hypervisor

prevents this program from being launched. There are three steps to conduct static

malware detection.

218



First, we need to capture the program launch event. In Linux, the OS invokes the

system call sys execve to launch a program, initializing this program and loading

the image to the memory. We use the feature from Section 6.5.2.1 to monitor a

key function do execve inside sys execve. When this function is called, the VM is

interrupted and control is transferred to the hypervisor.

Second, the hypervisor finds and analyzes the image of the program from the disk.

To achieve this, we first need to know the path of the image in the guest VM filesystem.

The first parameter of do execve is a struct filename, which stores the path of the

program executable. This path can be a full path or a relative path to the working

directory, depending on how the VM runs the program. If it is a relative path, we get

the working directory path from the task struct of the invoking process, and convert

the relative path to the full path. Given the full path, we mount the VM filesystem

to Dom0 and retrieve the image. Then we can analyze the image and check if it is

problematic. In our implementation, we adopt the static signature-based detection,

which calculates the MD5 hash value as the signature. Other static detection methods

can be implemented in a similar way.

Third, once the program image is problematic, the hypervisor should prevent this

program from being launched. The idea is to bypass the do execve function using

the method in Section 6.5.2.2. So this function will not be executed to launch this

suspicious program.

Dynamic analysis, The detector monitors the dynamic behavior of the inspected

program during execution. We can use VM introspection to trace the syscalls invoked

by each program inside a VM and check if the syscall trace follows a normal model in

anomaly-based detection, or shows malicious features in signature-based detection.

To trace the syscall of the inspected VM, we can insert a breakpoint in the syscall

entry routine, the address of which is stored in the register MSR LSTAR. When a process

invokes a syscall, the hypervisor will be notified and get the CPU control. It can get

219



the process id from the register CR3, the syscall index from the register RAX, and the

syscall parameters from other general-purpose registers RDI, RSI, etc. Based on the

syscall trace of each process, the hypervisor is able to conduct dynamic analysis and

judge if these processes are malicious.

When the hypervisor discovers a malicious process, it can simply kill this process

using the method from Section 6.5.2.2.

6.5.3.3 Firewall

We can use VM introspection to establish a firewall for the protected VM. The security

rule is to prevent the VM from talking to machines with malicious IP addresses

and/or port numbers specified in a blacklist, or to limit the VM’s connections to some

specific IP addresses and/or port numbers in a whitelist. We consider two cases for

the protected VM: establishing outbound connections to remote servers, and accepting

inbound connections from remote clients.

Outbound protection. To establish an outbound socket connection, the pro-

gram calls the sys connect syscall. The key function inside this syscall is

inet stream connect: its second parameter is a pointer to a sockaddr structure

which contains the remote server’s IP address and port number. So to detect the

connection event, we first set a breakpoint at the function inet stream connect.

When this function is called, the hypervisor is notified, gets the sockaddr pointer

from register RSI, and then gets the remote server’s IP address and port number from

this structure. With such information the hypervisor can check if the monitored VM

is attempting to connect to malicious servers.

mInbound protection. To accept an inbound socket connection, the user-space

program calls the sys accept syscall. This syscall then calls the kernel function

inet csk accept, which fetches an incoming request from the network queue, and

returns its IP address and port number in the structure sock. So we set a breakpoint

220



at the return instruction of this function. When this breakpoint is reached, the return

value (RAX register) stores the pointer to the remote client’s IP address and port

number. We can read such information and check if the VM is attempting to accept

connections from a malicious client.

Once the hypervisor discovers that the VM is establishing or accepting illegal

connections, it can also get the id of the process that invokes these network socket

APIs. To block the connections, the hypervisor can simply kill the process using the

method from Section 6.5.2.2.

6.6 Evaluation

We evaluate the performance of VM introspection and its impact on the inspected

VMs. We aim to check how long it takes for the hypervisor to check the VM’s integrity,

and show its performance overhead with respect to the VMs. The main performance

cost is caused by the VM interruption for event capturing.

6.6.1 Rootkits Scanner

We measure the time to scan the kernel for rootkits.

Integrity checking of jump-tables. Figure 6.5a shows the introspection time

versus the number of functions in the jump table. We observe that the introspection

time is linearly related to the number of functions. When the jump table has 300

functions, the introspection can be done within 0.12ms, which is very fast.

Integrity checking of kernel codes. Figure 6.5b shows the time to calculate hash

values versus the critical memory size. When the critical memory is on the order of

MB, the whole checking process can be done on the order of milliseconds.

Cross-view validation of critical objects. Figures 6.5c and 6.5d shows the time

used to get the trusted view of processes and network sockets in the system. The

221



0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00 . 0 8 5
0 . 0 9 0
0 . 0 9 5
0 . 1 0 0
0 . 1 0 5
0 . 1 1 0
0 . 1 1 5
0 . 1 2 0

 

 

tim
e (

ms
)

#  o f  f u n c t i o n s
(a) Jump-table checking

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 50
3
6
9

1 2
1 5
1 8

 

 

tim
e (

ms
)

c o d e  s i z e  ( M B )
(b) Kernel code checking

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 02 4
2 6
2 8
3 0
3 2
3 4
3 6

 

 

tim
e (

ms
)

#  o f  p r o c e s s e s
(c) Process scanning

0 2 0 4 0 6 0 8 0 1 0 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0

 

 

tim
e (

ms
)

#  o f  s o c k e t s
(d) Socket scanning

Figure 6.5: The performance of rootkits scanner.

time is also linear to the number of processes or sockets in the trusted list. The

total checking time is also very short even though the system has a large number of

processes or sockets.

6.6.2 Anti-malware

Static analysis. We consider the performance impact when we use VM introspection

to conduct static signature-based detection. Every time before the VM launches a

program, the hypervisor interrupts the VM, mounts the VM filesystem and calculates

its image hash.

222



8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

 

 

 I N T 3   E P T

ch
ec

kin
g t

im
e (

ms
)

i m a g e  s i z e  ( K B )
Figure 6.6: Static malware detection

We measure the extra launch time of programs with different image sizes, using

either INT3 breakpoint interrupt or EPT violation interrupt for event capturing. The

results are shown in Figure 6.6. We can see the image size does not affect the launch

time. The overhead mainly comes from the event interrupt. We can also see the EPT

interrupt is worse than the INT3 interrupt. This is because INT3 sets an interrupt

event in one instruction, while EPT sets an interrupt for the whole physical page. So

the EPT mechanism causes more false positive interrupts (other instructions or data

in the same memory page cause the interrupts) than INT3. In general the performance

overhead caused by launch checking is acceptable.

Dynamic analysis. We measure the performance overhead of tracking syscalls

inside a guest VM for dynamic detection. We configure the monitored VM to run

two cloud applications (web server and storage server) from [243], and set another

VM on another host machine as a client to stress this monitored VM. Figure 6.7

shows the relative performance of the monitored VM under the syscall tracking using

INT3 and EPT interrupt. We observe that the EPT violation can reduce much more

throughput of the monitored VM than the INT3 interrupt. When the monitored VM

is fully saturated, there are more critical events happening and being interrupted. So

223



1 0 2 0 3 0 4 0 5 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
1 2 0 %

 

 
 I N T 3   E P T

Re
lat

ive
 th

ro
ug

hp
ut

C o n n e c t i o n  r a t e  ( / s )
(a) Web server

1 0 2 0 3 0 4 0 5 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
1 2 0 %

 

 
 I N T 3   E P T

Re
lat

ive
 th

ro
ug

hp
ut

#  o f  t h r e a d s
(b) File server

Figure 6.7: The performance overhead of different cloud benchmarks under dynamic
malware detection.

the performance degrades. However, if we use the INT3 mechanism, even if the VM is

saturated, the worst performance overhead is around 8% for the web server.

6.6.3 Firewall

Similarly we also monitor the performance overhead of the VM under socket API

tracking for the firewall protection, as shown in Figure 6.8. We can see that the INT3

mechanism has smaller performance overhead than the EPT mechanism. When the

inspected VM is fully saturated, the performance overhead is less than 5% for INT3,

which is acceptable.

6.7 Discussions

There are multiple ways to implement the security protections introduced in Section

6.3. We discuss and compare their advantages and disadvantages.

OS-enabled protection. The most straightforward way to deploy security protection

is to install security tools in the OS of the guest VM. Current cloud providers usually

adopt this solution to protect customers’ VMs (e.g., Amazon Inspector [3], Azure

224



1 0 2 0 3 0 4 0 5 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
1 2 0 %

 

 
 I N T 3   E P T

Re
lat

ive
 th

ro
ug

hp
ut

C o n n e c t i o n  r a t e  ( / s )
(a) Web server

1 0 2 0 3 0 4 0 5 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
1 2 0 %

 

 
 I N T 3   E P T

Re
lat

ive
 th

ro
ug

hp
ut

#  o f  t h r e a d s
(b) File server

Figure 6.8: The performance overhead of different cloud benchmarks under firewall
protection.

Antimalware [15]). The biggest drawback for this method is that the security tools are

also vulnerable to the malware. As we introduced in Section 6.2, once intruding into

the system, malware can easily gain root privilege and control any software entities

inside the VM. So it is easy for them to identify and disable the security tools, or hide

themselves from these tools. This makes the security tools less effective in protecting

VMs’ integrity.

Hypervisor-enabled protection. The second method is to isolate the security

tools from the vulnerable guest VM, e.g., placing the security tools in the hypervisor

layer (VM introspection [95]). We adopt this solution in CloudGuard. Assuming

privilege ring protections by the hardware works, the malware in the user level (ring 3)

or the kernel level (ring 0) should not be able to easily compromise the security tools

at the hypervisor level (ring -1). The security tools can provide more trustworthy and

reliable protections of the guest VMs.

However, this hypervisor-based protection also has some disadvantages. First, this

protection usually requires the modifications of the guest OS to insert breakpoints

or mitigation functions. Table 6.1 summarizes the modifications of the guest OS

needed for the security tools we implemented in Section 6.5.3. For detection, the EPT

225



Security tools
Detection Mitigation

INT3 interrupt EPT violation INT3 interrupt EPT violation

rootkit scanner
integrity checking of jump-tables – – compromised jump-tables compromised jump-tables
integrity checking of kernel codes – – compromised kernel codes compromised kernel codes
cross-view validation of critical objects – – schedule() schedule()

anti-malware
static analysis do execve() – do execve() do execve()

dynamic analysis system call() – schedule() schedule()

firewall
outbound protection inet stream connect() – schedule() schedule()

inbound protection inet csk accept() – schedule() schedule()

Table 6.1: Modifications of the guest OS.

violation scheme does not require VM modification since it only changes the EPT

access attributes. The INT3 interrupt scheme needs to change some kernel functions

(e.g., do execve(), system call(), inet stream connect(), inet csk accept())

to insert breakpoints. For mitigation, We need to fix the jump-tables or kernel codes

if they are compromised. To bypass a malicious function (e.g., do execve()), we need

to modify the function routine. To insert the function sys kill() to kill malicious

processes, we need to modify the kernel function schedule(). Although we modify

the VM in a good way to protect the VM, customers who are concerned with the

VM integrity may not like such modifications. Second, the hypervisor-based solution

introduces performance overhead to the guest VM, as shown in Section 6.6. The

performance overhead is huge when using the EPT violation scheme.

Hardware-enabled protection. A third method is to use hardware-based secure

enclaves to protect security tools from untrusted software stacks. Past work designed

new systems that can shield security-critical applications from the untrusted OSes. For

instance, Bastion [61] provides protected software modules with secure fine-grained

memory compartments and secure persistent storage areas. Haven [43] leverages

Intel SGX [155] to create isolated execution environments for applications. SICE [35]

exploits the System Management Mode (SMM) [9] to provide hardware-level isolation

and protection for sensitive applications on X86 commodity platforms. We can install

security tools in a hardware-based enclave and place them in the untrusted system

(i.e., guest VM). So these tools can monitor the untrusted system’s integrity. Even

if the system is compromised, the attacker cannot subvert the protection enhanced

226



by the hardware to compromise the security tools. One drawback of this solution is

that the customers have the added burden of installing security tools inside the secure

enclaves. Another drawback is the need of new hardware support, although SGX is

already available. With the growing popularity of such secure processors, this method

will be more promising.

6.8 Chapter Summary

This chapter presents CloudGuard, a cloud architecture which offers runtime VM pro-

tection services to customers. Key contributions in this work include: (1) CloudGuard

allows customers to select different security protections based on their needs. (2) We

show that VM introspection can not only passively retrieve information from the

VMs, but can also actively change the VMs’ state and data. This can be exploited

to mitigate vulnerabilities inside the VMs. (3) We implement different security tools

in CloudGuard, e.g., rootkit scanner, anti-malware tool, firewall, etc. We show how

CloudGuard can detect and mitigate various security threats to enhance a VM’s

security at runtime. Our evaluation indicates these VM introspection services incur

low performance overhead to the monitored VMs. We hope CloudGuard can attract

and satisfy more cloud customers who have security concerns with leasing VMs in

the cloud. We also hope this chapter can inspire computer architects to design more

efficient hardware mechanisms that can do what is now done by the hypervisor to

enhance both the security and the performance of these cloud security services.

227



Chapter 7

Conclusions

The past decade has witnessed rapid development in cloud computing. Various

technologies and systems are proposed to support new functions and services, and

attract more corporations and individuals to shift their computation toward cloud

computing. At the same time, the cloud computing environment becomes more

complicated, thus more vulnerable to known and unknown cyber threats. As Chapter

2 shows, different attack vectors can be exploited by malicious parties to compromise

the security of customers’ data and computations in different ways. As customers

build their applications and services upon the platforms and infrastructure from

cloud providers, it is of paramount importance for cloud providers to create a reliable

and secure computation environment for customers. This dissertation designs new

architecture and methods to protect customers’ virtual machines in the Infrastructure-

as-a-Service (IaaS) cloud model. Our architecture implements Security-on-Demand

and CloudMonatt, which enable customers to specify their security needs, and the

cloud provider to provide security protections during a VM’s lifetime.

In Chapter 3 we presented a new architecture, CloudMonatt, that provides the

functionality of VM security health monitoring and attestation to customers. We

realized the property-based attestation scheme in the cloud context, by bridging the

228



semantic gaps between customers’ specification and VMs’ micro-architecture mea-

surements. We demonstrated the implementation of CloudMonatt in the opensource

software OpenStack, to show its deployment feasibility in public clouds. We conduct

performance evaluation and security verification of CloudMonatt to prove it is an

effective and trustworthy security service for customers.

In Chapter 4 we focus on the availability property of virtual machines. This

is motivated by the fact that co-located VMs still share and contend for memory

resources even with the strong memory isolation enforced by the hypervisors. This

study proposes memory DoS attacks based on such settings, as well as the corresponding

defense solution. For attacks, we design a set of techniques to attack different layers

of hardware memory resources to degrade the victim VM’s performance. The power

of these techniques is validated in a public cloud. For defense, we leverage existing

hardware features, e.g., Hardware Performance Counters and duty cycle regulation, to

detect and mitigate the damage caused by the attacks. This defense can be integrated

into the CloudMonatt framework, as a security option for customers to choose, who

have high demand for resource availability.

Chapter 5 studies a confidentiality property of virtual machines. Prior work have

shown that cache side-channel attacks are a serious confidentiality threat in multi-

tenant cloud servers. So we propose novel methods for cloud providers to detect and

then mitigate all cache side-channel attacks. In our method, the cloud provider just

uses Hardware Performance Counters to monitor the micro-architectural behaviors of

the protected VM and the potential adversary VM. Through statistical analysis, the

cloud provider is able to identify the threat immediately when the attack begins, and

stop the information leakage promptly. Our approach does not require modification

to hardware, or privileged software. It can be easily integrated into the CloudMonatt

framework, as another option for customers to select.

229



Chapter 6 studies runtime system integrity protection. In this chapter, we focus on

the threats from inside-VM malware, instead of from co-located VMs as in Chapters

4 and 5. Just like in traditional computing models, customers’ VMs can be also

compromised by malicious parties. Although it is the customers’ responsibility to

protect their own VMs from being attacked, we think the cloud provider has the

advantage and capability to deploy more reliable and trustworthy protection for

VMs, thus making cloud services more attractive. We leverage the Virtual Machine

Introspection technique to monitor and mitigate customers’ VMs in a comprehensive

way. This integrity service can also be integrated into CloudMonatt, and exposed to

customers.

7.1 System Integration

Figure 7.1 shows that different security mechanisms introduced in this dissertation

can be integrated into our CloudMonatt architecture. Compared to Figures 3.1 and

3.2, this figure expands the Monitor Module in the cloud server, the Attestation

Database in the Attestation Server and the Controller Database in the Cloud

Controller, while the rest of the Attestation Server and the Cloud Controller, and

the Trust Module in the cloud server are the same. For the Monitor Module, we

integrate the monitoring mechanisms we discussed for providing some aspects of

availability (Figure 4.16), confidentiality (Figure 5.4) and integrity (Figure 6.1). For

availability, the cloud server uses the VMM Profiler to monitor VMs’ CPU usage

(Section 3.3.3) and Hardware Performance Counters via the Performance Monitor

Unit (PMU) Kernel to monitor VMs’ memory availability (Chapter 4). It also uses

the I32 CLOCK MODULATION to regulate VMs’ execution speed. For confidentiality, the

cloud server uses Hardware Performance Counters via the PMU Kernel to detect

covert-channel (Section 3.3.2) and side-channel (Chapter 5) attacks. For integrity,

230



Pr
op

er
ty

 
In

te
rp

re
ta

tio
n

Pr
op

er
ty

 
C

er
tif

ic
at

io
n

U
se

r 
In

te
rf

ac
e

A
va

ila
bi

lit
y

C
on

fid
en

tia
lit

y
K

er
ne

l 
ha

sh
es

Se
cu

ri
ty

 
R

ul
es

K
er

ne
l 

Sy
m

bo
ls

In
te

gr
ity

R
es

ou
rc

e 
R

eq
ui

re
m

en
t

C
ry

pt
o 

Si
gn

at
ur

e

A
tte

st
at

io
n 

D
at

ab
as

e

U
se

r 
In

te
rf

ac
e

La
un

ch
:

R
es

ou
rc

e 
R

eq
ui

re
m

en
ts

Se
cu

ri
ty

 R
eq

ui
re

m
en

ts

Po
lic

y 
Va

lid
at

io
n

Sc
he

du
le

r

R
es

po
ns

e 
M

od
ul

e

C
on

tr
ol

le
r 

D
at

ab
as

e

V
M

 C
on

fig
ur

at
io

ns

V
M

 S
ec

ur
ity

 P
ro

pe
rt

ie
s

La
un

ch
 R

es
ul

ts

R
un

tim
e:

M
on

ito
ri

ng
 R

eq
ue

st
s

A
tte

st
at

io
n 

R
es

ul
ts

V
M

M
an

ag
em

en
t 

M
od

ul
e

H
ar

dw
ar

e

H
yp

er
vi

so
r

M
on

ito
r 

M
od

ul
e

H
os

t V
M

A
tte

st
at

io
n 

C
lie

nt
M

an
ag

em
en

t C
lie

nt V
M

I L
ib

ra
ry

V
M

M
 P

ro
fil

er

Pe
rf

or
m

an
ce

 C
ou

nt
er

s
In

te
gr

ity
 M

ea
su

re
m

en
t U

ni
t

C
PU C
PU C
PU

C
ac

he

C
PU C
PU

C
ac

he

C
PU

R
A

M
R

A
M

R
eg

ul
at

or
D

et
ec

to
r

A
va

ila
bi

lit
y

PM
U

 k
er

ne
l

I3
2_

C
L

O
C

K
_M

O
D

U
L

AT
IO

N

C
on

fid
en

tia
lit

y

Si
gn

at
ur

e 
D

et
ec

to
r

V
ic

tim
 

M
on

ito
r

A
tta

ck
er

 
M

on
ito

r

In
te

gr
ity V
M

I A
ge

nt

T
ru

st
 

M
od

ul
e

R
N

G
A

tte
st

 K
ey

Tr
us

t 
E

vi
de

nc
e 

R
eg

is
te

rs

C
PU C
PU C
PU

C
ac

he

C
PU C
PU C
PU

C
ac

he

C
PU C
PU C
PU

C
ac

he

G
ue

st
V

M
s

C
ry

pt
o 

E
ng

in
e

Id
en

tit
y 

K
ey

K
ey

 G
en

R
A

M
R

A
M

R
A

M
R

A
M

D
is

k
D

is
k

D
is

k
N

IC
N

IC

C
lo

ud
 C

on
tr

ol
le

r

C
lo

ud
 S

er
ve

r

C
us

to
m

er

At
te

st
at

io
n 

Se
rv

er

F
ig

u
re

7.
1:

C
lo

u
dM

on
at

t
ca

n
in

te
gr

at
e

m
et

h
o
d

s
fr

om
th

is
d

is
se

rt
at

io
n

to
d

et
ec

t
an

d
m

it
ig

at
e

v
u

ln
er

ab
il

it
ie

s
in

cl
ou

d
co

m
p

u
ti

n
g.

231



the cloud server uses the Integrity Measurement Unit to measure startup integrity

(Section 3.3.1) and the VMI Library to monitor runtime system integrity (Chap-

ter 6). These hypervisor and hardware components of the Monitor Module are

invoked through trusted software interfaces like Regulator and Detector (Chapter

4), Signature Detector, Victim Monitor and Attacker Monitor (Chapter 5), VMI

Agent (Chapter 6). A cloud server in CloudMonatt does not require new hardware: the

Hardware Performance Counters and I32 CLOCK MODULATION exist ubiquitously in

modern processors; Intel Trusted Execution Technology [10] has Dynamic Root of

Trust for Measurement, which can be used as the Integrity Measurement Unit; a

Trusted Platform Module (TPM) chip can be used as the Trust Module.

The Attestation Database in the Attestation Server stores information required

to interpret the security properties. For availability, the Attestation Database stores

the resource requirement from the customer. For confidentiality, the Attestation

Database stores the crypto signatures for crypto detection. For integrity, the

Attestation Database stores the kernel hashes for startup integrity checking, kernel

symbols and their addresses and security rules for VM runtime introspection. The

Controller Database in the Cloud Controller stores VMs’ configurations, and the

security properties the customers request for their VMs.

7.2 Future Work

We now suggest some research directions that can extend the work done by this

dissertation.

VM Security Health Monitoring and Attestation. In Chapter 3 we presented

the CloudMonatt architecture. Section 3.5 conducted security verification of this

architecture and pointed to several security requirements to protect CloudMonatt. As

we mentioned in Section 3.5.4, we can exploit Bastion [61] or Intel SGX [155] to protect

232



the critical modules in the cloud server. Future work could be designing new security

mechanisms using these secure architectures to realize the security requirements, and

make CloudMonatt more secure.

To demonstrate the usage of CloudMonatt, we show several case studies in Section

3.3, as well as more sophisticated examples in Chapters 4, 5 and 6. These security

threats are caused by the shared infrastructure, or the virtualized system itself.

However, there are other types of attack vectors, as demonstrated in Section 2.1.

One interesting direction would be proposing new solutions to defeat other types of

security threats. For instance, the cloud provider can detect if customers’ accounts

have been hijacked by monitoring these accounts’ behaviors using anomaly-based

intrusion detection. This can defeat the service interface attacks. Another example is

cloud abuse detection (Section 2.1.6). The cloud provider can monitor VMs’ network

activities and use signature-based intrusion detection to check if they are conducting

some malicious behaviors (e.g., performing DoS, port scan or password guessing

attacks). By doing so the cloud provider can prevent these VMs from being hijacked

by malicious parties and becoming botnets. These new services can protect the VMs

in a more comprehensive way.

Detection and Mitigation of Availability Vulnerabilities. Chapter 4 only

considers the memory DoS attacks. However, there are other resources shared by

co-tenant VMs, like network or disk. The severity of these resource DoS attacks

are unknown. Future work includes investigating the feasibilities of host-based DoS

attacks targeting other shared resources. Besides, we can also extend the defense

method (Section 4.4) to other types of resource contention. For instance, we can

monitor the protected VM’s network or disk bandwidth and use the same statistical

test to judge if it is under attack. Then we can use I/O bandwidth throttling to

mitigate the attack damage. Such extensions will make this method more general and

powerful.

233



Detection and Mitigation of Confidentiality Vulnerabilities. We show how

to preserve VM’s confidentiality against cache side-channel attacks in Chapter 5.

However, there might be other types of side-channel information leakage. For the

micro-architectural aspect, CPU pipeline, prefetcher, or DRAM could be potential side-

channel media. It would be interesting to extend the detection method to these side

channels. In addition, information could be leaked via power or network side channels.

Detection of such side-channel attacks would also be challenging and interesting. A

general question to solve in the future is whether we can design and validate a method

that can identify all kinds of known and unknown side-channel attacks.

Detection and Mitigation of Integrity Vulnerabilities. In Chapter 6 we use

VM introspection to monitor activities inside the VM. We considered mainly attacks

within the guest VM. However, the hypervisor also has vulnerabilities. An attacker can

exploit these vulnerabilities to gain root privilege and take control of the hypervisor. So

as future work regarding VM integrity protection, we can consider how the monitoring

tools can protect the hypervisor and detect if it is under attack? Also, how to protect

the monitoring tools from being compromised by the attacker who gains root privilege

on the cloud server?

In summary, this dissertation designs CloudMonatt, a general-purpose architectural

framework to monitor and protect VMs’ security health on behalf of customers. As

case studies, we consider three types of security threats and demonstrate the methods

to defeat them. First, we consider resource availability threats from co-located VMs.

We design and evaluate a set of DoS attacks. We also design a novel method to detect

and mitigate these threats using existing hardware features. Second, we consider

side-channel confidentiality threats from co-located VMs. We propose a new method

to detect the existence of cross-VM side-channel information leakage and use VM

migration to mitigate these threats. Third, we consider system integrity vulnerability.

We design different types of security tools to monitor and maintain a VM’s system

234



integrity from the hypervisor. CloudMonatt is flexible enough to support other security

protection mechanisms as well. We hope that new detection and mitigation methods

can be proposed and integrated into CloudMonatt in the future, to make cloud systems

more secure.

235



Bibliography

[1] Ab — The Apache Software Foundation. http://httpd.apache.org/docs/2.
2/programs/ab.html.

[2] Amazon CloudWatch. https://aws.amazon.com/cloudwatch/.

[3] Amazon Inspector. https://aws.amazon.com/inspector/.

[4] Amazon Virtual Private Cloud. https://aws.amazon.com/vpc/.

[5] AMD Architecture Programmer’s Manual, Volume 2: System Programming.
https://support.amd.com/TechDocs/24593.pdf.

[6] ARM Cortex-A9 Technical Reference Manual, Revision r2p0. http:

//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/

BEHEDIHI.html.

[7] Common Vulnerabilities and Exposures. https://cve.mitre.org/.

[8] Improving Real-Time Performance by Utilizing Cache Allocation Tech-
nology. http://www.intel.com/content/www/us/en/communications/

cache-allocation-technology-white-paper.html.

[9] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3:
System Programming Guide. http://www.intel.com/content/www/us/en/

processors/architectures-software-developer-manuals.html.

[10] Intel Trusted Execution Technology. http:

//http://www.intel.com/content/www/us/en/

architecture-and-technology/trusted-execution-technology/

malware-reduction-general-technology.html/.

[11] Libbdvmi. https://github.com/razvan-cojocaru/libbdvmi.

[12] LibVMI. http://libvmi.com.

[13] Magento: eCommerce Software and eCommerce Platform. http://www.

magento.com/.

[14] Memtier Benchmark. https://github.com/RedisLabs/memtier_benchmark.

236

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/inspector/
https://aws.amazon.com/vpc/
https://support.amd.com/TechDocs/24593.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/BEHEDIHI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/BEHEDIHI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388e/BEHEDIHI.html
https://cve.mitre.org/
http://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
http://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/malware-reduction-general-technology.html/
http://http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/malware-reduction-general-technology.html/
http://http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/malware-reduction-general-technology.html/
http://http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/malware-reduction-general-technology.html/
https://github.com/razvan-cojocaru/libbdvmi
http://libvmi.com
http://www.magento.com/
http://www.magento.com/
https://github.com/RedisLabs/memtier_benchmark


[15] Microsoft Antimalware for Azure Cloud Services and Virtual Ma-
chines. https://docs.microsoft.com/en-us/azure/security/

azure-security-antimalware.

[16] Microsoft Azure Application Insights. https://azure.microsoft.com/en-us/
services/application-insights/.

[17] OpenAttestation Project. https://wiki.openstack.org/wiki/

OpenAttestation.

[18] Openstack Ceilometer. https://wiki.openstack.org/wiki/Ceilometer.

[19] Openstack Cloud Software. http://www.openstack.org/.

[20] OpenStack Monasca. https://wiki.openstack.org/wiki/Monasca.

[21] Openstack Security Hardening: Trusted Computing Pools. http://docs.

openstack.org/admin-guide/compute-security.html.

[22] SPEC CPU 2006. https://www.spec.org/cpu2006/.

[23] Stackdriver Monitoring. https://cloud.google.com/monitoring/.

[24] Sysbench: a System Performance Benchmark. https://launchpad.net/

sysbench/.

[25] Welcome to the Httperf Homepage. http://www.hpl.hp.com/research/

linux/httperf/.

[26] Xentrace: Capture Xen Trace Buffer Data. https://linux.die.net/man/8/

xentrace.

[27] Sherly Abraham and InduShobha Chengalur-Smith. An Overview of Social
Engineering Malware: Trends, Tactics, and Implications. Technology in Society,
2010.

[28] Irfan Ahmed, Aleksandar Zoranic, Salman Javaid, Golden Richard, and Vassil
Roussev. Rule-Based Integrity Checking of Interrupt Descriptor Tables in Cloud
Environments. In IFIP International Conference on Digital Forensics.

[29] Jeongseob Ahn, Changdae Kim, Jaeung Han, Young-Ri Choi, and Jaehyuk
Huh. Dynamic Virtual Machine Scheduling in Clouds for Architectural Shared
Resources. In USENIX Conference on Hot Topics in Cloud Computing, 2012.

[30] Masoom Alam, Xinwen Zhang, Mohammad Nauman, Tamleek Ali, and Jean-
Pierre Seifert. Model-based Behavioral Attestation. In ACM Symposium on
Access Control Models and Technologies, 2008.

[31] Suaad Alarifi and Stephen D. Wolthusen. Robust Coordination of Cloud-Internal
Denial of Service Attacks. In International Conference on Cloud and Green
Computing, 2013.

237

https://docs.microsoft.com/en-us/azure/security/azure-security-antimalware
https://docs.microsoft.com/en-us/azure/security/azure-security-antimalware
https://azure.microsoft.com/en-us/services/application-insights/
https://azure.microsoft.com/en-us/services/application-insights/
https://wiki.openstack.org/wiki/OpenAttestation
https://wiki.openstack.org/wiki/OpenAttestation
https://wiki.openstack.org/wiki/Ceilometer
http://www.openstack.org/
https://wiki.openstack.org/wiki/Monasca
http://docs.openstack.org/admin-guide/compute-security.html
http://docs.openstack.org/admin-guide/compute-security.html
https://www.spec.org/cpu2006/
https://cloud.google.com/monitoring/
https://launchpad.net/sysbench/
https://launchpad.net/sysbench/
http://www.hpl.hp.com/research/linux/httperf/
http://www.hpl.hp.com/research/linux/httperf/
https://linux.die.net/man/8/xentrace
https://linux.die.net/man/8/xentrace


[32] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. Innovative
Technology for CPU Based Attestation and Sealing. In ACM International
Workshop on Hardware and Architectural Support for Security and Privacy, 2013.

[33] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O.
Karame. Mirror: Enabling Proofs of Data Replication and Retrievability in the
Cloud. In USENIX Security Symposium, 2016.

[34] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and
Nathan C. Skalsky. HyperSentry: Enabling Stealthy In-context Measurement of
Hypervisor Integrity. In ACM Conference on Computer and Communications
Security, 2010.

[35] Ahmed M. Azab, Peng Ning, and Xiaolan Zhang. SICE: A Hardware-level
Strongly Isolated Computing Environment for x86 Multi-core Platforms. In
ACM Conference on Computer and Communications Security, 2011.

[36] Yossi Azar, Seny Kamara, Ishai Menache, Mariana Raykova, and Bruce Shepard.
Co-Location-Resistant Clouds. In ACM Workshop on Cloud Computing Security,
2014.

[37] Hyun wook Baek, Abhinav Srivastava, and Jacobus Van der Merwe. CloudVMI:
Virtual Machine Introspection As a Cloud Service. In IEEE International
Conference on Cloud Engineering, 2014.

[38] Mohammad Bagher Bahador, Mahdi Abadi, and Asghar Tajoddin. HPCMal-
Hunter: Behavioral Malware Detection Using Hardware Performance Counters
and Singular Value Decomposition. In IEEE International Conference on Com-
puter and Knowledge Engineering, 2014.

[39] Marco Balduzzi, Jonas Zaddach, Davide Balzarotti, Engin Kirda, and Sergio
Loureiro. A Security Analysis of Amazon’s Elastic Compute Cloud Service. In
ACM Symposium on Applied Computing, 2012.

[40] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Efficient Detection of Split Personalities in
Malware. In Network Distributed System Security Symposium, 2010.

[41] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of
Virtualization. ACM SIGOPS Operating Systems Review, 2003.

[42] Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud Valafar, and
Kevin Butler. Detecting Co-residency with Active Traffic Analysis Techniques.
In ACM Workshop on Cloud Computing Security, 2012.

[43] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding Applications
from an Untrusted Cloud with Haven. In USENIX Conference on Operating
Systems Design and Implementation, 2014.

238



[44] Harkeerat Singh Bedi and Sajjan Shiva. Securing Cloud Infrastructure Against
Co-resident DoS Attacks Using Game Theoretic Defense Mechanisms. In Interna-
tional Conference on Advances in Computing, Communications and Informatics,
2012.

[45] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner
Sailer, and Leendert van Doorn. vTPM: Virtualizing the Trusted Platform
Module. In USENIX Security Symposium, 2006.

[46] J. Bergeron, M. Debbabi, M. M. Erhioui, and B. Ktari. Static Analysis of
Binary Code to Isolate Malicious Behaviors. In IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises, 1999.

[47] Jean Bergeron, Mourad Debbabi, Jules Desharnais, Mourad M Erhioui, Yvan
Lavoie, and Nadia Tawbi. Static Detection of Malicious Code in Executable
Programs. International Journal of Requirements Engineering, 2001.

[48] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, 2011.

[49] Bitdefender. Hypervisor Introspection. http://www.bitdefender.com/

business/hypervisor-introspection.html.

[50] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A
Case for NUMA-aware Contention Management on Multicore Systems. In ACM
International Conference on Parallel Architectures and Compilation Techniques.

[51] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier based on Prolog
Rules. In IEEE Computer Security Foundations Workshop, 2001.

[52] Bruno Blanchet. Security Protocol Verification: Symbolic and Computational
Models. In International Conference on Principles of Security and Trust, 2012.

[53] Kevin D. Bowers, Ari Juels, and Alina Oprea. HAIL: A High-availability and
Integrity Layer for Cloud Storage. In ACM Conference on Computer and
Communications Security, 2009.

[54] Kevin D. Bowers, Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L.
Rivest. How to Tell if Your Cloud Files Are Vulnerable to Drive Crashes. In
ACM Conference on Computer and Communications Security, 2011.

[55] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. CAn’t Touch This: Practical and Generic Software-only Defenses
Against Rowhammer Attacks. arXiv preprint arXiv:1611.08396, 2016.

[56] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct Anonymous Attestation.
In ACM Conference on Computer and Communications Security, 2004.

239

http://www.bitdefender.com/business/hypervisor-introspection.html
http://www.bitdefender.com/business/hypervisor-introspection.html


[57] Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, Ahmad-Reza Sadeghi,
and Thomas Schneider. AmazonIA: When Elasticity Snaps Back. In ACM
Conference on Computer and Communications Security, 2011.

[58] Shakeel Butt, H. Andrés Lagar-Cavilla, Abhinav Srivastava, and Vinod Gana-
pathy. Self-service Cloud Computing. In ACM Conference on Computer and
Communications Security, 2012.

[59] Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee. Secure
and Robust Monitoring of Virtual Machines Through Guest-assisted Introspec-
tion. In International Conference on Research in Attacks, Intrusions, and
Defenses, 2012.

[60] David Champagne. Scalable Security Architecture for Trusted Software. PhD
thesis, Princeton University, 2010.

[61] David Champagne and Ruby.B. Lee. Scalable Architectural Support for Trusted
Software. In International Symposium on High Performance Computer Archi-
tecture, 2010.

[62] Jie Chen and Guru Venkataramani. CC-Hunter: Uncovering Covert Timing
Channels on Shared Processor Hardware. In IEEE International Symposium on
Microarchitecture, 2014.

[63] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-Reza
Sadeghi, and Christian Stüble. A Protocol for Property-based Attestation. In
ACM Workshop on Scalable Trusted Computing.

[64] Liqun Chen and Jiangtao Li. Flexible and Scalable Digital Signatures in TPM
2.0. In ACM Conference on Computer and Communications Security, 2013.

[65] Liqun Chen, Hans Löhr, Mark Manulis, and Ahmad-Reza Sadeghi. Property-
Based Attestation Without a Trusted Third Party. In International Conference
on Information Security, 2008.

[66] Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. A Software-hardware
Architecture for Self-protecting Data. In Proceedings of the ACM Conference
on Computer and Communications Security, 2012.

[67] Ron C. Chiang, Sundaresan Rajasekaran, Nan Zhang, and H.Howie Huang.
Swiper: Exploiting Virtual Machine Vulnerability in Third-Party Clouds with
Competition for I/O Resources. IEEE Transactions on Parallel and Distributed
Systems, 2015.

[68] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real Time Detection
of Cache-based Side-channel Attacks Using Hardware Performance Counters.
Applied Soft Computing, 2016.

240



[69] Mihai Christodorescu and Somesh Jha. Static Analysis of Executables to Detect
Malicious Patterns. In USENIX Security Symposium, 2003.

[70] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E.
Bryant. Semantics-Aware Malware Detection. In IEEE Symposium on Security
and Privacy, 2005.

[71] Jeroen V. Cleemput, Bart Coppens, and Bjorn De Sutter. Compiler Mitigations
for Time Attacks on Modern x86 Processors. ACM Transactions on Architecture
Code Optimization, 2012.

[72] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan Millen,
Brian Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and Brian Sniffen.
Principles of Remote Attestation. International Journal of Information Security.,
10(2), June 2011.

[73] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A. Patterson, and
Krste Asanovic. A Hardware Evaluation of Cache Partitioning to Improve Uti-
lization and Energy-efficiency While Preserving Responsiveness. In International
Symposium on Computer Architecture, 2013.

[74] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. Thwarting Cache Side-Channel Attacks Through Dynamic Software
Diversity. In Network Distributed System Security Symposium, 2015.

[75] Team Cymru. Malware Hash Registry. https://www.team-cymru.com/

malware-data.html.

[76] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing
ORAM Response Times for Bursty Access Patterns. In USENIX Security
Symposium, 2014.

[77] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware Scheduling
for Heterogeneous Datacenters. In International Conference on Architectural
Support for Programming Languages and Operating Systems, 2013.

[78] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,
Simha Sethumadhavan, and Salvatore Stolfo. On the Feasibility of Online Mal-
ware Detection with Performance Counters. In ACM International Symposium
on Computer Architecture, 2013.

[79] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: Malware
Analysis via Hardware Virtualization Extensions. In ACM Conference on
Computer and Communications Security, 2008.

[80] Frank Doelitzscher, Martin Knahl, Christoph Reich, and Nathan Clarke.
Anomaly Detection in IaaS Clouds. In IEEE International Conference on
Cloud Computing Technology and Science, 2013.

241

https://www.team-cymru.com/malware-data.html
https://www.team-cymru.com/malware-data.html


[81] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. Virtuoso: Narrowing the Semantic Gap in Virtual Machine Introspection.
In IEEE Symposium on Security and Privacy, 2011.

[82] Danny Dolev and Andrew C. Yao. On the Security of Public Key Protocols.
Technical report, Stanford University, 1981.

[83] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. Non-monopolizable Caches: Low-complexity Mitigation of Cache
Side Channel Attacks. ACM Transactions on Architecture and Code Optimiza-
tion, 2012.

[84] Maximillian Dornseif, Thorsten Holz, and Christian N. Klein. NoSEBrEaK -
Attacking Honeynets. In IEEE Information Assurance Workshop, 2004.

[85] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification
(2nd Edition). Wiley-Interscience, 2000.

[86] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via
Source Throttling: A Configurable and High-performance Fairness Substrate
for Multi-core Memory Systems. In Architectural Support for Programming
Languages and Operating Systems, 2010.

[87] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and Scott D. Tenaglia. A
Behavioral Approach to Worm Detection. In ACM Workshop on Rapid Malcode,
2004.

[88] Paul England and Jork Loeser. Para-Virtualized TPM Sharing. In Trusted
Computing — Challenges and Applications, 2008.

[89] EPFL. CloudSuite. http://parsa.epfl.ch/cloudsuite/cloudsuite.html.

[90] F-Secure. Backdoor:W32/Agobot. https://www.f-secure.com/v-descs/

agobot.shtml.

[91] Zhenqian Feng, Bing Bai, Baokang Zhao, and Jinshu Su. Shrew Attack in
Cloud Data Center Networks. In International Conference on Mobile Ad-hoc
and Sensor Networks, 2011.

[92] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, 2000.

[93] Yangchun Fu and Zhiqiang Lin. Space Traveling Across VM: Automatically
Bridging the Semantic Gap in Virtual Machine Introspection via Online Kernel
Data Redirection. In IEEE Symposium on Security and Privacy, 2012.

[94] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra:
A Virtual Machine-based Platform for Trusted Computing. In ACM Symposium
on Operating Systems Principles, 2003.

242

http://parsa.epfl.ch/cloudsuite/cloudsuite.html
https://www.f-secure.com/v-descs/agobot.shtml
https://www.f-secure.com/v-descs/agobot.shtml


[95] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In Network and Distribution System
Security Symposium, 2003.

[96] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. Sprobes: Enforcing
Kernel Code Integrity on the Trustzone Architecture. In IEEE Mobile Security
Technologies Workshop, 2014.

[97] Martin Georgiev and Vitaly Shmatikov. Gone in Six Characters: Short URLs
Considered Harmful for Cloud Services. arXiv preprint arXiv:1604.02734, 2016.

[98] Yossi Gilad, Amir Herzberg, Michael Sudkovitch, and Michael Goberman. CDN-
on-Demand: An Affordable DDoS Defense via Untrusted Clouds. In Network
Distributed System Security Symposium, 2016.

[99] T. C. Group. TCG Software Stack Specification. http://

trustedcomputinggroup.org, August 2003.

[100] T. C. Group. Design, Implementation, and Usage Principles for TPM-Based
Platforms, May 2005.

[101] T. C. Group. TPM Library Specification. http://www.

trustedcomputinggroup.org/tpm-library-specification/, October
2014.

[102] Top Threats Working Group. The Treacherous 12 Cloud Computing Top Threats
in 2016. In Cloud Security Alliance, 2016.

[103] Dirk Grunwald and Soraya Ghiasi. Microarchitectural Denial of Service: Insur-
ing Microarchitectural Fairness. In ACM/IEEE International Symposium on
Microarchitecture, 2002.

[104] Nils Gruschka and Luigi Lo Iacono. Vulnerable Cloud: SOAP Message Security
Validation Revisited. In IEEE International Conference on Web Services, 2009.

[105] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In Conference on Detection
of Intrusions and Malware and Vulnerability Assessment. 2016.

[106] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A Fast and Stealthy Cache Attack. In Conference on Detec-
tion of Intrusions and Malware and Vulnerability Assessment, 2016.

[107] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template At-
tacks: Automating Attacks on Inclusive Last-level Caches. In USENIX Security
Symposium, 2015.

243

http://trustedcomputinggroup.org
http://trustedcomputinggroup.org
http://www.trustedcomputinggroup.org/tpm-library-specification/
http://www.trustedcomputinggroup.org/tpm-library-specification/


[108] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo. CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels. In USENIX Conference on Operating Systems
Design and Implementation, 2016.

[109] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games — Bringing
Access-Based Cache Attacks on AES to Practice. In IEEE Symposium on Security
and Privacy, 2011.

[110] Arpan Gupta, Jack Sampson, and Michael Bedford Taylor. Quality Time:
A Simple Online Technique for Quantifying Multicore Execution Efficiency.
In IEEE International Symposium on Performance Analysis of Systems and
Software, 2014.

[111] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic Remote At-
testation: A Virtual Machine Directed Approach to Trusted Computing. In
Conference on Virtual Machine Research And Technology Symposium, 2004.

[112] Halflife. Bypassing Integrity Checking Systems. Phrack Magazine, 7(51), 1997.

[113] Yi Han, Tansu Alpcan, Jeffrey Chan, and Christopher Leckie. Security Games
for Virtual Machine Allocation in Cloud Computing. In Decision and Game
Theory for Security. 2013.

[114] Nishad Herath and Anders Fogh. These Are Not Your Grand Daddy’s CPU
Performance Counters: CPU Hardware Performance Counters for Security. In
Black Hat USA, 2015.

[115] Amir Herzberg, Haya Shulman, Johanna Ullrich, and Edgar Weippl. Clou-
doscopy: Services Discovery and Topology Mapping. In ACM Workshop on
Cloud Computing Security, 2013.

[116] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion Detection
Using Sequences of System Calls. Journal of Computer Security, 1998.

[117] Qun Huang and Patrick P.C. Lee. An Experimental Study of Cascading Per-
formance Interference in a Virtualized Environment. ACM SIGMETRICS
Performance Evaluation Review, 2013.

[118] Joseph Idziorek, Mark Tannian, and Doug Jacobson. Detecting Fraudulent Use
of Cloud Resources. In ACM Workshop on Cloud Computing Security Workshop,
2011.

[119] Kenneth Ingham and Stephanie Forrest. A History and Survey of Network
Firewalls. Technical report, University of New Mexico, 2002.

[120] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared Cache At-
tack That Works across Cores and Defies VM Sandboxing — and Its Application
to AES. In IEEE Symposium on Security and Privacy, 2015.

244



[121] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT: Stopping
Microarchitectural Attacks Before Execution. Cryptology ePrint Archive, Report
2016/1196, 2016.

[122] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Wait
a minute! A fast, Cross-VM attack on AES. In Research in Attacks, Intrusions
and Defenses. Springer, 2014.

[123] Trent Jaeger, Reiner Sailer, and Umesh Shankar. PRIMA: Policy-reduced
Integrity Measurement Architecture. In ACM Symposium on Access Control
Models and Technologies, 2006.

[124] Pramod Jamkhedkar, Jakub Szefer, Diego Perez-Botero, Tianwei Zhang, Gina
Triolo, and Ruby B. Lee. A Framework for Realizing Security on Demand in
Cloud Computing. In IEEE Conference on Cloud Computing Technology and
Science, 2013.

[125] Quan Jia, Huangxin Wang, Dan Fleck, Fei Li, Angelos Stavrou, and Walter
Powell. Catch Me If You Can: A Cloud-Enabled DDoS Defense. In IEEE/IFIP
International Conference on Dependable Systems and Networks, 2014.

[126] Xuxian Jiang and Xinyuan Wang. “Out-of-the-Box” Monitoring of VM-based
High-interaction Honeypots. In International Conference on Recent Advances
in Intrusion Detection, 2007.

[127] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy Malware Detection
Through Vmm-based “Out-of-the-box” Semantic View Reconstruction. In ACM
Conference on Computer and Communications Security, 2007.

[128] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
VMM-based Hidden Process Detection and Identification Using Lycosid. In
ACM International Conference on Virtual Execution Environments, 2008.

[129] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. NoHype: Virtual-
ized Cloud Infrastructure Without the Virtualization. In ACM International
Symposium on Computer Architecture, 2010.

[130] Daehoon Kim, Hwanju Kim, and Jaehyuk Huh. vCache: Providing a Transparent
View of the LLC in Virtualized Environments. Computer Architecture Letters,
2014.

[131] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM: System-
level Protection Against Cache-based Side Channel Attacks in the Cloud. In
USENIX Security Symposium, 2012.

[132] Yoongu Kim. Rowhammer Memtest. https://github.com/CMU-SAFARI/

rowhammer.

245

https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer


[133] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in Memory
Without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
In International Symposium on Computer Architecuture, 2014.

[134] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
Verification of an OS Kernel. In ACM SIGOPS Symposium on Operating Systems
Principles, 2009.

[135] Wenke Lee and Salvatore J. Stolfo. Data Mining Approaches for Intrusion
Detection. In USENIX Security Symposium, 1998.

[136] Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Se-
bastian Vogl, and Aggelos Kiayias. Scalability, Fidelity and Stealth in the
DRAKVUF Dynamic Malware Analysis System. In Annual Computer Security
Applications Conference, 2014.

[137] Chao Li, Zhenhua Wang, Xiaofeng Hou, Haopeng Chen, Xiaoyao Liang, and
Minyi Guo. Power Attack Defense: Securing Battery-Backed Data Centers. In
ACM/IEEE International Symposium on Computer Architecture, 2016.

[138] Min Li, Yulong Zhang, Kun Bai, Wanyu Zang, Meng Yu, and Xubin He.
Improving Cloud Survivability through Dependency based Virtual Machine
Placement. In International Conference on Security and Cryptography, 2012.

[139] Peng Li, Debin Gao, and Michael K. Reiter. StopWatch: A Cloud Architecture
for Timing Channel Mitigation. ACM Transactions on Information and System
Security, 2014.

[140] Wei-Jen Li, Ke Wang, S. J. Stolfo, and B. Herzog. Fileprints: Identifying File
Types by n-gram Analysis. In IEEE Information Assurance Workshop, 2005.

[141] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee. CATalyst: Defeating Last-Level Cache Side Channel Attacks
in Cloud Computing. In IEEE International Symposium on High Performance
Computer Architecture, 2016.

[142] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In IEEE/ACM
International Symposium on Microarchitecture, 2014.

[143] Fangfei Liu, Hao Wu, Ken Mai, and Ruby B. Lee. Newcache: Secure Cache
Architecture Thwarting Cache Side-Channel Attacks. IEEE Micro, 36(5), 2016.

[144] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level
Cache Side-Channel Attacks are Practical. In IEEE Symposium on Security and
Privacy, 2015.

246



[145] Huan Liu. A New Form of DoS Attack in a Cloud and Its Avoidance Mechanism.
In ACM Workshop on Cloud Computing Security Workshop, 2010.

[146] Huan Liu. A Measurement Study of Server Utilization in Public Clouds. In IEEE
International Conference on Dependable, Autonomic and Secure Computing,
2011.

[147] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and Chengyong
Wu. A Software Memory Partition Approach for Eliminating Bank-level Interfer-
ence in Multicore Systems. In International Conference on Parallel Architectures
and Compilation Techniques, 2012.

[148] Peter A. Loscocco, Perry W. Wilson, J. Aaron Pendergrass, and C. Durward
McDonell. Linux Kernel Integrity Measurement Using Contextual Inspection.
In ACM Workshop on Scalable Trusted Computing, 2007.

[149] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schroder. Pri-
vacy and Access Control for Outsourced Personal Records. In IEEE Symposium
on Security and Privacy, 2015.

[150] Corey Malone, Mohamed Zahran, and Ramesh Karri. Are Hardware Performance
Counters a Cost Effective Way for Integrity Checking of Programs. In ACM
Workshop on Scalable Trusted Computing, 2011.

[151] Heiko Mantel and Artem Starostin. Transforming Out Timing Leaks, More or
Less. In European Symposium on Computer Security, 2015.

[152] Frank J Massey Jr. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal
of the American Statistical Association, 1951.

[153] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Perfor-
mance Computers. http://www.cs.virginia.edu/stream/.

[154] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,
Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB Reduction and
Attestation. In IEEE Symposium on Security and Privacy, 2010.

[155] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In ACM International Workshop on
Hardware and Architectural Support for Security and Privacy, 2013.

[156] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. In
NIST Special Publication, 2011.

[157] Rui Miao, Rahul Potharaju, Minlan Yu, and Navendu Jain. The Dark Menace:
Characterizing Network-based Attacks in the Cloud. In ACM Conference on
Internet Measurement Conference, 2015.

247

http://www.cs.virginia.edu/stream/


[158] Zhen Mo, Qingjun Xiao, Yian Zhou, and Shigang Chen. On Deletion of Out-
sourced Data in Cloud Computing. In IEEE International Conference on Cloud
Computing, 2014.

[159] Soo-Jin Moon, Vyas Sekar, and Michael K. Reiter. Nomad: Mitigating Arbitrary
Cloud Side Channels via Provider-Assisted Migration. In ACM Conference on
Computer and Communications Security, 2015.

[160] Thomas Moscibroda and Onur Mutlu. Memory Performance Attacks: Denial of
Memory Service in Multi-core Systems. In USENIX Security Symposium, 2007.

[161] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber,
and Edgar Weippl. Dark Clouds on the Horizon: Using Cloud Storage As Attack
Vector and Online Slack Space. In USENIX Security Symposium, 2011.

[162] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kan-
demir, and Thomas Moscibroda. Reducing Memory Interference in Multicore
Systems via Application-aware Memory Channel Partitioning. In ACM/IEEE
International Symposium on Microarchitecture, 2011.

[163] Aarthi Nagarajan, Vijay Varadharajan, Michael Hitchens, and Eimear Gallery.
Property Based Attestation and Trusted Computing: Analysis and Challenges.
In International Conference on Network and System Security, 2009.

[164] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. DeepDive: Transparently Identifying and Managing Performance
Interference in Virtualized Environments. In USENIX Conference on Annual
Technical Conference, 2013.

[165] Keisuke Okamura and Yoshihiro Oyama. Load-based Covert Channels Between
Xen Virtual Machines. In ACM Symposium on Applied Computing, 2010.

[166] Yoshinori Okazaki, Izuru Sato, and Shigeki Goto. A New Intrusion Detection
Method Based on Process Profiling. In Symposium on Applications and the
Internet, 2002.

[167] Rolf Oppliger. Internet Security: Firewalls and Beyond. Communications of the
ACM, 1997.

[168] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Counter-
measures: the Case of AES. In RSA Conference on Topics in Cryptology, pages
1–20, 2006.

[169] Bryan D. Payne, Martim Carbone, and Wenke Lee. Secure and Flexible Monitor-
ing of Virtual Machines. In Annual Computer Security Applications Conference,
2007.

248



[170] Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares:
An Architecture for Secure Active Monitoring Using Virtualization. In IEEE
Symposium on Security and Privacy, 2008.

[171] Gábor Pék, Andrea Lanzi, Abhinav Srivastava, Davide Balzarotti, Aurélien
Francillon, and Christoph Neumann. On the Feasibility of Software Attacks on
Commodity Virtual Machine Monitors via Direct Device Assignment. In ACM
Symposium on Information, Computer and Communications Security, 2014.

[172] Colin Percival. Cache Missing for Fun and Profit. In BSDCan, 2005.

[173] Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. Characterizing Hypervisor
Vulnerabilities in Cloud Computing Servers. In International Workshop on
Security in Cloud Computing, 2013.

[174] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In
USENIX Security Symposium, 2016.

[175] Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh.
Copilot — a Coprocessor-based Kernel Runtime Integrity Monitor. In USENIX
Security Symposium, 2004.

[176] Nicolas Poggi, David Carrera, Ricard Gavalda, and Eduard Ayguade. Non-
intrusive Estimation of QoS Degradation Impact on E-Commerce User Sat-
isfaction. In IEEE Internatiopnal Symposium on Network Computing and
Applications, 2011.

[177] Jonathan Poritz, Matthias Schunter, Els Van Herreweghen, and Michael Waidner.
Property Attestation — Scalable and Privacy-friendly Security Assessment of
Peer Computers. Technical report, IBM Research, 2004.

[178] Nguyen Anh Quynh and Yoshiyasu Takefuji. Towards a Tamper-resistant Kernel
Rootkit Detector. In ACM Symposium on Applied Computing, 2007.

[179] Arthur Rahumed, Henry C. H. Chen, Yang Tang, Patrick P. C. Lee, and John
C. S. Lui. A Secure Cloud Backup System with Assured Deletion and Version
Control. In International Conference on Parallel Processing Workshops, 2011.

[180] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul England. Resource
Management for Isolation Enhanced Cloud Services. In ACM Workshop on
Cloud Computing Security, 2009.

[181] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing Digital Side-
channels Through Obfuscated Execution. In USENIX Security Symposium,
2015.

249



[182] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, You,
Get off of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds. In ACM Conference on Computer and Communications Security, 2009.

[183] Francisco Rocha and Miguel Correia. Lucy in the Sky Without Diamonds:
Stealing Confidential Data in the Cloud. In IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, 2011.

[184] Ahmad-Reza Sadeghi and Christian Stüble. Property-based Attestation for
Computing Platforms: Caring About Properties, Not Mechanisms. In Workshop
on New Security Paradigms, 2004.

[185] Ahmad-Reza Sadeghi, Christian Stüble, and Marcel Winandy. Property-Based
TPM Virtualization. In International Conference on Information Security, 2008.

[186] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design
and Implementation of a TCG-based Integrity Measurement Architecture. In
USENIX Security Symposium, 2004.

[187] Hiroaki Sakoe and Seibi Chiba. Dynamic Programming Algorithm Optimization
for Spoken Word Recognition. IEEE Transactions on Acoustics, Speech and
Signal Processing, 1978.

[188] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable and Efficient Fine-
grain Cache Partitioning. In AMC International Symposium on Computer
Architecture, 2011.

[189] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu.
Policy-sealed Data: A New Abstraction for Building Trusted Cloud Services. In
USENIX Security Symposium, 2012.

[190] Vincent Scarlata, Carlos Rozas, Monty Wiseman, David Grawrock, and Claire
Vishik. TPM Virtualization: Building a General Framework. In Trusted
Computing. 2008.

[191] Joshua Schiffman, Thomas Moyer, Hayawardh Vijayakumar, Trent Jaeger, and
Patrick McDaniel. Seeding Clouds with Trust Anchors. In ACM Workshop on
Cloud Computing Security, 2010.

[192] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data
analytics in the cloud using SGX. In IEEE Symposium on Security and Privacy,
2015.

[193] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-Based
Method for Detecting Anomalous Program Behaviors. In IEEE Symposium on
Security and Privacy, 2001.

250



[194] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou.
Specification-based Anomaly Detection: A New Approach for Detecting Network
Intrusions. In ACM Conference on Computer and Communications Security,
2002.

[195] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Pioneer: Verifying Code Integrity and Enforcing Untampered
Code Execution on Legacy Systems. In ACM Symposium on Operating Systems
Principles, 2005.

[196] Ryan Shea and Jiangchuan Liu. Understanding the Impact of Denial of Service
Attacks on Virtual Machines. In IEEE International Workshop on Quality of
Service, 2012.

[197] Ryan Shea and Jiangchuan Liu. Performance of Virtual Machines Under Net-
worked Denial of Service Attacks: Experiments and Analysis. IEEE Systems
Journal, 2013.

[198] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad
Calder. Discovering and Exploiting Program Phases. IEEE Micro, 2003.

[199] Elaine Shi, Adrian Perrig, and Leendert van Doorn. BIND: a Fine-grained
Attestation Service for Secure Distributed Systems. In IEEE Symposium on
Security and Privacy, 2005.

[200] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting Cache-based
Side-channel in Multi-tenant Cloud using Dynamic Page Coloring. In IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops, 2011.

[201] Emin Gün Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh,
Dan Williams, and Fred B. Schneider. Logical Attestation: An Authorization
Architecture for Trustworthy Computing. In ACM Symposium on Operating
Systems Principles, 2011.

[202] Gaurav Somani, Manoj Singh Gaur, and Dheeraj Sanghi. DDoS/EDoS Attack in
Cloud: Affecting Everyone out There! In International Conference on Security
of Information and Networks, 2015.

[203] Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jörg Schwenk, Nils Gruschka,
and Luigi Lo Iacono. All Your Clouds Are Belong to Us: Security Analysis of
Cloud Management Interfaces. In ACM Workshop on Cloud Computing Security,
2011.

[204] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and Dongyan Xu. Process Out-
grafting: An Efficient “out-of-VM” Approach for Fine-grained Process Execution
Monitoring. In ACM Conference on Computer and Communications Security,
2011.

251



[205] Emil Stefanov and Elaine Shi. Multi-cloud Oblivious Storage. In ACM Confer-
ence on Computer Communications Security, 2013.

[206] Emil Stefanov and Elaine Shi. ObliviStore: High Performance Oblivious Cloud
Storage. In IEEE Symposium on Security and Privacy, 2013.

[207] Emil Stefanov, Elaine Shi, and Dawn Song. Towards Practical Oblivious RAM.
In Network Distributed System Security Symposium, 2012.

[208] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: A Scalable
Cloud File System with Efficient Integrity Checks. In ACM Annual Computer
Security Applications Conference, 2012.

[209] Mario Strasser and Heiko Stamer. A Software-based Trusted Platform Module
Emulator. In Trusted Computing — Challenges and Applications. Springer,
2008.

[210] Frederic Stumpf, Omid Tafreschi, Patrick Röder, and Claudia Eckert. A Robust
Integrity Reporting Protocol for Remote Attestation. In Workshop on Advances
in Trusted Computing, 2006.

[211] Y. Sun, G. Petracca, T. Jaeger, H. Vijayakumar, and J. Schiffman. Cloud
Armor: Protecting Cloud Commands from Compromised Cloud Services. In
IEEE International Conference on Cloud Computing, 2015.

[212] Yuqiong Sun, Giuseppe Petracca, Xinyang Ge, and Trent Jaeger. Pileus: Pro-
tecting User Resources From Vulnerable Cloud Services. In Annual Conference
on Computer Security Applications, 2016.

[213] Yuqiong Sun, Giuseppe Petracca, and Trent Jaeger. Inevitable Failure: The
Flawed Trust Assumption in the Cloud. In ACM Workshop on Cloud Computing
Security, 2014.

[214] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala. Static Analyzer of Vicious
Executables (SAVE). In Annual Computer Security Applications Conference,
2004.

[215] Wai Kit Sze, Abhinav Srivastava, and R. Sekar. Hardening OpenStack Cloud
Platforms Against Compute Node Compromises. In ACM Asia Conference on
Computer and Communications Security, 2016.

[216] Jakub Szefer. Architectures for Secure Cloud Computing Servers. PhD thesis,
Princeton University, 2013.

[217] Jakub Szefer, Eric Keller, Ruby B. Lee, and Jennifer Rexford. Eliminating the
Hypervisor Attack Surface for a More Secure Cloud. In ACM Conference on
Computer and Communications Security, 2011.

252



[218] Jakub Szefer and Ruby B. Lee. BitDeposit: Deterring Attacks and Abuses
of Cloud Computing Services through Economic Measures. In IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, May 2013.

[219] Peter Szor. The Art of Computer Virus Research and Defense. Pearson Educa-
tion, 2005.

[220] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. Unsupervised
Anomaly-based Malware Detection Using Hardware Features. In Research in
Attacks, Intrusions and Defenses. 2014.

[221] Yang Tang, Patrick P. C. Lee, John C. S. Lui, and Radia Perlman. FADE:
Secure Overlay Cloud Storage with File Assured Deletion. In International
Conference on Security and Privacy in Communication Networks, 2010.

[222] Carol Taylor and Jim Alves-Foss. NATE: Network Analysis of Anomalous Traffic
Events, a Low-cost Approach. In Workshop on New Security Paradigms, 2001.

[223] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L. Rivest, Emil Stefanov, and
Nikos Triandopoulos. Hourglass Schemes: How to Prove That Cloud Files Are
Encrypted. In ACM Conference on Computer and Communications Security,
2012.

[224] Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley, Thomas
Ristenpart, and Michael M. Swift. Resource-freeing Attacks: Improve Your
Cloud Performance (at Your Neighbor’s Expense). In ACM Conference on
Computer and Communications Security, 2012.

[225] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift. Scheduler-
based Defenses Against Cross-VM Side-channels. In Usenix Security Symposium,
2014.

[226] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. A Placement Vulnerability Study in Multi-Tenant Public Clouds. In
USENIX Security Symposium, 2015.

[227] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James Newsome,
and Anupam Datta. Design, Implementation and Verification of an eXtensible
and Modular Hypervisor Framework. In IEEE Symposium on Security and
Privacy, 2013.

[228] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anupam Datta.
überSpark: Enforcing Verifiable Object Abstractions for Automated Compo-
sitional Security Analysis of a Hypervisor. In USENIX Security Symposium,
2016.

[229] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating Fine
Grained Timers in Xen. In ACM Workshop on Cloud Computing Security, 2011.

253



[230] Michael Velten and Frederic Stumpf. Secure and Privacy-aware Multiplexing of
Hardware-protected TPM Integrity Measurements Among Virtual Machines. In
International Conference on Information Security and Cryptology, 2013.

[231] VMWare. Understanding Full Virtualization, Paravirtualization, and
Hardware Assist. http://linuxcourse.rutgers.edu/documents/VMware_

paravirtualization.pdf.

[232] Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, Depei Qian, and
Onur Mutlu. A-DRM: Architecture-aware Distributed Resource Management of
Virtualized Clusters. In ACM International Conference on Virtual Execution
Environments, 2015.

[233] Ke Wang and Salvatore J Stolfo. Anomalous Payload-based Network Intrusion
Detection. In Recent Advances in Intrusion Detection, 2004.

[234] Xueyang Wang and R. Karri. NumChecker: Detecting Kernel Control-Flow Modi-
fying Rootkits by Using Hardware Performance Counters. In ACM/EDAC/IEEE
Design Automation Conference, 2013.

[235] Xueyang Wang, Charalambos Konstantinou, Michail Maniatakos, and Ramesh
Karri. ConFirm: Detecting Firmware Modifications in Embedded Systems Using
Hardware Performance Counters. In IEEE/ACM International Conference on
Computer-Aided Design, 2015.

[236] Yao Wang, Andrew Ferraiuolo, and G. Edward Suh. Timing Channel Protection
for a Shared Memory Controller. In IEEE International Symposium on High
Performance Computer Architecture, 2014.

[237] Yi-Min Wang, Doug Beck, Binh Vo, Roussi Roussev, and Chad Verbowski. De-
tecting Stealth Software with Strider GhostBuster. In International Conference
on Dependable Systems and Networks, 2005.

[238] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks. In ACM International Symposium on
Computer Architecture, 2007.

[239] Zhenghong Wang and Ruby.B. Lee. A Novel Cache Architecture with En-
hanced Performance and Security. In IEEE/ACM International Symposium on
Microarchitecture, 2008.

[240] Zhi Wang and Xuxian Jiang. HyperSafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-Flow Integrity. In IEEE Symposium on Security
and Privacy, 2010.

[241] Jinpeng Wei, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, and Peng Ning.
Managing Security of Virtual Machine Images in a Cloud Environment. In ACM
Workshop on Cloud Computing Security, 2009.

254

http://linuxcourse.rutgers.edu/documents/VMware_paravirtualization.pdf
http://linuxcourse.rutgers.edu/documents/VMware_paravirtualization.pdf


[242] Dong Hyuk Woo and Hsien-Hsin S Lee. Analyzing Performance Vulnerability
due to Resource Denial-of-Service Attack on Chip Multiprocessors. In Workshop
on Chip Multiprocessor Memory Systems and Interconnects, 2007.

[243] Hao Wu, Fangfei Liu, and Ruby B. Lee. PALMScloud: Cloud Server Benchmark
Suite for Evaluating New Hardware Architectures. IEEE Computer Architecture
Letters, PP(99), 2016.

[244] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-space: High-
speed Covert Channel Attacks in the Cloud. In USENIX Security Symposium,
2012.

[245] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon: Detecting
Violation of Control Flow Integrity Using Performance Counters. In IEEE/IFIP
International Conference on Dependable Systems and Networks, 2012.

[246] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One
Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege
Escalation. In USENIX Security Symposium, 2016.

[247] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen,
and Richard Schlichting. An Exploration of L2 Cache Covert Channels in
Virtualized Environments. In ACM Workshop on Cloud Computing Security,
2011.

[248] Zhang Xu, Haining Wang, and Zhenyu Wu. A Measurement Study on Co-
residence Threat inside the Cloud. In USENIX Security Symposium, 2015.

[249] Zhang Xu, Haining Wang, Zichen Xu, and Xiaorui Wang. Power Attack: An
Increasing Threat to Data Centers. In Network Distributed System Security
Symposium, 2014.

[250] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. Secure
Hierarchy-Aware Cache Replacement Policy (SHARP): Defending Against Cache-
Based Side Channel Atacks. In ACM International Symposium on Computer
Architecture, 2017.

[251] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: Precise
Online QoS Management for Increased Utilization in Warehouse Scale Computers.
In ACM International Symposium on Computer Architecture, 2013.

[252] Kan Yang, Xiaohua Jia, and Kui Ren. Attribute-based Fine-grained Access
Control with Efficient Revocation in Cloud Storage Systems. In ACM Symposium
on Information Computer and Communications Security, 2013.

[253] Ziye Yang, Haifeng Fang, Yingjun Wu, Chungi Li, Bin Zhao, and H.H. Huang.
Understanding the Effects of Hypervisor I/O Scheduling for Virtual Machine Per-
formance Interference. In IEEE International Conference on Cloud Computing
Technology and Science, 2012.

255



[254] Fangzhou Yao, Read Sprabery, and Roy H. Campbell. CryptVMI: A Flexible and
Encrypted Virtual Machine Introspection System in the Cloud. In International
Workshop on Security in Cloud Computing, 2014.

[255] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack. In USENIX Security Symposium, 2014.

[256] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. Direct Device
Assignment for Untrusted Fully-virtualized Virtual Machines. Technical report,
IBM Research, 2008.

[257] Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. Security Breaches As
PMU Deviation: Detecting and Identifying Security Attacks Using Performance
Counters. In Asia-Pacific Workshop on Systems, 2011.

[258] Zentific. LibVMI-based GDB Server for Virtual Machines. https://github.

com/Zentific/vmidbg.

[259] Yan Zhai, Lichao Yin, Jeffrey Chase, Thomas Ristenpart, and Michael Swift.
CQSTR: Securing Cross-Tenant Applications with Cloud Containers. In ACM
Symposium on Cloud Computing, 2016.

[260] Kehuan Zhang, Xiaoyong Zhou, Yangyi Chen, XiaoFeng Wang, and Yaoping
Ruan. Sedic: Privacy-aware Data Intensive Computing on Hybrid Clouds. In
ACM Conference on Computer and Communications Security, 2011.

[261] Su Zhang, Xinwen Zhang, and Xinming Ou. After We Knew It: Empirical Study
and Modeling of Cost-effectiveness of Exploiting Prevalent Known Vulnerabil-
ities Across IaaS Cloud. In ACM Symposium on Information, Computer and
Communications Security, 2014.

[262] Tianwei Zhang and Ruby B. Lee. CloudMonatt: An Architecture for Security
Health Monitoring and Attestation of Virtual Machines in Cloud Computing.
In ACM International Symposium on Computer Architecture, 2015.

[263] Tianwei Zhang and Ruby B. Lee. Monitoring and Attestation of Virtual Machine
Security Health in Cloud Computing. IEEE Micro, 36(5), 2016.

[264] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A Real-time Side-
channel Attack Detection System in Clouds. In Research in Attacks, Intrusions
and Defenses. 2016.

[265] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. DoS Attacks on Your Memory
in Cloud. In ACM Asia Conference on Computer and Communications Security,
2017.

[266] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Hardware Execution Throttling
for Multi-core Resource Management. In USENIX Annual Technical Conference,
2009.

256

https://github.com/Zentific/vmidbg
https://github.com/Zentific/vmidbg


[267] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and
John Wilkes. CPI2: CPU Performance Isolation for Shared Compute Clusters.
In ACM European Conference on Computer Systems, 2013.

[268] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. HomeAlone: Co-
residency Detection in the Cloud via Side-Channel Analysis. In IEEE Symposium
on Security and Privacy, 2011.

[269] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM
Side Channels and Their Use to Extract Private Keys. In ACM Conference on
Computer and Communications Security, 2012.

[270] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In ACM Conference on Computer
and Communications Security, 2014.

[271] Yinqian Zhang and Michael K. Reiter. DüPpel: Retrofitting Commodity Operat-
ing Systems to Mitigate Cache Side Channels in the Cloud. In ACM Conference
on Computer and Communications Security, 2013.

[272] Yulong Zhang, Min Li, Kun Bai, Meng Yu, and Wanyu Zang. Incentive Com-
patible Moving Target Defense against VM-colocation Attacks in Clouds. In
Information Security and Privacy Research. 2012.

[273] Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and Lingjia Tang. SMiTe:
Precise QoS Prediction on Real-System SMT Processors to Improve Utilization
in Warehouse Scale Computers. In IEEE/ACM International Symposium on
Microarchitecture, 2014.

[274] Fangfei Zhou, Manish Goel, Peter. Desnoyers, and Ravi Sundaram. Sched-
uler Vulnerabilities and Coordinated Attacks in Cloud Computing. In EEE
International Symposium on Network Computing and Applications, 2011.

[275] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A Software Approach to
Defeating Side Channels in Last-level Caches. In ACM Conference on Computer
and Communications Security, 2016.

[276] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing
Shared Resource Contention in Multicore Processors via Scheduling. In Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, 2010.

257


	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Cloud Computing Definition
	1.1.1 Essential Characteristics
	1.1.2 System Support

	1.2 Cloud Computing Models
	1.2.1 Deployment Models
	1.2.2 Service Models

	1.3 Attack Vectors in Cloud Computing
	1.4 Dissertation Summary

	2 Past Work
	2.1 Security Threats and Protections in Cloud Computing
	2.1.1 Service Interface
	2.1.2 Networks
	2.1.3 Cloud Managers
	2.1.4 Virtualized System
	2.1.5 Shared Infrastructure
	2.1.6 Cloud Services
	2.1.7 What is Covered in This Dissertation

	2.2 Cloud Security Platforms
	2.3 Chapter Summary

	3 VM Security Health Monitoring and Attestation
	3.1 Background
	3.1.1 Security on Demand Framework
	3.1.2 Related Work

	3.2 CloudMonatt Architecture
	3.2.1 Design Goals of the Architecture
	3.2.2 Architecture Overview
	3.2.3 Threat Model
	3.2.4 Monitoring and Attestation Protocols
	3.2.5 VM Lifecycle and Attestation Responses

	3.3 Case Studies
	3.3.1 Startup and Runtime Integrity
	3.3.2 Runtime Confidentiality Breach through Covert Channels
	3.3.3 Runtime CPU Availability

	3.4 Evaluation
	3.4.1 Prototype Implementation
	3.4.2 Performance Evaluation

	3.5 Appendix to Chapter 3: Security Verification
	3.5.1 Verification Methodology
	3.5.2 External Verification
	3.5.3 Internal Verification
	3.5.4 Verification Discussions

	3.6 Chapter Summary

	4 Detection and Mitigation of Availability Vulnerabilities
	4.1 Background
	4.1.1 Threat Model and Assumptions
	4.1.2 Hardware Memory Resources
	4.1.3 Related Work

	4.2 Memory DoS Attacks
	4.2.1 Fundamental Attack Strategies
	4.2.2 Cache Contention (Storage Resources)
	4.2.3 Bus Contention (Scheduling Resources)
	4.2.4 Memory Contention (Combined Resources)

	4.3 Case Studies in Amazon EC2
	4.3.1 Attacking Distributed Applications
	4.3.2 Attacking E-Commerce Websites

	4.4 Defense against Memory DoS Attacks
	4.4.1 Detection Method
	4.4.2 Mitigation Method
	4.4.3 Implementation
	4.4.4 Evaluation

	4.5 Chapter Summary

	5 Detection and Mitigation of Confidentiality Vulnerabilities
	5.1 Background
	5.1.1 Related Work
	5.1.2 Threat Model and Assumptions

	5.2 Detection Method
	5.2.1 Design Challenges and Overview
	5.2.2 Signature Detection of Cryptographic Applications
	5.2.3 Anomaly Detection of Side-channel Activities

	5.3 Mitigation Methods
	5.4 Architecture
	5.4.1 Architecture Overview
	5.4.2 System Operations

	5.5 Evaluation
	5.5.1 Detection Accuracy
	5.5.2 Performance

	5.6 Discussions
	5.6.1 Detecting Other Side Channels
	5.6.2 Potential Evasive Attacks
	5.6.3 Limitations

	5.7 Chapter Summary

	6 Detection and Mitigation of Integrity Vulnerabilities
	6.1 Background
	6.1.1 Related Work

	6.2 VM System Integrity Vulnerabilities
	6.2.1 Kernel-level Rootkits
	6.2.2 User-level Malware
	6.2.3 Network-level Application Attacks

	6.3 Detection and Mitigation
	6.3.1 Kernel-level Rootkits
	6.3.2 User-level Malware
	6.3.3 Network-level Application Attacks

	6.4 CloudGuard Architecture
	6.4.1 Architecture Requirements
	6.4.2 Overview
	6.4.3 Threat Model

	6.5 Implementation
	6.5.1 CloudGuard Prototype
	6.5.2 VMI Functionalities
	6.5.3 Security Tools

	6.6 Evaluation
	6.6.1 Rootkits Scanner
	6.6.2 Anti-malware
	6.6.3 Firewall

	6.7 Discussions
	6.8 Chapter Summary

	7 Conclusions
	7.1 System Integration
	7.2 Future Work

	Bibliography

