
A Security Architecture for Transient Trust
Cynthia E. Irvine, Timothy E. Levin, Paul C. Clark, Thuy D. Nguyen

Naval Postgraduate School
1411 Cunningham road

Monterey, CA 93943-5201
831-656-2395

{ irvine, levin, pcclark, tdnguyen}@nps.edu

ABSTRACT

In extraordinary situations, certain individuals may require access

to information for which they are not normally authorized. For

example, to facilitate rescue of people trapped inside of a burning

building, firefighters may need its detailed floor plan --

information that may not typically be accessible to emergency

responders. Thus, it is necessary to provide transient trust so that

such sensitive information is available to selected individuals only

during the emergency. The architecture presented here is designed

to support transient trust. It encompasses pre-positioned,

updateable domains for use exclusively during emergencies along

with a set of “normal” domains with different sensitivity levels.

Allocated to partitions, these domains are entered via a high

integrity trusted path service located in a separate trusted partition.

Interaction among subjects in different partitions is controlled by

a high assurance separation kernel, and efficient use of devices is

achieved through the application of a three-part device model. The

resulting architecture enforces mandatory security policies, yet

ensures secure and revocable access to a class of information
during declared emergencies.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures, D.4.6

[Operating Systems]: Security and Protection

General Terms

Design, Security.

Keywords

Virtualization, Multilevel Security, Emergency Management,

Separation Kernel

1. INTRODUCTION
A common paradigm of secure computing is the tradeoff between

usability and security. While timely access to accurate

information can be a significant competitive differentiator for

nations as well as enterprises, the ability to protect that

information can be just as significant. Frustration with the

inability to access information in recent armed conflicts and civil

catastrophes clarified for many decision-makers that the balance

between information availability and protection is a risk

management action that should not be constrained by a rigid

security policy. Rather, it has become clear to many that the

mechanisms for controlling and accessing information must

incorporate multiple situational factors to ensure the risk/benefit

tradeoff is correctly calculated, and that the decisions must be
automated to ensure timely access. [29][40]

We present a security architecture for supporting emergency

access to information that incorporates and extends current

separation kernel technology to provide high assurance of the

confinement and revocation of sensitive information accessed

during an emergency, such that the risk of allowing extraordinary

access is mitigated. To achieve this assurance we confine

emergency information temporally – it can only be accessed

extraordinarily during a discrete emergency – and spatially – it is

not allowed to leave a special “emergency partition” that is
protected by a highly robust separation kernel.[28]

The target platform for research and validation of our approach is

a handheld computer, the E-device. Our security solutions in this

form factor provide a mobile emergency-response capability that

enables rapid, knowledgeable actions; promotes usability; and

ensures sensitive emergency-support information is protected as it

is communicated, processed and stored. The result is a trusted
foundation for effective crisis management activities.

To describe our architecture, we first highlight its major

contributions and provide background on access control, risk

management and the tension between the need for information

protection and flexibility. A brief description of emergency

operations sets the stage for a presentation of the architecture,

which describes its protection domains and the allocation of

functionality and policies to those domains. Our analysis includes

user interaction, transient trust, the use of hardware, and our

prototype. A comparison with related work is followed by a
summary of this paper.

2. CONTRIBUTIONS
We describe a coherent security architecture, based on a
separation kernel, that features several innovations:

• A special isolated environment for extraordinary access to

sensitive information. This “emergency partition” features

high assurance of data confinement and revocation, as well

as the ability for the user to process data with commercial

applications. Confinement is further ensured by closing the

This paper is authored by an employee(s) of the United States Government

and is in the public domain.

CSAW’08, October 31, 2008, Fairfax, Virginia, USA.

ACM 978-1-60558-300-6/08/10.

1

emergency partition to users except during discrete

“emergency” periods, after which information updates can be

relayed to a central authority and the entire partition can be
automatically purged.

• A dedicated environment for high integrity processing.

Using a trusted path, the user accesses a trusted partition in

which simple high assurance applications provide services

such as trusted signing and communication.

• Interaction between partitions, whether through

communication devices or other objects, is controlled

completely by the separation kernel, with kernel assurance.

This is a fundamentally different approach from other recent
separation kernel security architectures.[22]

• An efficient device model in which the kernel ensures the

separation of activities through the virtualization of shared

devices, without depending on trusted subject programs. In

general, access to a device does not require a context switch

to another partition. Also, any physical device that is

dedicated to a given partition (viz., not shared) can be passed

through to the external domain for direct access by the client
OS.

3. BACKGROUND
There are many approaches for controlled sharing of information;

however, when the effects of information compromise are high –

e.g., loss of life or limb, or other serious damage to an individual,

enterprise or nation – policies and mechanisms that can ensure

global and persistent protection of the information are required.

Research has shown that policies for this sort of protection are

representative of a label-based lattice abstraction [8], in which

information flow or access control is maintained via labels applied

to active subjects and passive objects. A supporting policy [9]

generally requires that subjects’ labels should not be of more

sensitivity than the related user’s clearance. Coupled with an

automated security policy that prohibits a subject from observing

information of greater sensitivity, [6] the supporting policy

ensures that users cannot read “up.” Complementary rules [6]

prevent accidental or malicious “write down” by automated

subjects. This describes the traditional “rigid” security policy

mentioned in the introduction. It should be noted that government

operational practices supporting this policy do not generally allow

clearances to be raised without a corresponding, and very

expensive, background check. Similarly, to support global and

persistent policy enforcement, object labels are not allowed to

change; however, through the use of special high assurance

mechanisms and human review, trusted components may move

information from high objects to low ones.

On the other hand, a risk-management approach to security might

conclude that the benefit of providing a person with information

for which he has not been vetted outweighs the risk (e.g., to the

information owner) of exposure of that information. In

emergencies, it is desirable that such a decision be made

automatically, rather than waiting for human review. In a grossly

simplified example, a decision engine could be calibrated to allow

extraordinary access to a datum if the information availability

would save lives, even though the information exposure would put

at risk a certain amount of property. (Policies and mechanisms for

providing these calibrations are outside of the scope of this paper).

However, this risk-management approach is problematic, since it

is not likely in a traditional multi-level secure (MLS) policy

enforcement environment that the required emergency access

could be accomplished by simply declassifying information or

raising user clearances, without appropriate and time consuming

procedures. For example, consider when classified information is

found to have leaked into a traditional unclassified environment

(e.g., see [27][37][38]): the environment must be

“decontaminated” by a highly skilled technical team. Such a team

may expand the investigation to include all connected

environments to which the information could have transitively

leaked and all persons who may have viewed the information in

any of the environments. Computers and communications systems

are immediately isolated and then purged of the information, such

that any permissions to or copies of the information are revoked.

The users are “debriefed” to retrieve any hard copies of the

information they may have made, to ensure they agree to keep the

knowledge secure, and to understand the residual risk of users’

knowledge. If decontamination is successful, the environment

may be allowed to go back “on line;” otherwise the equipment
may be confined to the classified environment, or destroyed.

In the next sections we describe how extraordinary access to

information can be provided to selected users, and afterward can

be automatically and completely revoked without the need to treat

the user’s environment as having been contaminated.
1
 First, we

review our concepts for management of information in an

emergency.

4. EMERGENCY OPERATIONS
The basic assumption is that many emergencies could be handled

more effectively if vital, sensitive information (e.g., detailed

schematics of a large building or transit system) could be

communicated in a timely and secure manner to first

responders.[12] Emergencies involve various government and

non-government responding organizations, with one organization

acting as a coordinating authority (e.g., the Department of

Homeland Security). Other organizations represent the employers

of first responders, or are Third Party providers of information

that may be required during an emergency. The Authority

establishes operating agreements or memoranda of understanding

(MOUs) with the other organizations in advance of an emergency,

which define the authority, responsibilities and operating
parameters for the emergency response network.

The field device for first responders is a handheld that is suitable

for normal day-to-day data processing and communication as well

as emergency response usage (hereafter referred to as an E-

Device). The E-device is designed for use by a single user at a

time, much like a Personal Digital Assistant (PDA). The E-device

supports different security contexts for different roles, as well as

an emergency context (discussed below). Whether the E-device is

to be passed among multiple users is a matter of policy. The E-

device can be configured so that selected partitions would be
available only to certain individuals.

During setup of the emergency network and the E-devices,

emergency-related information and cryptographic keys are

installed on the devices. Emergency-specific data can also be sent

from the authority or third parties to the E-Device when it is in the

1
 It is understood in this work that modifications to law, MLS rules and

MLS policy enforcement infrastructures may be required to support an

emergency access, or “need to share” paradigm that allows special
access to information in extraordinary circumstances.[4][29]

2

field, either during the emergency or to update emergency-related
information during normal periods.

5. ARCHITECTURE
The Transient Trust architecture encompasses the Least Privilege

Separation Kernel (LPSK) running on x86 hardware (with

enhancements in certain configurations [19]), the Trusted Security

Services Layer (TSL), the Trusted Executive (TE), and the
Trusted Path Application (TPA; see Figure 1).

The TE provides minimal high-level operating system-like

services to the applications that depend on it. The TPA provides a

trustworthy interface between the user and the other trusted

components of the E-Device. Table 1 summarizes the functions

allocated to the system layers, each of which is discussed in the
sections that follow.

5.1 LPSK
The LPSK is designed to meet the security requirements of the

NSA-validated separation kernel protection profile (SKPP).[28]

The LPSK virtualizes and allocates shared resources, such that

each partition encompasses a resource set that appears to be

entirely its own. For physical resources that can only be accessed

by one process at a time (e.g., the CPU), the LPSK virtualizes the

resource such that the temporal usage patterns of subjects in

different partitions are not apparent to each other. For resources

such as memory that can be accessed by different processes

“simultaneously” (i.e., with respect to a virtualized CPU, or

assuming multiple execution cores) the separation kernel may

allocate to processes different and non-interacting portions of the

resource to ensure separation. Furthermore, kernel utilization of

its own internal resources must also preserve the desired
separation properties.
The LPSK manages all hardware resources; it reserves some

resources for itself; and it exports various resource abstractions at

its interface, such as processes, memory objects, devices, etc. The

LPSK separates all of the resources it exports into distinct

“partitions”, and enforces a native policy of separation of

partitions, with explicitly allowed exceptions (viz. inter-partition

flows) that are defined in the LPSK configuration data. As

required by the SKPP, these flows form a partial ordering.[28] In

addition, the LPSK implements the optional least privilege policy

requirements of the SKPP, in which it controls access by subjects

to individual resources. Hardware task management and other

mechanisms are used to maintain isolation between partitions as

well as between processes.[20] Threads within a process, if used

at the application layer, e.g., by a client OS to create its own

processes, are not distinguished with respect to the information

flow policy. Eventcount and sequencer objects [33] are exported

for inter-process synchronization. As permitted by policy,

memory and network resources may be shared by partitions and
may be used for inter-partition communication.

If there is more than one process in a partition, they execute

according to any of a variety of scheduling protocols that may be

defined in the LPSK configuration data until the partition’s time

slice is finished. As defined in the LPSK configuration data,

execution changes between partitions are based on a fixed

schedule, or lattice-scheduling algorithm similar to that described

by Hu [13], to prevent covert timing channels.

A set of minimized device services are provided by the LPSK.

This includes detection of the Secure Attention Key (SAK), which

is managed by the TSL (See Section 5.4).

The LPSK accepts configuration data as input during

initialization. The configuration data defines the creation and

assignment of resources to partitions, data flow rules, partition

schedule parameters, memory allocation of segments, etc. The

configuration data also defines process initialization information

such as per-process handles for individual memory objects,

devices, as well as addressing information for raw disks (from
which, for example, a client OS can create its own disk objects).

5.2 Trusted Security Services Layer
The Trusted Security Services Layer (TSL) virtualizes certain

resources exported by the LPSK (e.g., networking devices, I/O

devices and disk, as discussed in Section 5.4) and exports

dynamic abstractions of static LPSK resources that a typical client

Figure 1. Transient Trust Architecture. Partition sensitivity labels have the format:

[SECRECY:INTEGRITY].

3

OS would expect to control (such as the creation of memory

objects). The TSL API also includes a virtualized BIOS interface

to emulate the native (raw hardware) environment expected by
client OSes.

The TSL associates a human-readable sensitivity label with each

partition, such that all resources in a partition have the same

(implicit) label. Labels are assigned in concert with the partial

ordering enforced by the LPSK, which can be configured to

present a multilevel security policy at the TSL interface, if

desired. This combination of the LPSK, providing strong

isolation, with the TSL, providing policy-specific semantics,

supports the development of “policy aware” [17] and trusted
applications in the layers supported by the TSL.

Table 1 Layering Summary

Layer Functions and Policies

TPA Trusted Path interface to security-critical services

TE Application Management

User Management

Operating System Services

TSL MLS Support and Interpretation

Resource Virtualization

Object Management

Focus Management

Trusted Channel Management

Internet routing and Inter-Partition Networking

Emergency Management

LPSK Partitioning of Resources

Resource Management

Mandatory Access Control Policy Enforcement

Process/Partition Scheduling

Cross-Partition and Inter-Process Communication

Secure Attention Key (SAK) Detection

5.3 Partitions
The LPSK exports three types of partition: normal, trusted, and

emergency. For simplicity, only a small number of normal and

emergency partitions are described here, but many normal

partitions (e.g., several per human-readable label) and emergency

partitions can be configured. For example, there could be separate

emergency partitions for each type of emergency: flood, fire,

windstorm, pandemic, asteroid impact, volcano, etc. Emergency

partition granularity would be specific to the first-responder
organization.

Each normal partition is assigned a specific sensitivity level and is

intended to support the user’s regular data processing activities in

a manner similar to a commercial handheld or PDA, with a simple

client OS that hosts off-the-shelf applications. For example,

there may be a normal partition for corporate-internal work,

another for collaboration with a business partner, and one for
personal use.

The trusted partition hosts a trusted path application (TPA) and

other high integrity applications that require a high assurance

execution environment, provided by the Trusted Executive. The

TPA supports device login, partition selection, and selection of

high integrity security services. The secure attention key allows

users to invoke the Trusted Path Application without being

spoofed by malicious applications. The LPSK services the SAK

interrupt and passes control to the TSL, which invokes the TPA.

The TPA is configurable to support single sign on, or a per-

partition identification and authentication dialog. Of course, most

policies would require robust identification and authentication for
access to sensitive partitions.

The emergency partition holds data that the user is not authorized

to see under normal conditions and which the LPSK prohibits

from leaving the partition. In the event of an emergency, the

central authority would signal the E-device (e.g., wirelessly) that

an emergency has been declared, which would then (and only

then) enable the user to “enter” the emergency partition. At this

point, access to emergency information would require user

identification and authentication and possibly session level

negotiation. When the emergency is over, the central authority

would signal the E-Device that the emergency has ended, which

would once again disable access to the emergency partition, and
hibernate all processes in that partition.

During the transition back to normal operations, emergency

information created or collected in the field may be transmitted

back to the central authority. To purge the emergency partition of

information associated with a particular incident, and return the

OS and applications to their initial state, the active emergency

partition can be overwritten by the contents of the passive (i.e.,

non-executing and “read-only”) emergency partition (see Figure

1) which contains a baseline image of the emergency partition.
The TSL is responsible for re-initializing the emergency partition.

There are certainly scenarios for which the E-device would

require additional protections. For example, if it were to be used

in combat, then the architecture would be required to include

mechanisms that would prevent compromise of emergency

information should the E-device fall into the hands of an

adversary.

5.4 Devices and Communications
The LPSK provides both synchronous and asynchronous

device I/O interfaces and services. To meet high assurance

requirements, the device management offered by the LPSK is

simple and minimal. In our design, it is not necessary to incur the

expense of a full context switch when a partition accesses a

device, a possible bottleneck and performance challenge in other
architectures [31].

Device management is characterized in three ways in our

architecture. First, certain devices may be virtualized by the

combined LPSK and TSL. In this case, as permitted by the

configuration, the client operating systems and trusted executive
may simultaneously share the services of the underlying device.

Second, a device may be assigned solely to a particular partition.

For example, memory-mapped devices may be used so that they

interact with processes through dedicated memory regions. Here

device management is vectored by the LPSK to a client OS for its
exclusive use.

Finally, the TSL supports focus management by assigning

exclusive use of user I/O devices (viz., the keyboard, mouse, and

4

screen) to a designated partition until the user, via the TPA,

chooses to associate the devices with a different partition. While

user input is vectored to the selected partition, other partitions can

continue to update their screen buffers. Additionally, the system

supports configurations with tiled windowing, so that output from

partitions with sensitivity levels dominated by the user’s current

session level can be simultaneously displayed. The TSL will save

other partition screen output until the user establishes a session at

a high enough level. Thus, instead of having to shut down activity

at a particular session level to make the device available at a

different level, e.g. [24][25], all partitions can continue to execute
according to the predefined CPU-sharing schedule.

Each exported device has two labels associated with it: a read-

class and a write class. [23] A device where both labels are equal

is a single-level device; a device for which the two labels are
different is a multilevel device.

For serial-use multilevel devices, the TSL exports an interface for

administrators to change of the “current level” of the device

during runtime, thereafter restricting access to the device to that

security level. A concurrent-use multilevel device can be used by

several single-level partitions at the same time. The device

appears to (the processes in) each partition as a single level

device, as: (1) subjects in a given partition can only read data

from the device that is labeled at or below the level of that

partition; and (2) data written to the device by those subjects is
labeled by the TSL at the level of their partition.

Finally, a multilevel device can be used by a trusted application,
which is trusted to apply the right labels to its data.

The TSL manages network devices to establish trusted

communication channels between the E-Device and the central

authority or trusted third parties. The TSL receives emergency

“begin” and “end” signals from the central authority on a trusted

channel, verifies the signal and, restricts or allows access to the

emergency partition accordingly. It may also raise or lower

alarms to other programs within the E-Device, as configured to do

so. In this way, the device model is essential to achieving the
overall transient trust capability of the architecture.

Partitions may host network-capable client operating systems. The

TSL network devices can be used for communications between

partitions and to external nodes while ensuring enforcement of the

system’s information flow policy. For example, since network

communication protocols are two-way, in a partition-to-partition

communication channel, both partitions must be the same

sensitivity level.

5.5 Support for Client Operating Systems
In normal and emergency partitions, the E-Device hosts a client

operating system that allows the user to use common applications
and file types (e.g., for graphics display and word processing).

The trusted partition hosts a very simple Trusted Executive (TE)

for the purpose of running high assurance, high integrity, custom

applications. We anticipate that trusted applications will be very

compact and present a character-based interface, as the evaluation

of graphics-based applications is costly. The Trusted Executive

provides a necessary and sufficient set of services to support the

Trusted Path Application and possible other trusted applications.

These include application management, user management such as

identification and authentication support, and a small set of
common operating system services.

5.6 Trusted Applications
As discussed, the Trusted Path Application (TPA) presents the

user with an interface for high assurance identification and

authentication, invocation of trusted applications, emergency

notification, and logout, as well as partition selection. Because of

the criticality of the trusted path to the correct operation of the E-

device, we allocate it to a separate privilege level than that
occupied by other trusted applications.

While the E-device evaluation and certification will include the

LPSK TSL, TE and TPA, additional trusted applications can be

installed by system integrators and other customers to provide

customized high integrity services. The layered hardware

separation provided by the privilege level mechanism ensures that

any additional trusted applications will not affect the
trustworthiness of the E-device’s evaluated base.

6. DISCUSSION

6.1 Security Policy and User Session Level
To ensure effective enforcement of the security policy, the

interpretation of security labels must be consistent across all E-

devices in a given emergency response network. While each

partition of each E-device may be assigned a different sensitivity

level, multiple partitions may have the same label, forming an

equivalence class of partitions with respect to the security policy,

which extends to all E-devices and other trusted computers in the
emergency network.

A user request to change partitions results in a “session level

negotiation” based on various user and partition attributes (e.g.,

sensitivity level, temporal restrictions, and roles) and the

emergency response network security policy. In a typical E-

device configuration, changing partitions effectively alters the
user’s session level, within the constraints of the user’s clearance.

The LPSK’s information flow policy can be configured to allow

inter-partition information sharing. Thus, during an emergency the

user might be able to read information from normal (non-

emergency) partitions, or, for example, the user at a

SECRET:LOW session level could read information from a
partition that is at the UNCLASS:LOW level.

6.2 Transient Trust Assurance
Access to all information is enforced globally across the

emergency response network and persistently during data

transport, processing and storage. Emergency information is

isolated both temporally and spatially. Emergency information is

only stored in the emergency partition, where it is confined.

Communication between the emergency partition and a remote

entity with the same label (e.g., the authority) is allowed, as such

an entity is in the same policy equivalence class as the emergency

partition. Users are only able to enter the emergency partition

during an emergency, and only following appropriate

identification and authentication via the TPA. After the

emergency, emergency partition processes are hibernated (except

when activated to receive updated information), and any data

created or collected in the emergency partition can be uploaded to
the central authority, and purged from the E-device.

One might posit the application of the architecture presented here

for use in embedded devices. Without a requirement for a user

interface, the TPA would be unnecessary; however, since

organizational policies regarding the handling of emergency

indicators are likely to differ, the TE and a trusted handler, though

5

simpler than the TPA, would still be needed to manage transient
trust with high integrity.

6.3 Hardware-Supported Privilege Domains
The Transient Trust architecture uses hardware-based execution

domains, or privilege levels (PLs) to separate the LPSK, TSL, TE
and TPA.

In traditional commodity processing environments, the

applications and the operating system (OS) are separated into two

execution domains. For an Intel x86 CPU, the OS is located in

privilege level 0 and the applications are in the least-privileged

domain (privilege level 3). However, commercial OSes today are

large, complex and lack the structural modularity required to

isolate and protect the security policy enforcement mechanism: all

system services reside in a single hardware privilege level, where

non-critical functions can affect critical policy enforcement
mechanisms.

Over thirty years ago, Anderson concluded that, for high

assurance of security policy enforcement, the critical enforcement

mechanisms must: enforce the policy at all times, protect

themselves from unauthorized modification and be sufficiently

small and simple to permit analysis of their correctness.[3]

Subsequently, no plausible alternatives to this reference monitor

approach have been proposed. Thus, today’s commercial OSes

cannot provide a high degree of confidence in their correctness, or

in the absence of malicious code. In contrast, the Transient Trust

architecture fully utilizes the hardware privilege level mechanism
to separate programs according to their relative privilege.

6.4 Validation and Future Work
A prototype of the architecture was developed as the basis for

experimentation with different design approaches and for

performance testing. The prototype runs on a four-privilege-level

x86, and supports multiple partitions, keyboard and screen
devices, a trusted path, and least privilege capabilities.

The completed initial prototype demonstrates the effective use of

the hardware protection mechanisms built into the Intel x86

processor family [16]. The prototype was constructed using the

Open Watcom Version 1.7 C compiler and linker [32] configured

to generate 32-bit x86 code in the large memory model, and using

the LX file format.[14]. The linker was modified to generate

multi-segment data and executables per program (viz., the large

memory model). The run-time kernel supports multiple hardware

tasks; and all four hardware privilege levels, where the state of

each privilege level within a task is maintained within the Task

State Segment (TSS); hardware supported gates to permit calls to

and returns from more privileged hardware domains within a task;

and keyboard input and screen output associated with the
execution of a selected partition.

While the goal of the Transient Trust Architecture is to provide

the user with access to common productivity applications, it is not

the intent of this research to develop new techniques for (e.g.,

Type 1 [10] virtual machine monitoring. The TSL makes use of

available hardware support, and para-virtualization [5] where

necessary to support the TE and client OSes. In the future, we

expect to extend the design to take advantage of new

virtualization techniques, e.g., for hosting more complex and

heterogeneous OSes. For example, the LPSK and TSL could

occupy “negative” privilege levels (e.g., PL0 and PL1 in Intel

VMX root operation), while the client operating systems and their
applications utilize the classical four hardware privilege levels.

We are working on incorporating a framework into the Transient

Trust architecture for objectively calibrating and interpreting the

risks associated with exposing sensitive data to users with

insufficient clearance. This will provide a means for

understanding which objects can be placed into an emergency

partition. We expect to experiment with different grades of
emergency as well.

7. RELATED WORK
The US Government has recognized that, in emergencies, the

need to access information may be more important than the need

to protect the information, and has developed extensive technical

and policy roadmaps to support that vision.[29][40] Our

framework for management of emergency information advances

the GIG vision by providing a theory and concrete realization to

confine information made available under extraordinary

circumstances and to rescind access after the completion of those
circumstances.

PACER [18] is the DHS National Center for Study of

Preparedness and Catastrophic Event Response, lead by Johns

Hopkins University. Pacer is conducting research into emergency

preparedness and response, including enhanced situational

awareness and critical decision-making, as well as the causes for

the many past failures in emergency response, communication and

data sharing. While it is within the scope of the PACER program

to develop policy and legal analyses concerning constitutionality,

autonomy, and privacy issues, our work differs in its emphasis on

providing theory and technology to enable the secure sharing of
information in an emergency.

OASIS provides an EDXL standard [30] for information exchange

during emergencies, such as confidentiality of payloads, and

encryption of messages. The architecture presented here can
provide a trusted context for the management of EDXL data.

Few commercial PC-based OSes have used more than two Intel

PLs, for reasons that may include: e.g., 1) potential performance

penalties; 2) additional engineering costs; 3) lack of understanding

of the security benefits; etc. There have been several secure

architectures that have used multiple PLs on an Intel

CPU.[36][35][24][25] These architectures, however, were built to

provide only an application-execution environment. The

Transient Trust architecture provides both an application-

execution environment and, a virtual machine environment, where

guest operating systems may also execute. The architecture

provides a device that will not only execute specialized

applications in a trustworthy environment, but will also support

commodity applications that users are familiar with, while still
being constrained by a mandatory security policy.

The Turaya [1][34] and MILS [2] [37] [39]architectures are

designed to host commercial operating systems and security

services as parallel application-domain entities, with certain

interactions between those entities controlled by a microkernel

(e.g., L4) and a separation kernel, respectively. The architecture

presented here differs from these efforts (see also [22]) in that it

does not rely on application domain programs for security policy

enforcement, and it provides an interface for the enforcement of

intra-OS least privilege policies as well as inter-OS sharing

policies. Additionally, the Tuyaya and MILS efforts do not

address the temporal confinement, revocation, and distributed

state-change issues inherent to emergency management of
information.

6

8. SUMMARY
This paper describes the Transient Trust Architecture and related

operational concepts for securely managing sensitive information

during emergencies. Key software components of the architecture

are the Least Privilege Separation Kernel (LPSK), a Trusted

Security Services layer, a Trusted Executive and a Trusted path

application. The target platform for design and experimentation is
a hand-held device, called the E-device.

The key innovative properties of the Transient Trust Architecture

are: a means of providing secure, transient access to sensitive

information which can also completely revoke the information

after the emergency; a dedicated environment for the use of high-

integrity applications such as for the trusted signing of documents;

a means of directly utilizing the high assurance capabilities of the

separation kernel to control communication and other interactions

between partitions; and an efficient, flexible device model that

allows direct access by guest operating systems to dedicated

devices, and secure, kernel-mediated access to shared devices, the

latter of which supports both serialized access per security level

and concurrent multiplexing without the need for process-level
context switching.

The architecture provides a partitioned environment for separating

information with different sensitivities. The strictly layered

architecture supports commercial operating systems and

applications in both normal and emergency contexts, so that

emergency workers can be familiar with the E-device through

frequent use, and the device might be readily available for

emergencies. The LPSK is the nexus of security policy

enforcement, and is designed to meet both the basic and the least

privilege requirements of the NSA’s Protection Profile for
Separation Kernels in Environments Requiring High Robustness.

9. ACKNOWLEDGEMENTS
We wish to thank Terry Benzel and Ganesha Bhaskara for many

helpful discussions. This material is based upon work supported

by the National Science Foundation under Grant Number CNS-

0430566, with support from DARPA ATO. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the
views of the National Science Foundation of DARPA ATO.

10. REFERENCES
[1] A. Alkassar, M. Scheibel, A-R. Sadeghi, C. Stüble, and M.

Winandy, Security Architecture for Device Encryption and

VPN. Information Security Solution Europe, 2006.

[2] J. Alves-Foss, et. al., A Multi layered Approach to Security

in High Assurance Systems. Proc. 37th Hawaii International

Conference on System Sciences. 2004

[3] J. P. Anderson, Computer Security Technology Planning

Study, ESD-TR-73-51, vol. I, ESD/AFSC, Hanscom AFB,

Bedford, Mass., October 1972 (NTIS AD-758206).

[4] Assured Sharing Tiger Team. Access Control Concepts for

Assured Sharing. National security agency, information
assurance directorate 1.0 May 2004

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and

the art of virtualization,” in Proceedings of the 20th ACM

Symposium on Operating System Principles, (Bolton
Landing, NY), pp. 164–177, October 2003.

[6] D. E. Bell and L. LaPadula, “Secure computer systems:

Mathematical foundations and model,” Tech. Rep. M74-244,
MITRE Corp., Bedford, MA, 1973.

[7] Common Criteria for Information Technology Security
Evaluation. CCMB-2006-09-001 September 2006

[8] D. E. Denning, “A Lattice Model of Secure Information

Flow,” Communications of the A.C.M., vol. 19, no. 5,
pp. 236–243, 1976.

[9] Department of Defense Trusted Computer System Evaluation

Criteria. No. DoD 5200.28-STD, National Computer
Security Center, December 1985.

[10] R. Goldberg, Architectural Principles for Virtual Computer

Systems, Ph.D. Dissertation, Harvard University, Cambridge,
Massachusetts, October 1972.

[11] D. Grawrock, The Intel Safer Computing Initiative.
Hillsboro, OR: Intel Press, 2006.

[12] D. G. Holmberg, W. D. David, S. J. Treado, and K. A. Reed,

Building Tactical Information System for Public Safety

Officials: Intelligent Building Response, NISTIR 7314,

National Institute of Standard and Technology, January
2006.

[13] W.-M. Hu, “Reducing Timing Channels with Fuzzy Time,”

in Proceedings of the IEEE Symposium on Research in

Security and Privacy, (Oakland, CA), pp. 8–20, IEEE

Computer Society Press, May 1991.

[14] IBM, IBM OS/2 16/32-bit Object Module Format (OMF)

and Linear Executable Module Format, Revision 10, October

1996. http://www.openwatcom.org/ftp/devel/docs/lxomf.pdf.
(Last viewed: 09 August 2008).

[15] Intel Corp., “Intel® Virtualization Technology Specification

for the IA-32 Intel® Architecture”, 2005.

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/

pentium4/reference/197666.htm (Last viewed: 09 August
2008).

[16] Intel Corp., “Intel 64 and IA-32 Architectures Software

Developer’s Manual”, Volume 3A: System Programming

Guide, Part 1, November 2006.

http://download.intel.com/design/processor/manuals/253668.
pdf (Last viewed: 09 August 2008).

[17] C. E. Irvine, T. Acheson, and M. F. Thompson, “Building

trust into a multilevel file system,” in Proceedings 13th

National Computer Security Conference, (Washington, DC),
pp. 450–459, October 1990.

[18] Johns Hopkins University, National Center for Study of

Preparedness and Catastrophic Event Response.

http://www.pacercenter.org/. The Johns Hopkins University,

Baltimore, MD, Last viewed 6/23/08.

[19] R. Lee, C. Irvine, T. Benzel, T. Levin, G. Bhaskara, J.

Dwoskin. P. Clark, T. Nguyen. “Securing the Dissemination

of Emergency Response Data with an Integrated Hardware-
Software Architecture,” submitted to ANCS.

[20] T. E. Levin, C. E., Irvine, and T. D. Nguyen, Least Privilege

in Separation Kernels, Proceedings International Conference

on Security and Cryptography, Setubal, Portugal, August
2006, pp. 355-362.

7

[21] T. E. Levin, C. E. Irvine, T. V. Benzel, G. Bhaskara, P. C.

Clark, and T. D. Nguyen, Design Principles and Guidelines

for Security, NPS-CS-08-001, Naval Postgraduate School,
November 2007.

[22] T. E. Levin, C. E. Irvine, C. Weissman and T. D. Nguyen.

Analysis of Three Multilevel Security Architectures.

Proceedings of the computer security architecture workshop,

Fairfax, Virginia, USA November 2 2007.

[23] T. F. Lunt, P. G. Neumann, D. E. Denning, R. R. Schell,

M. Heckman, and W. R. Shockley, “Secure distributed data

views security policy and interpretation for DMBS for a

Class A1 DBMS,” Tech. Rep. RADC-TR-89-313, Vol I,

Rome Air Development Center, Griffiss, Air Force Base,
NY, December 1989.

[24] Final Evaluation Report, Wang Federal Incorporated, XTS-

300, National Computer Security Center, CSC-EPL-
92/003.B, July 11, 1995.

[25] Final Evaluation Report, Gemini Computers, Incorporated,

Gemini Trusted Network Processor, National Computer
Security Center, 34-94, June 28, 1995.

[26] Glossary of Computer Security Terms, NCSC-TG-004,

Version 1, National Computer Security Center, October 21,
1988.

[27] John W. Milton. Security Spillage Procedures Defense

Message System (DMS). Interim Procedure 21-V02 October
2006

[28] National Information Assurance Partnership, U.S.

Government Protection Profile for Separation Kernels in

Environments Requiring High Robustness. version 1.03 ed.,
29 June 2007.

[29] National Security Agency, Executive Summary of the End-

to-End IA Component of the GIG Integrated Architecture,

National Security Agency Information Assurance
Directorate, Version 1.0 April 2005.

[30] OASIS, Emergency Data Exchange Language (EDXL)

Distribution Element v1.0, OASIS, May 2006.

http://docs.oasis-open.org/emergency/edxlde/ v1.0/EDXL-
DE_Spec_v1.0.pdf

[31] Objective Interface, MILS: Multiple Independent Levels of

Security, http://www.ois.com/Products/MILS-Technical-
Primer.html#question6. (Last viewed: 18 July 2008).

[32] Open Watcom, Main Page,

http://www.openwatcom.org/index.php/Main_Page. (Last
viewed: 09 August 2008).

[33] D. Reed, R. Kanodia, Synchronization with eventcounts and

sequencers, Communications of the ACM, 22(2):115--123,
Feb 1979.

[34] A-R. Sadeghi, et. al., European Multilateral Secure

Computing Base - Open Trusted Computing for You and Me.

Datenschutz und Datensicherheit (DUD) 9/2004, Vieweg
Verlag, pp. 548-554, 2004.

[35] D. D. Schnackenberg. “Development of a Multilevel Secure

Local Area Network,” Proc. 8th National Computer Security
Conference, October 1985, pp. 97 - 101.

[36] O. Sibert, P. A. Porras, and R. Lindell, “The Intel 80x86

processor architecture: Pitfalls for secure systems,” in

Proceedings 1995 IEEE Symposium on Security and Privacy,

(Oakland, CA), pp. 211–222, IEEE Computer Society Press,
May 1995.

[37] U.S. Department of the Navy. Information Assurance

Remanence Security Publication. Department of the navy IA
Pub-5239-26 May 2000

[38] U.S. Department of the Navy. Information Security Program.

Department of the navy SECNAV M-5510.36 June 2006

[39] W. M. Vanfleet, et. al., “MILS: Architecture for high

assurance embedded computing,” CrossTalk, 18, pp. 12–16,
August 2005.

[40] P. Wolfowitz, Global Information Grid (GIG) Overarching

Policy. U.S. Department of Defense, directive number
8100.1, September 19 2002

8

