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ABSTRACT 
Software cache-based side channel attacks are a serious 
new class of threats for computers. Unlike physical side 
channel attacks that mostly target embedded cryptographic 
devices, cache-based side channel attacks can also under-
mine general purpose systems. The attacks are easy to per-
form, effective on most platforms, and do not require spe-
cial instruments or excessive computation power. In re-
cently demonstrated attacks on software implementations 
of ciphers like AES and RSA, the full key can be recovered 
by an unprivileged user program performing simple timing 
measurements based on cache misses. 

We first analyze these attacks, identifying cache inter-
ference as the root cause of these attacks. We identify two 
basic mitigation approaches: the partition-based approach 
eliminates cache interference whereas the randomization-
based approach randomizes cache interference so that zero 
information can be inferred. We present new security-aware 
cache designs, the Partition-Locked cache (PLcache) and 
Random Permutation cache (RPcache), analyze and prove 
their security, and evaluate their performance. Our results 
show that our new cache designs with built-in security can 
defend against cache-based side channel attacks in general 
– rather than only specific attacks on a given cryptographic 
algorithm – with very little performance degradation and 
hardware cost. 

Categories and Subject Descriptors 
C.1 [Processor Architectures]: Miscellaneous; 
K.6.5 [Management of Computing and Information Systems]: 
Security and Protection 

General Terms: Security, Design, Performance 

Keywords: Cache, Side channel, Computer architecture, Se-
curity, Processor, Timing attacks 

 

1.  INTRODUCTION 
Protecting the confidentiality of secret or sensitive informa-
tion is a major concern for users of computer systems. This 
is often done by using cryptographic methods, so that even 
if the adversary gets hold of the data, it is encrypted and he 
cannot interpret it – unless he can get hold of, or discover, 
the key.  Strong cryptography is designed so that it is com-
putationally infeasible to infer the key bits by brute-force 
trials, or even by differential cryptanalysis [1] and linear 
cryptanalysis [2]. However, rather than use sophisticated 
mathematical analysis, side-channel attacks use auxiliary 
information to deduce key bits. They collect “side channel 
information”, which can be in the form of timing, power 
consumption, radiation or sound produced by the system 
[3]. This often carries information about the cryptographic 
keys. For example, in a differential power analysis attack 
[4], a bit of secret key information can be discovered by 
detecting which branch is executed upon a key-dependent 
conditional branch, because the device does different things 
depending on which branch is actually executed, consum-
ing different amounts of power. 

Side channel attacks have mostly been used in attacking 
simple systems such as smart cards, due to the noisy nature 
of the side channel information, the difficulty in collecting 
such information and the need for physical access or prox-
imity. In attacking more complicated general-purpose com-
puter systems, more traditional attacks are used, e.g., ex-
ploiting flaws in operating systems that allow an attacker to 
gain direct access to the secrets or even subvert the entire 
system. 

Unlike physical side channel attacks, software cache-
based side channel attacks can impact a much wider spec-
trum of systems and users. This is because caches exist in 
almost all modern processors, the software attacks are very 
easy to perform, and are effective on various platforms [5-
7]. This makes cache-based side channel attacks extremely 
attractive as a new weapon in the attacker’s arsenal. Also, 
existing mitigation methods for side channel attacks are all 
ad hoc and only defend against specific attacks. No past 
work has proposed general solutions as we do in this paper. 
We propose cost-effective solutions that address cache-
based side channel attacks in general, by eliminating the 
root cause of these attacks. Our main contributions are: 

• An analysis of cache-based side channel attacks, 
identifying cache interference as the root cause that 
enables these attacks. 
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• Identification of two main mitigation approaches: the 
partition-based solutions and the randomization-
based solutions.  

• Detailed proposal of new security-aware cache archi-
tectures for each mitigation approach.  

• Analysis of these new cache architectures and an in-
formation-theoretic proof of security.  

• Performance evaluation of the proposed architec-
tures using cycle-accurate simulation.   

In section 2, we define our threat model and analyze dif-
ferent types of cache-based side channel attacks, showing 
how and why they work. In section 3, we discuss software 
solutions and hardware solutions that have been proposed, 
and their problems. In section 4, we propose two new gen-
eral-purpose hardware solutions: the Partition Locked 
cache (PLcache) and the Random Permutation cache 
(RPcache). In section 5, we evaluate the proposed designs 
in terms of security and performance. In section 6 we re-
view past work, and we conclude in section 7.  
 
2.   THREAT MODEL AND ATTACKS 
2.1. Threat Model and Assumptions 
The goal of the adversary is to learn information that he has 
no legitimate access to, e.g., the classified data or secret 
keys. The attacker needs very little capability to mount a 
cache side channel attack. An adversary is one or multiple 
unprivileged user processes, including a remote client that 
can interact with the server where the secrets are stored. 
The adversary has no administrator privilege. We assume 
that the adversary does not exploit physical attacks like bus 
and memory probing, since he typically does not have 
physical access to the victim machine and such ability is 
not necessary for cache-based side channel attacks. The 
adversary can achieve his goal without the need for finding 
and exploiting system flaws, but rather just acts like a nor-
mal process, performing legitimate operations. We further 
assume that the victim and the adversary are “isolated” 
processes that do not share the same address space, since 
this always gives the adversary the ability to infer informa-
tion about the victim’s behavior. 

Many different types of cache side channel attacks are 
possible. We group them based on the attacker’s ability to 
observe cache accesses of the victim process. The attacker 
may be able to directly detect each individual access of the 
victim. Alternatively, he may only be able to take a snap-
shot of the cache in a certain time period and see several 
accesses without knowing their order. Sometimes, he can-
not observe any cache access, and can only measure the 
overall execution time of the victim process. 

 

2.2. Percival’s Attack on RSA 
Modern microprocessors, such as Simultaneous Multi-
Threading (SMT) processors, allow multiple threads to run 
simultaneously, sharing part of the cache subsystem. This 
gives an attacker process the ability to directly observe 

other concurrent threads’ cache accesses and obtain a rela-
tively accurate trace. In 2005, Percival [6] demonstrated an 
attack against the popular OpenSSL implementation of the 
RSA algorithm using this approach. 

Attack description: The attacker manages to run simul-
taneously with the victim process which is performing RSA 
encryption. His goal is to discover bits of the private en-
cryption key used by the victim. The attacker sequentially 
and repeatedly accesses an array, thus loading in his own 
data to occupy all cache lines; at the same time he measures 
the delay for each access to detect cache misses, e.g., using 
the rdtsc instructions to read a timer in Intel x86 proces-
sors. The victim’s cache accesses will evict the attacker’s 
data, causing the attacker to miss on these cache lines, ena-
bling detection by the attacker. 

Attack Analysis: The core operation used in RSA is 
modulo exponentiation. It is often implemented with a se-
ries of squarings and multiplications. The encryption key is 
also divided into a series of segments. For each multiplica-
tion, a multiplier is selected from a set of pre-computed 
constants stored in a table. During the table lookup, a seg-
ment of the encryption key is used to index the table. As the 
table is stored in memory, the attacker can detect the cache 
evictions caused by the victim (the encrypting process) for 
the table lookup. Based on which line is evicted, the at-
tacker can infer which table entry is accessed. This tells the 
attacker the index used for this table lookup, which is a 
segment of the encryption key. 

 

2.3. Bernstein’s Attack on AES 
In Bernstein’s attack [5], the attacker has no direct observa-
tion of the victim process’ cache accesses. He may be on 
another machine, performing the attack remotely. He can 
only observe the total execution time of a program. 

Attack description: The victim is a software module that 
can perform AES encryption. The module is a “black box”; 
the user is only able to choose the input to the AES soft-
ware module and measure how long it takes to complete the 
encryption. The user may be a process in the same machine 
or a remote user requesting encryption service. Empirical 
studies show that for most software AES implementations 
running on modern microprocessors, the execution time of 
an encryption is input-dependent and can be exploited to 
recover the secret encryption key. The attack consists of 
three steps: 
1. Learning phase: Let the victim use a known key K. The 

attacker generates a large number, N, of random plain-
texts P. He sends the plaintexts to the cipher program 
and records the encryption time for each plaintext. He 
uses the algorithm shown in Figure 1 to obtain the tim-
ing characteristics for K, shown in Figure 2(a). 

2. Attacking phase: Repeat step 1 except that an unknown 
key K’ is used. The timing characteristics for K’ is 
shown in Figure 2(b). Note that the input set is ran-
domly generated and not necessarily the same as that 
used in step1. 
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3. Key recovery: Given the two sets of timing characteris-
tics, use the correlation algorithm shown in Figure 1(b) 
to recover the unknown key K’.  

In Figure 2, the height of the bar at position j is tavg
i(j,K), 

which is the average of the execution time of the AES en-
cryptions when the i-th byte of plaintext P is j, using key K. 
In the AES algorithm, each plaintext P is an M-byte block, 
e.g., M=16, therefore M pairs of such timing characteristic 
charts are generated. Figure 2 only shows one such pair, 
corresponding to byte 0 in P. Experiments show that 
tavg

i(j,K) is pretty much fixed for a given system configura-
tion. Furthermore, it is found that when a different key K’ is 
used, the timing charts roughly remain the same except that 
the locations of the bars in the charts are permuted, as 
shown in Figure 2. More specifically, the following equa-
tion holds: 

     tavg
i(pi , K) = tavg

i(p’i , K’) if  p’i ⊕ k’i = pi ⊕ ki       (1) 
where ⊕ is the bit-wise XOR operation, and ki and k’i are 
the i-th byte of K and K’ respectively. 

Attack Analysis: Table lookups are intensively used in 
various AES implementations for high performance. For 
example, OpenSSL v0.9.7a uses five tables. During the 
encryption, for each byte pi of the plaintext, one table is 
accessed using the index (pi⊕ki) where ki is the i-th byte of 
the encryption key. Ideally, these table lookups will hit in 
the cache since normally the cache is large enough to ac-
commodate all these tables. However, in reality it is found 

that there are always other memory accesses that regularly 
contend for cache lines at some fixed locations. Therefore, 
given an index (pi⊕ki), if the corresponding table entry is 
mapped into one of these “hot” cache locations, the table 
lookup will experience a cache miss, and will lead to larger 
tavg

i(pi , K), i.e., a high bar in Figure 2. Also, when p’i ⊕ k’i 
= pi ⊕ ki the table lookup will access the same table entry, 
i.e., the same cache location. This explains why the same 
bar in Figure 2(a) also appears in Figure 2(b), though at 
different location, as described by equation (1). 

The two representative attacks analyzed above corre-
spond to two extremes in the attacker’s ability to observe 
cache interference. There are also other attacks reported [8], 
where the attacker has an observation ability between these 
extremes. Despite the dramatic difference in these attacks, 
they all rely, directly or indirectly, on cache interference. In 
attacks like Percival’s attack, external interference is ex-
ploited by a process outside the victim program. The vic-
tim’s cache accesses evict the attacker’s cache lines and 
therefore can be observed. In Bernstein’s attack, internal 
interference, coming from the victim code module itself, 
occurs. The cache line evictions of AES table entries are 
caused by another part of the software module (e.g., the 
wrapper code for the AES encryption core) and even the 
encryption code itself. These two types of cache interfer-
ence are not a result of any specific cache architectures. 
They are rather general and almost all microprocessors with 
caches are vulnerable to such attacks. 

For key K: 
For s = 1 to N do begin 

Generate a random 128-bit Plaintext block, Ps; 
Ts = time taken for AES encryption of Ps using K; 

end; 
For i = 0 to 15 do begin 

For j = 0 to 255 do begin 
count = 0;             
For s = 1 to N do begin 

If  pi = j then  
TSUMi(j) = TSUMi(j) + Ts; 
count = count+1; 

             end; 
             tavg

i(j,K) = TSUMi(j)/count;  
      end; 
end; 

 
 
For i = 0 to 15 do begin 
   For j = 0 to 255 do begin 
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   end; 
   ki’= findMax(Corr); 
end; 
 
Note: Function findMax() searches for the 
maximum value in the input array and returns 
its index. 

Figure 1.   (a) Timing characteristic generation                 (b) Key-byte searching algorithm 
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Figure 2.   Timing characteristic charts for byte 0 (obtained on a Pentium-M machine) 
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3. EXISTING SOLUTIONS  
3.1. Software Solutions 
Most existing solutions for cache-based side channel at-
tacks are software based and specific to a given encryption 
algorithm. The basic methodology is to rewrite the software 
in a way that the known attacks can not succeed. For exam-
ple, to mitigate the attacks against AES, several new im-
plementations have been proposed, e.g. 1) pre-load the AES 
tables into the cache before starting an encryption so that 
all accesses to AES tables hit in the cache and hence have 
constant encryption time; or 2) do not use table lookups at 
all in the AES implementation – use only mathematical 
operations instead. More proposals can be found in [7][9]. 
To mitigate attacks against RSA, one proposal changes the 
pre-computed multiplier table such that to access any mul-
tiplier, all cache lines in the table are touched. The attacker 
always observes a fixed cache access pattern and can not 
guess the key bits.  

One problem with these software solutions is that they 
are all ad hoc and attack specific. They are tailored to a 
given program (which has to be changed) and only mitigate 
the known attacks. New attacks are still possible as the un-
derlying cache interference still exists. A second problem is 
that the software solutions often cause significant perform-
ance degradation. The new software implementations of 
AES are 2X to 4X slower than the original insecure imple-
mentation [9]. A third problem is that some software solu-
tions rely on specific hardware architecture parameters. For 
example, the new RSA implementation above needs to be 
rewritten if the cache line size changes. This is undesirable 
for software portability. Finally, some software counter-
measures have been proved not sufficient. For example, 
pre-loading AES tables before encryption indeed can not 
ensure constant encryption time. The table entries can still 
be evicted after the tables are loaded and before or during 
the encryption.  

 

3.2. Hardware Solutions 
Hardware solutions proposed include conceptual ones [7] 
which disable the cache or use separate caches for simulta-
neous threads. Some new eviction strategies which mini-
mize the extent to which one thread can evict data used by 
another thread were suggested in [6]. In [18], Page pro-
posed to exploit a partitioned cache originally designed for 
multimedia applications to block cache-based side channel 
attacks. The ISA is changed to make the cache a visible 
part of the architecture, with new instructions that can de-
fine a partition and specify its size and other parameters, 
the cache line size, the stride size, etc. However, the author 
also admitted that the cost of the design and its perform-
ance impact can be high.  
 
4.  NEW HARDWARE SOLUTIONS 
Unlike the software solutions that are ad hoc and attack 
specific, our work attempts to eliminate the root cause of 
the problem for cache side channel attacks in general. We 

also aim at designs that can leverage existing cache features 
as much as possible, introducing low cost changes only 
when necessary. We feel this is necessary to encourage 
rapid and widespread deployment. Our results show that 
with little hardware cost, this goal can be achieved without 
impacting performance. Section 2 showed that cache inter-
ference is the root cause for cache-based side channel at-
tacks. To block these attacks, we can try to eliminate cache 
interference, i.e., prevent inference of cache line evictions. 
We identify two main solution approaches. One class of 
solutions essentially partitions the cache, so that there is no 
sharing of cache lines, and hence no interference. The other 
approach allows sharing, but randomizes the cache interfer-
ence, so that no useful information can be deduced. We 
describe an efficient hardware solution for each approach.  
 

4.1. Partition-Locked Cache (PLcache) 
The concept of cache partitioning is not new, as described 
in section 3. However, in previous designs, the partitions 
are mostly static. This prevents sharing, often leading to 
large performance degradation. A process may use very 
few cache lines in its partition, but unused lines are not 
available to other processes which may need more cache 
lines than they have in their partitions. We refer to such a 
cache as a statically partitioned cache, or a partitioned 
cache in short. In this paper, we propose the Partition-
Locked cache (PLcache) that essentially achieves the effect 
of cache partitioning, but much more flexibly with less per-
formance degradation. In PLcache, the cache lines of inter-
est are locked in cache, creating a flexible “private parti-
tion”; these cache lines can not be evicted by other cache 
accesses not belonging to this private partition, preventing 
internal, as well as external, cache interference. 
 

4.1.1. Architecture Description 
The PLcache consists of two parts: the hardware addition to 
the cache and the system interface for controlling which 
cache lines should be locked.  
A. Hardware addition: Figure 3 shows the hardware addi-
tion to the cache, consisting of two new tags, L and ID, per 
cache line. The 1-bit L flag indicates whether this cache 
line is locked or not. The ID field indicates the owner of the 
cache line. Not shown in Figure 3, is an optional LL bit per 
TLB entry, page-table entry or segment descriptor (if the 
architecture supports segmentation) which indicates if an 
access to a page or a segment should cause the correspond-
ing cache line to be locked in cache.  

 
B. Control Interface: There are two mechanisms that allow 
the programmer, compiler and OS to control what to lock in 
the cache. Either mechanism can be implemented: 

Original cache lineL ID

Figure 3. A cache line of the PLcache 
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1) ISA extension: a new set of load/store instructions 
with a lock/unlock sub-op can be added to the base 
ISA (Instruction Set Architecture). This gives the pro-
grammer or compiler the fine-grain control on what 
data to lock. Table 1 describes the new load/store in-
structions.  

2) Segment/Page-based protection: Regions of memory, 
e.g., those containing AES and RSA tables, can be 
marked as LOCKED. Accesses to such regions of 
memory should cause the corresponding cache line to 
be locked. This uses the LL bit described above, added 
to the segment descriptor and the TLB entry. This in-
terface gives the operating system an opportunity to 
control what data should be locked in the cache. Table 
2 shows API calls that can be exposed to programmers 
to make use of this mechanism. To lock a memory re-
gion, the function lock_mem_region() can be called 
which returns a region id. The LL bit of the corre-
sponding segment is set. To unlock a region, the func-
tion unlock_mem_region() can be called with the id of 
the region to be unlocked as the input argument. The 
LL bit of the corresponding segment is cleared, and the 
locked cache lines invalidated. 

C. Cache access handling: Figure 4 shows the flow chart of 
an access to a PLcache. Note that the sequential steps 
shown in the flow chart do not necessarily execute sequen-
tially in the hardware.  The cache hit handling procedure is 
the same as in traditional caches except that the L bit of the 
cache line accessed needs to be updated if necessary. If the 
access is a load/store instruction with lock/unlock sub-op, 
the instruction itself determines if the L bit should be set or 
cleared. This information is available early in the pipeline 
(after the instruction decoding stage) and hence does not 
impact cache access time. If the LL bit in segment descrip-
tors is implemented, its checking can be done together with 
the checking of existing protection bits, and no extra delay 
is added. Similarly, if the LL bit in the TLB entry is im-
plemented, the check can be done together with that for 
existing protection bits during the TLB access. 

 
Figure 4. Access handling procedure for PLcache 

During a cache miss, the replacement algorithm differs 
from a traditional cache because of the Locked cache lines. 
Let R denote the line chosen to be evicted by the normal 
cache replacement algorithm (e.g., LRU) and D denote the 
new data block that is being fetched into the cache. The 
following cases need to be considered: 

 

Case Description 
1 If D does not need to be locked and R is also not locked, 

D replaces R like in a normal cache miss. 
2 If D does not need to be locked but R is a locked line, D 

can not replace R. In this case, for a load instruction, 
one can simply return D to the processor execution core.  
For a store instruction, the data is written back to the 
next level of memory, without replacing R. The LRU 
list should be updated so that R becomes the most re-
cently used line and will not be chosen for eviction next 
time. This can avoid repeatedly missing on this cache 
set due to the locked line. 

3 If D needs to be locked in the cache, it is allowed to 
replace any line that is not locked or any locked line that 
belongs to the same process. We do not allow the new 
line to evict a locked line of another process. Such a 
miss can be handled as described in case 2. 

 

D. Updating the L bit of a cache line: If the ISA extension 
is implemented, the instructions with locking/unlocking 
capability can set or clear the bits whereas normal load and 
store instructions can not. If the segment/page based protec-
tion is implemented, in each memory access the address is 
checked and the L bit is set or cleared accordingly. If both 
mechanisms are implemented, locking/unlocking instruc-
tions always set/clear the L bit, and a normal load/store 
instruction can also set the L bit if the address is in a locked 
memory region.  

4.1.2. Discussion 
ISA extension vs. segment/page-based protection: The ISA 
extension gives the software developer the flexibility to 
prevent cache interference for any portion of its memory. 
Legacy code however can not benefit without modification. 
The segment/page based protection provides a rather 
coarse-grain control mechanism – but both future code and 

Table 1: ISA extension for PLcache   
Name Description 

 
ld.lock/ 

ld.unlock 

Identical to a normal load instruction with the 
additional action: If the memory access hits in the 
cache or causes a cache line to be fetched into the 
cache, the L bit of the cache line is set/cleared. 

 
st.lock/ 

st.unlock 

Identical to a normal store instruction with the 
additional action: If the memory access hits in the 
cache or causes a cache line to be fetched into the 
cache, the L bit of the cache line is set/cleared. 

 

Table 2: API calls for PLcache 
Declaration 

 

int lock_mem_region 
                    (unsigned long start_addr, unsigned long length); 
 
 

int unlock_mem_region(int region_id); 
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legacy code can benefit from it. For example, the pro-
grammer can exploit the API calls to specify a memory 
region to be protected, and the OS can mark memory re-
gions such as AES or RSA tables used by crypto libraries 
during load time.  
Controlling the use of locking mechanisms: The proper use 
of PLcache will not allow any program to lock cache lines 
without OS oversight. Otherwise, a process may, mali-
ciously or naively, lock excessive amounts of data in the 
cache, causing a security or fairness problem, respectively. 
An adversary can also selectively lock certain lines to inter-
fere with other processes. In PLcache, the hardware only 
provides the locking mechanisms, and the software should 
ensure their proper use. For example, the programmer and 
compiler can specify and optimize what to lock, and the OS 
determines if the lock is allowed based on the security pol-
icy. This might allow only trusted processes to lock cache 
lines and might impose an upper bound on the number of 
cache lines that a process can lock. For our segment/page-
based PLcache mechanism, the OS can make this decision 
during the API call for locking a memory region, denying 
this service when necessary. For our ISA-based PLcache 
mechanism, the OS can disable the locking instructions, 
e.g., treating them as normal memory instructions without 
locking capability. This can be done, via a per-thread “dis-
able locking” flag which is used to guard the L-bit update 
logic in the pipeline.  
Cache line ID management: Any hardware implemented 
field has a limit on the number of items that it can repre-
sent. Hence, an n-bit ID field of a cache line limits the 
maximum number of processes that can own lines in the 
cache at any one time to 2n. This does not limit the total 
number of concurrent software processes that the OS can 
support. For example, non-critical processes that do not 
need to be isolated can share the same ID value, e.g., ‘0’. 
 

4.2. Random Permutation Cache (RPcache) 
We propose a Random Permutation Cache (RPcache) for 
the randomization-based approach. In contrast to the 
PLcache, this approach allows cache sharing, but random-
izes the resulting interference, so that no useful information 
about which cache line was evicted can be inferred.  

An attacker can observe another process’s cache access 
only if that process changes the attacker’s cache usage, i.e., 
evicts the attacker’s cache lines. If the process evicts its 
own cache lines, the attacker has no way to know that. As 
shown in section 2, by knowing which cache lines have 
been accessed by the victim process, the attacker can infer 
critical information about the victim process. In RPcache, 
each time such cache interference occurs, we randomize it 
such that the interference carries no useful information.   
Architecture Description: We assume a generic set-
associative cache where M bits of the effective address, the 
set bits, are used to index the cache set array. The number 
of cache sets in the array is 2M and each cache set contains 
N cache lines for an N-way set-associative cache, including 
direct-mapped caches where N=1. 
A. Permutation of memory-to-cache mapping 
A key operation that the RPcache performs is the permuta-
tion of the memory-to-cache mapping. Conceptually, this is 
done by using a level of indirection in indexing the cache. 
In RPcache, the memory-to-cache mapping for a process is 
stored in a permutation table (PT), as shown in Figure 5. 
The table has the same number of entries as the number of 
cache sets, and each entry contains a different M-bit num-
ber which indicates the new set. For each cache access, the 
PT is indexed with the M set bits of the effective address to 
obtain the new set bits, which are then used to index the 
cache set array. A complete randomization of the memory-
to-cache mapping can be achieved by a random permuta-
tion of the contents of the table entries. This can be decom-
posed into a series of swap operations, each of which ex-
changes the contents of two entries. Swapping the k-th and 
the i-th table entries means changing the memory-to-cache 
mapping, k  S and i  S’, to the new mapping k  S’ 
and i  S. This indirect indexing scheme is a logical de-
scription. In hardware, this extra level of indirection is not 
necessary, as we show later. 

In the RPcache, a number of permutation tables are 
added and each table can be used by one or more processes 
to access the cache. For example, an encrypting process can 
use one table and all other non-critical processes use an-
other. The number of such tables implemented depends on 

Set bits

A
dd

re
ss

 d
ec

od
er

P

Permutation
Table M

U
X

Effective address

new set bits

ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

Cache set array

Figure 5. A logical view of the RPcache 
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needs and cost. In PC systems where only occasionally a 
process needs to be protected, one table should be enough. 
All other processes can use the original mapping that does 
not need a remapping table. The memory-to-cache mapping 
needs to be updated from time to time, during the execution 
of the process, as described later. Similar to PLcache, a P 
bit and ID field are also added to each cache line.  

B. Randomization of cache interference 
We first define terms we will use in our discussion. 

Name Description 
R , S R is the cache line being replaced in cache set S. 

R’ , S’ R’ is the cache line being replaced in another cache 
set S’ which is randomly selected. 

D The memory block being fetched into the cache. 
PX The P-bit of cache line X, e.g., of R, R’ or D. 

In the case of cache interference between the victim and 
attacker processes (external interference), the interference 
occurs only when the victim evicts a line of the attacker. In 
RPcache, rather then replacing line R, another cache set S’ 
is randomly selected with equal probability. The new line D 
that is to be put into the cache then replaces R’ in S’ instead 
of R in S. The memory-to-cache mappings of S and S’ are 
swapped such that next time when the victim process 
wishes to access D, he will access the correct cache line. 
From the attacker’s point of view, when he detects a cache 
miss, the cache miss can be caused by the victim’s access 
to any cache set, with equal probability. Hence he can learn 
nothing about the address that the victim accessed. Note 
that after swapping the memory-to-cache mapping of S and 
S’, if the process wishes to access another cache line origi-
nally in set S, it will now access set S’. It will miss on set 
S’ and bring another copy of the line into set S’ although 
set S still has it. To avoid this, ideally the cache lines in S 
and S’ that belong to the current process should also be 
swapped. However, for efficiency we invalidate all such 
lines in S and S’ and write them back to memory if they are 
dirty. Future accesses to them will get them correctly from 
the next level of the memory hierarchy. Since the selection 
of S’ is independent of S, R and D, it can be pre-computed 

and the write-backs can be performed in the background to 
hide the associated overhead. 

In the case of cache interference from other code in the 
victim’s own process (internal interference), a similar idea 
can be applied. To distinguish the memory region to be 
protected from such internal interference, two fields, a P bit 
and ID field are added to each cache line (shown in Figure 
5), similar to the L bit and ID field in the PLcache. An in-
ternal cache interference occurs if the new line D is non-
protected while the old line R is protected, or if D is pro-
tected and R is non-protected. As the attacker can not di-
rectly observe internal cache interference (since the evicted 
lines belong to the victim himself), the attacker can only 
observe the overall effect like the encryption time in Bern-
stein’s attack. If such internal interference is rather fixed, or 
repeatable, like the eviction of AES table entries at fixed 
locations, the attacker can learn the fixed interference by 
performing a large number of trials, observing the cipher’s 
execution time for each trial, and using statistical analysis 
of these times. Therefore by randomizing every internal 
cache interference there will not be any repeatable interfer-
ence (which carries information) that can be observed by 
the attacker. To randomize internal cache interference, each 
time when the new line D and the old line R have different 
P-bit values, R is not replaced. D is returned to the execu-
tion core if it is a load, or written to the next level of the 
memory hierarchy if it is a store, without replacing any line 
in the cache. At the same time, a cache set S’ is randomly 
selected, and a line R’ in S’ is evicted. Then the original 
cache interference on R is now on R’ which is purely ran-
dom and not repeatable.  

The mechanisms for controlling which cache lines 
should be protected are similar to those used in the PLcache 
except that no new instructions are needed. In addition to 
the P bit and ID field in each cache line, a PP bit is also 
added to segment descriptors or the TLB entries. By using 
the segment/page based protection mechanism described 
for the PLcache, the OS and programmer can specify the 
memory region to be protected. In addition, if a section of 
code is marked as protected, i.e., the code segment descrip-

Figure 6. Cache access handling procedure for RPcache 
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tor or the ITLB entry has its PP bit set, any cache accesses 
issued by the protected code will set the P bit of the 
touched cache lines. This gives a convenient way for the 
OS to protect critical modules, e.g., the crypto libraries. 
The OS only needs to set the PP bit of the code pages of 
such modules.  
C. Cache access handling 
Figure 6 shows the flow chart of the cache access handling 
procedure. A cache hit in the RPcache is the same as a 
normal cache hit except that the P-bit of the cache line 
needs to be updated, based on the value of the PP-bit. Dur-
ing a cache miss, a line R in set S is chosen using the nor-
mal cache replacement policy. If R belongs to another 
process, a random set S’ is selected. The new line D then 
replaces R’ in S’ and the memory-to-cache mapping for S’ 
and S is swapped. If R belongs to the same process, two 
cases need to be considered, as shown below. 
 

Case Description 
1 If PD == PR, R is replaced by the new line like in a nor-

mal cache miss. 
2 If PD != PR,  R can not be replaced and the access is per-

formed without replacing R. R’s replacement informa-
tion is updated so that it will not be selected for eviction 
next time. This avoids repeated misses in set S. At the 
same time S’ is randomly selected with equal probability 
among all cache sets, and R’ in S’ is evicted, based on 
the normal cache replacement policy for blocks in a set. 

Low-overhead RPcache Implementation: Using an extra 
level of indirection in cache indexing can introduce extra 
delay into the cache access. For an L2 or L3 cache, a 
straightforward table lookup implementation may be good 
enough since one extra cycle in L2 or L3 cache loads will 
not cause much performance loss. However, for an L1 
cache, which is often the most delay-sensitive module in a 
processor, an extra cycle on a cache hit may be unaccept-
able. We now show that indirect indexing for our RPcache 
can be implemented, without requiring an extra cycle, nor 
extending the cycle time latency. 

Figure 7 shows the modified decoder circuitry for the 
RPcache based on the common implementation with the 3-
to-8 NAND pre-decoder and the second stage NOR gates. 
Rather than having a fixed connection for each input of the 
NOR gate with one output of a 3-to-8 NAND pre-decoder, 
each input line of the NOR gate is connected via switches 
to all of the 8 output lines of the pre-decoder. The switches 
are controlled by a register called the permutation regis-
ter(PR), and at any time only one switch is on. Each permu-
tation register is one entry of the permutation table in Fig-
ure 5. Note that we omit the MUX in Figure 5 for clarity. 
Compared with the original decoder, the only extra delay in 
the critical path is caused by the switch transistor. The path 
from the PR to the output of the NOR gate is not the critical 
path since the PR can be read out early in the pipeline in-
stead of at the beginning of the cache access cycle: once the 
instruction is known as a memory-accessing instruction and 
to which process it belongs, the PRs can be read out and 
properly selected by the MUX. The delay caused by the 
switches is mainly due to the drain capacitance of the 
switch transistors which increase the load capacitance of 
the 3-to-8 NAND pre-decoders. To overcome this, we im-
plement multiple copies of the pre-decoders, and let each of 
them drive a portion of the vertical lines such that the load 
of each NAND gate does not increase much. We also 
manually adjust the transistor sizes along the critical path, 
including the address bit drivers, the NAND gates, and the 
switches. We also insert a buffer between the address bit 
driver and the pre-decoders. We model this using cacti-3.2 
tool [10], assuming a 0.18um technology. Table 3 shows 
the simulated results, where we first optimized the access 
time to less than 5% increase, then optimized the power to 
less than 10% increase. The increase in percent is relative 
to the unmodified cache modeled in cacti-3.2. Our results 
show that we can achieve approximately the same cache 
access time with up to 10% increase in power consumption. 
This is a straight forward implementation and further cir-
cuit optimization can certainly lead to even better designs.  

Figure 7. Address decoder circuitry of the RPcache 
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Table 3. Timing and Power Estimation of RPcache 
RPcache  16K 2way 32K 2way 16K 4way 32K 4way 
Access 
time(ns) 

1.225 
(+2.1%) 

1.331 
(+1.7%) 

1.293 
(+1.1%) 

1.344 
(+3.3%) 

Power 
(nj) 

1.205 
(+8.6%) 

1.282 
(+1.3%) 

1.792 
(+6.1%) 

1.906 
(+2.1%) 

5.    Evaluation 
5.1. Security Analysis 
Security analysis of the PLcache: In a PL cache, the criti-
cal cache lines of the victim are locked in the cache, and the 
victim’s accesses to these lines will always hit in the cache 
without causing any evictions of the attacker’s cache lines. 
The attacker therefore can not learn anything about the vic-
tim’s accesses to these lines. This defeats the Percival-type 
attack. Similarly, accesses from other parts of the code in 
the same process also can not interfere with the accesses to 
the critical cache lines.   

 
       (a) In traditional cache              (b) In RPcache 

Figure 8. Channel model of the cache-address-
based side channel 

Security analysis of the RPcache: We model the cache 
side channel as a communication channel (Figure 8), and 
prove that in the RPcache this side channel has zero chan-
nel capacity, meaning no information can be inferred by the 
attacker based on his observation of cache misses. 

In the case of cache interference between processes, the 
victim and the attacker processes are the sender and the 
receiver in the channel, respectively. In the case of internal 
cache interference, either the protected code or the unpro-
tected code in the same process can be the sender or the 
receiver (since they mutually interfere with each other). 
The input alphabet of the channel is the cache set number 
that the sender has accessed. The output alphabet is the 
cache set number where the receiver observes a miss. Both 
input and output alphabets are 2M in size. We model the 
channel as a noiseless discrete time synchronous channel, 
where every access of the sender has an outcome at the 
output of the channel (i.e., evicts a cache line that belongs 
to the receiver) and can be observed by the receiver without 
error. This is the ideal case of the real cache side channel, 
and its capacity is the upper bound of the real channel. Fig-
ure 8(a) is the channel model for the traditional cache, 
which has a capacity of log2(2M)=M bits per channel use 
[11], where 2M is the total number of cache sets. Figure 8(b) 
is the channel model for the RPcache. In the RPcache, each 

time the sender evicts one of the receiver’s cache lines, the 
receiver will experience a miss. However, as explained in 
section 4.2, this miss can be caused by the sender’s access 
to any cache set, with equal probability. In other words, 
given an output symbol j, the probability that it is caused by 
an input symbol i is equal for any i. We then have the fol-
lowing theorem.  
Theorem 1: In an RPcache, the capacity of the side channel 
based on cache line addresses is zero. 
Proof:  

Let Pr(j|i) denote the conditional probability that given 
the input symbol i, the output symbol j is observed:            

Pr(j|i) = Prob(output = j | input = i) 
The set of such conditional probabilities is called the 
channel matrix, which determines the channel capacity. 
According to section 4.2(B), the following relation 
holds: 

 Pr(j|i) = Pr(j’|i’) for any i,j and i’,j’ 
 In information theory, it is straight forward to prove 

that a channel with such a channel matrix has a zero 
capacity [11].  □ 

In Percival’s attack, the attacker can detect cache misses 
caused by the victim’s accesses. But according to Theorem 
1, the attacker can learn nothing about the victim, and 
hence the attack can not succeed. 
In Bernstein’s attack, the victim is the AES code within a 
module. The attacker can not directly observe the output of 
the channel and can only see an aggregate version of the 
outputs, e.g., the execution time of the overall program. As 
we discussed in section 4.2(B), RPcache makes the inter-
ference to the AES table completely random. Therefore the 
attacker will not be able to generate the timing characteris-
tic charts shown in Figure 2. The average time tavg

i(pi , K) 
will be about equal for all i, pi and K. No key information 
can be inferred from the correlation between the two charts 
in Figure 2. 
 

5.2. Performance Evaluation 
We implemented the PLcache and the RPcache on M-Sim 
v2.0 [12] which is a multi-threaded microarchitectural 
simulation environment based on simplescalar3.0d. AES is 
used to evaluate the performance impact of the new cache 
architectures on code being protected. The SPEC2000 
benchmark suite is used for evaluating the performance 
impact on general purpose workloads. In SPEC2000 
benchmark simulation, the appropriate number of instruc-
tions are fast forwarded, ranging from 100 million to 2.1 
billion instructions. Cycle-accurate simulations are then 
performed for 100 million instructions. Table 4 shows the 
simulation parameters used. 
Performance impact on the protected code: Figure 9 shows 
the performance of the OpenSSL 0.9.7a implementation of 
AES on a processor with a traditional cache (Baseline), an 
L1 PLcache and an L1 RPcache. A total of 5 Kbytes of data 
need to be protected in this AES implementation. The 
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simulated program performs the generation of 1 KByte 
packets and the encryption of the packets, and runs alone 
on the processor. To examine the effects of the cache ca-
pacity and the configuration on performance, we vary the 
cache size from 4K to 32K and simulated the direct-
mapped, 2-way and 4-way set-associative configurations 
for each size. Our results show that PLcache is sensitive to 
the cache size and configuration. When the size of the pro-
tected memory (5KB) is larger than the cache capacity 
(4KB cache), the performance is always bad because all 
cache lines are locked. Implementing the PLcache as a di-
rect-mapped cache is also not a good idea since once a line 

is locked, it generates a lot of conflict misses. For cache 
sizes larger than the protected data, with set-associativity at 
least 2, the PLcache can achieve comparable performance 
to the traditional cache. In contrast, the RPcache consis-
tently achieves almost the same performance as the tradi-
tional cache, regardless of the cache capacity and configu-
ration. The performance impact caused by the random 
cache evictions in RPcache is negligible: worst case 1.7% 
(on 4K directed-mapped cache) and 0.3% on average. We 
also simulate the L2 PLcache and L2 RPcache. As the L2 
cache is large enough to hold the working set, no perform-
ance degradation is observed. 

AES Encryption Performance
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Figure 9. Performance comparison of AES code 

AES running with SPEC2000fp
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AES running with SPEC2000int
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Table 4. Simulation parameters 
Simulation Parameters Value 

Decode/Issue width 4/4 
Integer ALUs 4+1 multi/div unit 

Floating-point ALUs 4+1 multi/div unit  
ROB size 96 

Physical RF size 96 each for Int/FP 
Fetch Policy for SMT icount 
L1 instruction cache 64KB 2-way 32B  

L2 unified cache 512K 8-way 64B 
Cache access time 2 cycles L1, 12 cycles L2 

Memory access latency 200 first chunk, 4 inter 
L1 data cache ports 2 

LSQ entries 48 

Performance impact on the whole system due to the pro-
tected code: The PLcache and RPcache may impact the 
performance of the system during the execution of the pro-
tected code, e.g., the performance of other general purpose 
workloads running concurrently while encryption is being 
done for a file. In the simulation, we assume that the pro-
tected code (AES) is running with another thread simulta-
neously. We use an 8Kbyte direct-mapped L1 D-cache and 
a 32Kbyte 4-way L1 D-cache to bound the cache impact. 
The 6 bars per SPEC2000fp or SPEC2000int benchmark in 
Figure 10 show the simulations of the baseline, PLcache 
and RPcache for 8K 1-way L1 D-cache, then for 32K 4-
way D-cache. For an 8Kbyte direct-mapped cache, PLcache 
causes an average performance degradation of 12% and 
14% on floating point benchmarks and integer benchmarks, 
respectively. The RPcache causes 0.3% degradation on 
floating point benchmarks and 0.07% improvement on inte-
ger benchmarks. The improvement is a result of the swap 
operations of the RPcache which avoid many conflict 
misses. On a 32Kbyte 4-way cache, the PLcache achieves a 
0.2% performance improvement on both integer and float-
ing-point benchmark sets. This is because the 32Kbyte 
cache is large enough to hold the working sets for both 
threads and the protected code benefits from the locked 
cache lines that avoid misses on these lines. The perform-
ance degradation for the RPcache is 0.3% on FP suite and 
1.2% on INT suite, respectively. The increase in perform-
ance degradation is due to the higher overhead associated 
with the swap operations for a set-associative cache. How-
ever, the absolute degradation is still very small. We also 
examined the effect of implementing the L2 cache as a 
PLcache or RPcache. The effect is again insignificant. 

Although we only use AES as the protected code in our 
simulations, our conclusions are not specific to AES. The 
sensitivity of PLcache’s performance to the cache configu-
ration and capacity (relative to the size of the protected 
memory region) is due to the locking behavior and is not a 
result of any AES-specific factor. The robustness of the 
RPcache’s performance is due to the fact that we allow 
sharing – and our design intentionally minimizes the re-
strictions on sharing. 
 

5.3. Comparison with Prior-Art 
Table 5 summarizes the advantages of our PLcache and 
RPcache solutions compared with the prior-art partitioned 
cache solution, in terms of both security and performance. 

Table 5. Comparing with prior-art Partitioned Cache 
Security &  

Performance 
Partitioned 

Cache 
Our 

PLcache 
Our 

RPcache 
Prevents external 

Interference? Yes Yes Yes 

Prevents Internal 
Interference? No Yes Yes 

Relative 
performance Low Medium High 

Security: All three approaches can prevent information 
leakage via external cache interference. Partitioned cache 
and PLcache provide private partitions to a process which 
are not accessible by other processes. RPcache randomizes 
the interference so that it carries no useful information. The 
partitioned cache can not, however, defend against attacks 
based on internal interference; a private partition still al-
lows code within a process to contend for cache lines and 
cause interference, as in Bernstein’s statistical attack. 
PLcache does not have this problem, because it explicitly 
locks the desired lines in cache, and other parts of the same 
process cannot interfere with these cache lines. RPcache 
randomizes the interference – hence it carries no useful 
information.  
Performance: A partitioned cache does not allow a process 
which uses very few cache lines to make its unused cache 
lines available to other processes which may need more 
cache lines than they have in their partitions. Hence, it has 
the lowest performance among the three approaches. 
PLcache can achieve better performance because it has a 
locking mechanism that allows it to minimize the size of 
flexible private partitions, leading to better cache utiliza-
tion. RPcache allows different processes to share cache 
slots and therefore has the smallest performance degrada-
tion. In addition, the performance of the partitioned cache 
and PLcache depend on software to specify proper parti-
tioning of the cache, while the performance of the RPcache 
is very robust, with little dependence on the software and 
the underlying hardware cache architecture. 
 

6.   PAST WORK 
The problem of information leakage via the cache was first 
mentioned and discussed in the context of covert channels 
[13] where the information is intentionally modulated over 
the cache interference. In 2002, Page [14] described a theo-
retical attack exploiting cache misses. In 2002 and 2003, 
Tsunoo et al. studied attacks against DES on computers 
with caches [15][16]. In 2005, Bernstein [5] and Osvik et 
al. [7] concurrently developed cache timing attacks against 
AES. Pervical [6] demonstrated an attack against RSA on 
an SMT processor. Since then, a number of new cache-
based side channel attacks have been reported in [8][17]. 
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Most past work on mitigating cache-based side channel 
attacks focused on software solutions. New implementa-
tions of AES and RSA were proposed and their perform-
ance evaluated [9]. Partitioning resources, including caches 
have also traditionally been used to mitigate covert chan-
nels; more recently, Page [18] also used a Partitioned 
Cache for mitigating side channels. Our PLcache uses a 
different approach to realize a minimal “virtual partition”, 
achieving greater security and higher performance with 
little hardware cost (Table 5). We also propose a randomi-
zation-based cache solution which is completely different. 

Other related work include the HIDE cache [19] which 
takes a probabilistic approach to mitigate control flow in-
formation leakage. In contrast, we focus on information 
leakage caused by cache interference rather than due to the 
exposure of address traces on the system memory bus. Our 
assumptions are fundamentally different and the proposed 
architectures are also very different. 
 
7.  CONCLUSIONS 
Cache-based side channel attacks can be very dangerous.  
Almost all computing systems have shared caches at some 
level and will be susceptible to these attacks.  These attacks 
are software attacks – very easy to perform, without the 
need for special equipment, and the attacker does not need 
physical access to the device. The attacker process can be 
unprivileged and can even be a remote client. The attacks 
are very effective: the full key bits can be recovered in a 
short time. 

We presented analysis of why and how different types of 
cache-based side channel attacks work. We identify cache 
interference as the root cause of these attacks. We proposed 
novel general-purpose hardware solutions, the PLcache and 
the RPcache, that eliminate or randomize cache interfer-
ence, respectively. The PLcache, with minimal hardware 
cost, can help the software developer achieve security 
without losing performance. With a little more hardware, 
the RPcache can robustly provide both security and per-
formance, even without input from the programmer. Our 
performance evaluation shows that the RPcache causes 
performance degradation of less than 2% on average. Using 
an information-theoretic method, we mathematically 
proved the security of the RPcache. 

Future work includes identifying more processor and 
cache induced side channel attacks, and finding solutions to 
mitigate this growing threat. We hope that this paper will 
help stimulate new research in the design of security-aware 
cache and computer architectures that do not sacrifice on 
performance, cost and energy consumption. 
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