
Maya: A Novel Block Encryption Function

Mahadevan Gomathisankaran and Ruby B. Lee

Electrical Engineering, Princeton University, Princeton, NJ 08544.
{mgomathi,rblee}@princeton.edu

Abstract. We propose a novel methodology to design Block Cipher
functions. This methodology is illustrated with the design of a specific
block cipher function Maya1. Our design philosophy is to derive the S-
Boxes themselves from the secret key. This makes breaking any round
function equivalent to guessing all the key-bits. Advantages of our de-
sign include much larger key sizes in relation to the block size, an order
of magnitude improvement in the hardware implementation efficiency
together with the necessary resistance to cryptanalysis.

1 Introduction

Block cipher functions form the fundamental building blocks of encryption
systems. Block ciphers can be used in various modes of operation for con-
fidentiality, message authentication, one-way function and hash functions.
In their report titled “Ongoing Research Areas in Symmetric Cryptogra-
phy” [1] the authors state that new block ciphers that may offer specific
advantages over AES [2] need to be studied and designed. Our motivation
for the design of Maya is to increase the security of the cipher function
with respect to the number of gates required to implement it. The security
of block cipher is directly proportional to the key size. Thus by reducing
the percentage of gates in the implementation that are independent of the
key we can increase the factor security/gate.

Conventional block ciphers [3,2,4] derive their security from the embedded
secret key. One of the inputs, key, in each round is secret whereas the round
functions themselves are public. The secret, however, is combined with
the state in a limited way, as an xor, during each round. We propose a
simple yet novel approach wherein the round functions themselves become
the secret, while the function schema is a publicly published algorithm.

1 Maya in Sanskrit means illusion.
This work was supported in part by NSF Cybertrust CNS-0430487 and by a research
gift from Intel.

Published in WCC 2009
Do not redistribute without permission.

1 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

The intuition is to use reconfigurable gates as round functions and define
their configurations as the secret (or key). Hence the complexity of such
a cryptographic function is derived from the fact that almost all of the
round processing is driven by the secret (truth tables). In a traditional
block cipher, the secret is combined with the state with an xor as one
of the steps in the round. This xor step is susceptible to linear modeling
of the secret and input/output relationship. When the secret is used as a
Boolean gate truth table, it is inherently non-linear.

The main advantages of our design approach are:

1. Key size much greater than the block length can be easily accommo-
dated. This allows for higher security guarantees without having to
increase the latency of cipher operation.

2. Smaller block lengths are well-suited for processor level instruction en-
cryption when the encryption system is placed in-line into a processor
pipeline [5,6].

3. Area and time efficient hardware implementation reduces the process-
ing overhead drastically for security.

4. Simplicity of the design.

Reconfigurable S-boxes have been proposed and used in GOST [7] and
TREYFER [8] encryption algorithms. GOST 28147-89 is a Soviet and
Russian government standard symmetric key block cipher. GOST defines
the S-Boxes to be secret but does not use the key bits to choose the S-
Boxes. The GOST philosophy is to pre-determine S-Boxes between com-
municating parties. TREYFER is a block cipher/MAC designed in 1997
by Gideon Yuval. TREYFER has single 8x8 S-Box which is defined by
the secret key. Due to the simplicity of its key schedule, using the same 8
key bytes in each round, Treyfer was one of the first ciphers shown to be
susceptible to a slide attack [9]. This cryptanalysis is independent of the
number of rounds and the choice of S-box.

2 Perliminaries

2.1 Definitions

Definition 1 (Bijective Function) A function f : X 7→ Y is bijective
if for every y ∈ Y there is exactly one x ∈ X such that f(x) = y.

Published in WCC 2009
Do not redistribute without permission.

2 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

2.2 Notations

– Let SN be the set of all N × N functions (|SN×N | = 2N2N

).
– Let SN

π be the set of all N × N bijective functions (|SN
π | = 2N !).

– Let IN be the set of all N bit numbers.
– Let x ∈ IN then xb(i) represents the ith bit2, where 0 ≤ i ≤ N − 1.
– Let x ∈ IN then xnibn(i) represents the ith nibble of n bits, i.e.

xnibn(i) =
(

xb(in), xb(in+1), . . . , xb(in+n−1)
)

where 0 ≤ i ≤ N
n
− 1.

– Let f ◦ g denote the function f(g(x)).
– Let f2 denote the function f(f(x)).
– Let ⊕ represent bitwise xor operation.

3 Design Rationale

We propose that the design the design of block cipher should achieve the
following properties: indexability, symmetry, similarity and irreversibility.

– Indexability requires that the key size of the cipher function be com-
parable (polynomial) to the input/output (block) size (N).

– Symmetry requires that every output bit is influenced by every input
bit uniformly.

– Similarity requires that any differential input causes output differen-
tial effectively similar to the universal set. In other words the output
bits should switch with a probability very close (computationally in-
distinguishable) to 1

2 .
– Irreversibility requires that given reasonable number of input output

pairs no efficient algorithm can fully or partially infer the key bits.

3.1 Achieving Indexability

Let N be the input/output block size (in bits) of the cipher function under
design. There are 2N ! unique N ×N bijective functions. We have to choose
a subset from this universe using the K key bits. The requirement for K

is to be size Poly(N). The easiest way to achieve this would be to design
the N ×N function using m×m bijective functions, where m = O(log N).

2 Wlog from the left

Published in WCC 2009
Do not redistribute without permission.

3 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

Let N be divisible by m and let q = N
m

. We can realize an N ×N function
with q, m×m functions. The set Sm

π is a subset of Sm and m2m bits are
required to represent a function in the set Sm uniquely. Thus all the q

m×m bijective functions can be represented by N2m bits. Thus the size
of the key is N2m. By choosing m appropriately we can keep the key size
at Poly(N).

Let f̂ represent the N × N function realized by the q, m × m bijective
functions. Let Πi represent the ith m × m bijective function where 0 ≤
i ≤ q − 1. There are q functions and each of these functions are chosen
uniformly and independently from the set Sm

π . Let x, y ∈ IN be the input
and output of the function f̂ respectively. Then we define the function f̂

as
ynibm(i) = Πi(x

nibm(i)), where 0 ≤ i ≤ q − 1.

f̂ has achieved the first design goal. We will enhance the design in steps
to achieve other design goals.

3.2 Achieving Symmetry

Function f̂ does not satisfy the symmetry requirement. The input is split
into nibbles of m bits and each of these nibbles are operated upon inde-
pendently. Hence the output bits are not uniformly influenced by every
input bit. To achieve symmetry we use the property of Π blocks.

Each of the Π functions takes an m bit input and produces an m bit
output. The Π functions are uniformly distributed over the set Sm

π , thus
causing the m bit outputs to exhibit the symmetry property with respect
to their input bits, i.e., every output bit of Π is a uniform function of every
one of the m input bits. Hence, we need to design a mix function that
mixes the nibbles of output bits from f̂ uniformly. The exact specification
of mix function is dependent on the parameters N and m. For any given
N and m a mix function can be specified in such a way that the output
bits are uniformly dependent on every input bit within logm (N) rounds.
This also is the minimum number of stages required to achieve this level
of mixing. We define

ĝ := mix ◦ f̂

ĥ := ĝlogm (N).

Realization of mix function involves distribution of the bits across various
nibbles in a such a way as to create an m-ary tree rooted at each nibble at

Published in WCC 2009
Do not redistribute without permission.

4 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

Table 1. Example mix Functions

(a) m = 4, N = 32

Inp nib → {Out nib}

0 → {0, 2, 4, 6}
1 → {1, 3, 5, 7}
2 → {1, 3, 5, 7}
3 → {2, 4, 6, 0}
4 → {2, 4, 6, 0}
5 → {3, 5, 7, 1}
6 → {3, 5, 7, 1}
7 → {4, 6, 0, 2}

(b) m = 4, N = 64

Inp nib → {Out nib}

0 → {00, 04, 08, 12}
1 → {01, 05, 09, 13}
2 → {02, 06, 10, 14}
3 → {03, 07, 11, 15}
4 → {05, 09, 13, 01}
5 → {06, 10, 14, 02}
6 → {07, 11, 15, 03}
7 → {08, 12, 00, 04}
8 → {10, 14, 02, 06}
9 → {11, 15, 03, 07}
10 → {12, 00, 04, 08}
11 → {13, 01, 05, 09}
12 → {15, 03, 07, 11}
13 → {00, 04, 08, 12}
14 → {01, 05, 09, 13}
15 → {02, 06, 10, 14}

the first round. Tables 1(a) and 1(b) show an example mix function for two
different parameter sets. mix function is not unique for a given parameter
set, hence the functions shown in this table are merely example functions.
The table should be interpreted as follows. The left column consists of
the input nibble number. Each nibble has m bits (in the example table
m = 4). These input bits are distributed to the nibbles given by the
indexes in each row. For example, the 4 output bits of input nibble 0 are
distributed to the output nibbles 0,4,8 and 12 respectively (Bit 0 to Nibble
0 - any of its 4 input bits, Bit 1 to Nibble 4, Bit 2 to Nibble 8, and Bit 3
to Nibble 12, counting the bits in Big-endian fashion) in Table 1(b). Since
the bits are not transformed mix is a reversible function and hence the
composite functions ĝ and ĥ are also reversible functions.

3.3 Achieving Similarity

Now that the function ĥ has achieved symmetry, we need to target sim-
ilarity. In order to achieve similarity the differential property of f̂ and ĥ

needs to be studied. In the universal set SN
π any input differential causes

every bit in the output to switch with a probability of 2N−1

2N−1
. The cipher

function design should achieve effective similarity to this switching prob-
ability property.

Published in WCC 2009
Do not redistribute without permission.

5 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

Bias propagation in f̂ : Function f̂ operates on the input nibbles indepen-
dently. For any differential input in a nibble i the output bits of nibble
i switch with probability 2m−1

2m−1 . Let us consider the case when all the in-

put bits of f̂ switch independently and uniformly. Let δI represent the
switching probability with which any input bit of f̂ switches, i.e.,

δI = Pr[xb(i) 6= x̄b(i)]∀ 0 ≤ i ≤ N − 1

where x and x̄ are the differential inputs. Let δO represent the switching
probability of output bits of f̂ . Then,

δO =

(

(1 − (δI)
m) · (

2m−1

2m − 1
)

)

(1)

Let δI = 2N−1

2N−1
− εI and δO = 2N−1

2N−1
− εO. Let C0 = 2N−1

2N−1
and C1 = 2m−1

2m−1 .
Given that, 0 < εI < C0 and C0 < C1. From Equation 1,

εO = C0 − ((1 − (C0 − εI)
m) C1)

εO − εI = (C0 − εI) − ((1 − (C0 − εI)
m)C1)

= (C0 − C1) − (εI) − C1(C0 − εI)
m

< 0 (2)

Thus the output bias of f̂ is always less than the input bias as long as
the condition 0 < εI < C0 is true. We can exploit the bias propagation
property of f̂ in achieving the effective similarity.

Switching probability of ĥ : Function ĥ causes any differential input to
pass through logm (N) levels of Π functions before reaching the output.
Thus, the minimum probability with which any output bit of ĥ switches is
(

2m−1

2m−1

)logm (N)
. Also, every output bit of f̂ switches independently with

respect to every other output bit. Thus the output of ĥ can be passed
through f̂ multiple times to reduce the bias as close to zero as desired
and possible. Since mix function does not transform the bits the switch-
ing probability is not modified by the mix function. Thus, we define the
function p̂ as,

p̂ := ĥ ◦ ĝk

:= ĝk+logm (N)

The parameter k is dependent on N and m. We choose function ĝ instead
of f̂ as they both have same switching probability characteristics and the
resulting function p̂ is easier to implement.

Published in WCC 2009
Do not redistribute without permission.

6 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

−
lo

g
2
(ε

)

k

m=3,N=27

m=3,N=81

m=3,N=243

m=4,N=64

m=4,N=256

m=4,N=1024

m=5,N=125

m=5,N=625

m=5,N=3125

Fig. 1. Bias propagation in function p̂

The switching probability bias decreases exponentially with respect to k.
The bias propogation of p̂ for various m and N combinations is plotted
in Figure 1. Few observations from the graph are:

– The bias decreases exponentially with the number of rounds k.
– The rate of this decrease is directly proportional to m and is almost

independent of N .

Note that the bias we have estimated is averaged over all the possible
bijective functions and all the possible input differential pairs which have
their input difference in only one of the nibbles. Let εbk represent the
average bias per bit observed at the output of p̂. Let εW k be the overall
bias of all the N bits. Since every bit switches independently,

εW k =

N
∑

i=1

(

N

i

)

1

2N−i
εi
bk (3)

Let us assume that εi
bk < 1

N
then N · εi

bk < 1. Also note that
(

N
i

)

≤ N i

2i−1

∀ 1 ≤ i ≤ N . Thus, putting these two inequalities in Equation 3 we get
the upper bound as,

εW k <
N · εbk

2N−1

N
∑

i=1

1

<
N2 · εbk

2N−1
(4)

Published in WCC 2009
Do not redistribute without permission.

7 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

Thus keeping the bias εbk in the range of 1
2·N3 is sufficient to prevent any

polynomial time/space experiment to differentiate p̂ from the universal
set. For N = 64 the bias needed is 2−19 and this is achieved with k = 12
rounds. We used TestU01 [10] to verify this heuristically.

Heuristic Testing: We implemented the case N = 64,m = 4, k = 12 in
software and tested the function p̂ as a PRF in counter mode. We chose the
gates Πi at random from the set Sm

π . The initial value is a N bit number
chosen at random. The IV is then incremented and the output is used as
a sequence of random bits. TestU01 [10] has different battery of tests. We
tested the PRF with Small Crush, Crush, Alpha Bit (for 232 bits), Rabbit
(for 232 bits), and NIST FIPS 140-2 tests. We tested for p-values lying
in the range [10−4, 1 − 10−4]. Our PRF passed all the statistical tests in
multiple runs.

3.4 Achieving Irreversibility

This is the hardest part of the design. We cannot achieve this design goal
through theoretical analysis due to lack of adequate frameworks. Hence we
target this design goal empirically by making the design foolproof against
all the known cryptanalytic attacks. Cryptanalysis is done to predict the
secret key. Based on the information cryptanalysis uses it can be clas-
sified as known plaintext, chosen plaintext and related key attacks. The
encryption algorithm should be designed to resist all these forms of crypt-
analysis. The conventional wisdom is to design the encryption algorithm
in multiple rounds and make every round unique with a unique round key.
We will also follow the same design approach.

Slide Attack [9] is the most successful attack on any round based cryp-
tographic function. Slide attack is generic attack designed by Biryukov-
Wagner [11,12]. It can be applied in both known plaintext or chosen plain-
text scenarios. It exploits the similarity in round functions. Function p̂ has
two weaknesses which the slide attack can exploit. The first weakness is
that all the round functions are the same. The second weakness is that
the input bits are operated only on m-bit nibbles in every round. Thus
the function can be attacked by guessing a small fraction of key bits and
finding a slid-pair.

In order to make the design resistant to slide attacks we need to fix these
two weaknesses. Every round function can be made unique by xoring the

Published in WCC 2009
Do not redistribute without permission.

8 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

output of each round with a round-key. The second weakness can be over-
come by making these round-keys a function of all the key bits. Thus the
round-key generation algorithm should exhibit the following properties:

– Every round-key bit should be uniformly dependent on every key bit.
– Any small difference in key bits should propagate to every round-key

bit with equal probability.

Key Bits Representation: So far in our construction we have used q

reversible m×m gates as our key. Each of these q gates can be represented
uniquely by its truth table with m2m bits. The truth table contains 2m

rows of m bits each, in other words, m columns and 2m rows. Each column
can be considered as a truth table of an m-bit boolean gate. Each of these
columns are balanced, i.e., there are equal number of 0′s and 1′s. Let
the representation of the gate be such that these 2m rows of m bits are
written sequentially from 0th row to the (2m − 1)th row. Let us represent
the truth table of Π with ttΠ and its ith row by ttΠi .

ttΠ := (Π(0),Π(1), . . . ,Π(2m − 1))

ttΠi := Π(i)

Then for any two gates Π and Π ′ such that Π 6= Π ′ at least two truth
table rows must differ just to maintain balance, i.e., ∃ i, j s.t. i 6= j,
ttΠi 6= ttΠ

′

i and ttΠj 6= ttΠ
′

j . Let K be the key bits of size N2m bits. Let

ki = KnibN (i) and Πi be the ith bijective function represented by the key
K. In other words,

K ≡ (Π0,Π2, . . . ,Πq−1) ≡ (ttΠ0, ttΠ1 , . . . , ttΠq−1) ≡ (k0, k1, . . . , k2m−1)

Thus the same key can be represented in many equivalent representations.
We refer to a gate Π through its truth table as ttΠ .

Round Key Generation: The number of rounds needed to achieve
symmetry was r = logm N + k. Thus we need to generate r round keys
of N bits each. The first property that every round key should satisfy is
that it be uniform function of all the key bits. This can be achieved with
function p̂. In order to achieve the second property we need to modify the
construction a little bit. We want to propagate any difference in any one
of the gates to all the round keys.

Published in WCC 2009
Do not redistribute without permission.

9 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

Consider the function Φ : K 7→ λ where K is the key as defined earlier
and λ = (λ0, λ1, . . . , λr−1) is defined as follows:

z0,j = ĝ(kj % 2m)∀0 ≤ j < r

zi,j = ĝ(zi−1,j ⊕ kt)∀1 ≤ i < 2r, 0 ≤ j < r, t = (i + j)% 2m

λj = z2r−1,j∀0 ≤ j < r − 1

Function Φ takes key K as its input to generate r, N -bit values.

Difference Propagation: Consider two related keys K and K ′ such that
they differ in only one gate Π, i.e., only one of the bijective functions Π is
chosen at random while the rest of the functions are the same. This implies
that there is at least one ki such that Pr[ki = k′

i] = 1
2N . From Section 3.3

we see that with r = logm (N) + k rounds, any difference in the input
propagates to every output bit with a bias less than 1

N2N . In function Φ

we exploit this property. For every round key λi, the differential input gets
fed in at least r rounds before the output stage. Thus for every pair of
related keys which differ in at least one bijective function the function Φ

propagates the difference to every bit of every λi with equal probability.

We finally define the cipher function R as having r = logm (N)+k rounds
with each round function ûi as,

ûi(x) := ĝ(x) ⊕ λi

R := ûr−1 ◦ ûr−2 ◦ · · · ◦ û1 ◦ û0

3.5 Strengthening Key Space

The Maya key consists of q bijective functions chosen independently at
random from the set Sm

π . Any m × m bijective function Π contains m

boolean functions fΠ
1 , fΠ

2 , . . . , fΠ
m . These m boolen functions satisfy two

properties, namely, every one of the m boolean functions is balanced (equal
number of zeros and ones are present in the truth table) and every one
of the m boolean functions is orthogonal to every other boolean function.
Both these properties together make the m boolean functions consitute a
bijective function.

Definition 2 (Affine Function) A Boolean function fk(x1, x2, ..., xm)
of m variables is called affine if it takes the form of a polynomial fk(x) =
a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn ⊕ c, where aj, c ∈ GF (2) and k = c +

∑n
i=1 ai2

i.

Published in WCC 2009
Do not redistribute without permission.

10 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

In particular, if c = 0 then f is called a linear function. Any linear Boolean
function can be generated from Walsh-Hadamard matrix Hn and affine
functions (c = 1) can be generated from −Hn. Each row of the Walsh-
Hadamard matrix Hn is a linear function. Each row in Hn, except for the
first row which represents the constant function, has equal number of 1′s
and −1′s.

Affine functions are weak from cryptographic perspective. To strengthen
our key space we need to choose only those bijective functions which do not
constitute any affine functions. First we will count how much of reduction
in key space occurs due to this constraint. Let NLm

π represent the set of
all bijective functions which do not constitute any affine function.

Let Y
f =

[

y0, y1, ..., y2m−1

]T
be the two-valued ({0, 1}) truth vector of

f(x1, x2, ..., xm) and Z
f =

[

z0, z1, . . . , z2m−1

]

be the recoded two-valued
truth vector of the boolean function f(x1, x2, . . . , xm) such that zi =
(−1)yi , in other words 0 is recoded as 1 and 1 is recoded as −1.

Definition 3 (Orthogonal Boolean Functions) The two boolean func-
tions f1(x1, x2, . . . , xm) and f2(x1, x2, . . . , xm) are orthogonal if the dot
products of their recoded truth vectors, Z

f1 · Zf2, is zero.

Let Lm
π be the set of all bijective functions which constitute at least one

affine function. We will calculate the size of Lm
π by counting the choices

for the functions f1 to fm. Wlog let f1 be an affine function. Then there
are 2m+1−2 choices for f1. f2 has to be balanced and orthogonal with f1.
Z

f1 has 2m−1 1′s and 2m−1 −1′s. We need Z
f1 ·Zf2 to be zero. In Z

f2 half
of the 1′s should be aligned with 1′s of Z

f1 and the rest should be aligned

with −1′s of Zf1 . Thus there are
(2m−1

2m−2

)

·
(2m−1

2m−2

)

functions that can be
orthogonal to f1. f3 has to be orthogonal to both f1 and f2. Extending
the same logic we get the count as

|Lm
π | =

(

2m+1 − 2
)

·
(

(

2m−1

2m−2

)

)2
·
(

(

2m−2

2m−3

)

)4
· · ·

(

2
)2m−1

(5)

For m = 4 we get an upper bound of 236 bijective functions which con-
stitute at least one affine function. The total space of bijective func-
tions for m = 4 is approximately 244 leading to key space reduction of
|NL4

π| = 244 − 236 ≈ 243.9944. Thus the key space reduction is negligible.

Published in WCC 2009
Do not redistribute without permission.

11 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

3.6 Alternate View

The final design we have arrived at looks very similar to any SPN based
encryption algorithm (e.g.: Rijndael) except that the substitution boxes
themselves are chosen by the key bits. This is the major distinction be-
tween our approach and the conventional design approaches. The similar-
ity of our design to the conventional designs buys us the strength (in fact
increases the strength) of the encryption algorithms whereas the differ-
ences buy us tremendous improvements both in performance and area for
hardware implementations.

4 Design Specification

In this section we will formally specify the cipher function Maya(64,4)
based on the intuitive design presented in Section 3. Maya(64,4) is a 64-
bit block cipher which uses 4-bit bijective functions. We choose to specify
Maya(64,4) instead of a generic family of functions Maya(N ,m) as we
can find tighter bounds for the specific instance. Our future work will
involve generalizing the results for the family of functions Maya(N ,m).

Construction 1 (Maya(64,4)) Maya(64,4) is a triple (G64
4 ,E64

4 ,D64
4),

where G
64
4 is the key-generator algorithm, E

64
4 is the encryption algorithm

and D
64
4 is the decryption algorithm.

Construction 2 (α : K × X 7→ Y) Where

K = (Π0,Π1, . . . ,Π15), Πi ∈ NL4
π∀0 ≤ i ≤ 15

X,Y ∈ I64

Y := α(X)

Y nib4(i) := Πi(X
nib4(i)), where 0 ≤ i ≤ 15.

Construction 3 (µ : X 7→ Y) Where X,Y ∈ I64. The µ function is a
bit-permutation network. The input bit position to output bit position con-
nection network is as shown in the Table 2(a) and its inverse is shown in
Tabel 2(b).

Published in WCC 2009
Do not redistribute without permission.

12 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

Table 2. Bit Permutation Function

(a) Function µ

{Inp Bit Pos} → {Out Bit Pos}

{00, 01, 02, 03} → {00, 16, 32, 48}
{04, 05, 06, 07} → {04, 20, 36, 52}
{08, 09, 10, 11} → {08, 24, 40, 56}
{12, 13, 14, 15} → {12, 28, 44, 60}
{16, 17, 18, 19} → {21, 37, 53, 05}
{20, 21, 22, 23} → {25, 41, 57, 09}
{24, 25, 26, 27} → {29, 45, 61, 13}
{28, 29, 30, 31} → {33, 49, 01, 17}
{32, 33, 34, 35} → {42, 58, 10, 26}
{36, 37, 38, 39} → {46, 62, 14, 30}
{40, 41, 42, 43} → {50, 02, 18, 34}
{44, 45, 46, 47} → {54, 06, 22, 38}
{48, 49, 50, 51} → {63, 15, 31, 47}
{52, 53, 54, 55} → {03, 19, 35, 51}
{56, 57, 58, 59} → {07, 23, 39, 55}
{60, 61, 62, 63} → {11, 27, 43, 59}

(b) Function µ−1

{Inp Bit Pos} → {Out Bit Pos}

{00, 01, 02, 03} → {00, 30, 41, 52}
{04, 05, 06, 07} → {04, 19, 45, 56}
{08, 09, 10, 11} → {08, 23, 34, 60}
{12, 13, 14, 15} → {12, 27, 38, 49}
{16, 17, 18, 19} → {01, 31, 42, 53}
{20, 21, 22, 23} → {05, 16, 46, 57}
{24, 25, 26, 27} → {09, 20, 35, 61}
{28, 29, 30, 31} → {13, 24, 39, 50}
{32, 33, 34, 35} → {02, 28, 43, 54}
{36, 37, 38, 39} → {06, 17, 47, 58}
{40, 41, 42, 43} → {10, 21, 32, 62}
{44, 45, 46, 47} → {14, 25, 36, 51}
{48, 49, 50, 51} → {03, 29, 40, 55}
{52, 53, 54, 55} → {07, 18, 44, 59}
{56, 57, 58, 59} → {11, 22, 33, 63}
{60, 61, 62, 63} → {15, 26, 37, 48}

Construction 4 (γ : K × κ 7→ λ) Where

K = (Π0,Π1, . . . ,Π15), Πi ∈ NL4
π∀0 ≤ i ≤ 15

κ = (κ0, κ1, . . . , κ15), κi ∈ I64 ∀0 ≤ i ≤ 15

λ ∈ I64

z−1 := 0

zi := µ(α(K, zi−1 ⊕ κt)), t = i%16, ∀0 ≤ i ≤ 31

λ := z31

Construction 5 (G64
4 : K 7→ (Ke,Kd)) Where

K = (Π0,Π1, . . . ,Π15), Πi ∈ NL4
π∀0 ≤ i ≤ 15

≡ (k0, k1, k2, . . . , k15), ki ∈ I64∀0 ≤ i ≤ 15

Ke = (Πe
0 ,Πe

1 , . . . ,Πe
15, λ

e
0, λ

e
1, . . . , λ

e
15), Πe

i ∈ NL4
π, λe

j ∈ I64∀0 ≤ i ≤ 15

Kd = (Πd
0 ,Πd

1 , . . . ,Πd
15, λ

d
0, λ

d
1, . . . , λ

e
15), Πd

i ∈ NL4
π, λd

j ∈ I64∀0 ≤ i ≤ 15

Published in WCC 2009
Do not redistribute without permission.

13 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

Πe
i := Πi

Πd
i := Π−1

i

κi := (κi
0, κ

i
1, . . . , κ

i
15),∀0 ≤ i ≤ 15

κi
k := kt, t = (i + k)%16

λe
j := γ(K,κj)

λd
j := λe

15−j

In the construction of G
64
4 to generate the λ, we use the equivalent rep-

resentation of the key bits as explained in Section 3.4.

Construction 6 (E64
4 : Ke × X 7→ Y) Where

Ke = (Πe
0 ,Πe

1 , . . . ,Πe
15, λ

e
0, λ

e
1, . . . , λ

e
15), Πe

i ∈ NL4
π, λe

j ∈ I64, ∀0 ≤ i ≤ 15

X,Y ∈ I64.

Y := E
64
4 (Ke,X)

Z−1 := X

Ke
π := (Πe

0 ,Πe
1 , . . . ,Πe

15)

Zi := µ(α(Ke
π, Zi−1)) ⊕ λe

i ∀0 ≤ i ≤ 15

Y := Z15

Construction 7 (D64
4 : Kd × X 7→ Y) Where

Kd = (Πd
0 ,Πd

1 , . . . ,Πd
15, λ

d
0, λ

d
1, . . . , λ

d
15), Πd

i ∈ NL4
π, λd

j ∈ I64, ∀0 ≤ i ≤ 15

X,Y ∈ I64.

Y := D
64
4 (Kd,X)

Z−1 := X

Kd
π := (Πd

0 ,Πd
1 , . . . ,Πd

15)

Zi := α(Kd
π, µ−1(Zi−1 ⊕ λd

i))∀0 ≤ i ≤ 15

Y := Z15

Published in WCC 2009
Do not redistribute without permission.

14 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

5 Analysis

5.1 Bijective Function Set (NL
4

π
)

The set NL4
π comprises of all non-linear functions of 4 input and 4 output

bits. The degree [13] of any function Π ∈ NL4
π is given by

deg(Π) = max0≤i<4deg(fΠ
i)

≥ 2. (6)

This follows from our choice of nonlinear functions in Section 3.5. Thus
the overall degree of a cipher function from Maya family is

deg(Maya) ≥ (deg(Π))r

= 64. (7)

Thus every instance of a Maya cipher function has high algebraic degree.
Thus algebraic attacks on Maya have very small chance of success.

5.2 Key Size

Maya(64, 4) has 16 4×4 bijective functions. Each of these bijective func-
tions is represented by its 64 bits truth-table. Thus the key size is 1024
bits. But the effective key size is 16 ∗ 43.99 ≈ 703 bits based on our es-
timate of |NL4

π| in Section 3.5. This effective key size is still larger than
the contemporary cipher key sizes.

5.3 Rounds

In Section 3.3 we showed the relationship between bias and number of
rounds in Maya. A bit-level bias of 1

2N3 achieves overall bias less than
1

N2N . For N = 64 and m = 4 the number of rounds required to achieve
this is 15 (k = 12, from Figure 1). One of the properties of a bijective
function is that by observing output bits one can infer whether the input
was colliding or not. This property makes the last round redundant for an
adversary with access to the output bits. Thus we increased the number
of rounds to 16 to take care of this redundancy.

Published in WCC 2009
Do not redistribute without permission.

15 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

5.4 Security

The fundamental question that needs to be answered in any crypto-system
is the difficulty of extracting the secret. In Maya the secret or key consists
of 16 bijective functions. Thus any cryptanalysis will have to find full or
partial truth-table bits. In other words any successful attack on Maya

should be able to answer the question y
?
= Πi(x). While we don’t have

a theoretical proof yet we believe that this is an NP-Complete problem.
But given that S-boxes themselves are secret it would be much harder to
infer the secret in Maya compared to any other algorithm whose S-boxes
are public.

5.5 Cryptanalysis

Two properties of Maya make it resistant to conventional cryptanalysis
methods, namely,

1. Every round is dependent on all the key bits, i.e., attacks which depend
on guessing small number of round key bits fail.

2. The S-boxes themselves are chosen by the key bits thus making the
analysis dependent on the complete set.

Linear Cryptanalysis: Linear cryptanalysis is a general form of crypt-
analysis based on finding affine approximations to the cipher function.
The technique [14] has been applied to attack ciphers like FEAL [15] and
DES [3]. Linear cryptanalysis exploits the high probability of occurrences
of linear expressions involving plaintext, ciphertext, and sub-key bits. This
attack becomes possible on the conventional cipher function design as the
key bits are primarily XOR’ed with round inputs. The linear approxima-
tions of known components (S-boxes) in the system further aid the anal-
ysis. In the case of Maya none of these favorable conditions are present.
The completeness property of NL4

π, i.e., for every Π ∈ NL4
π its comple-

ment (Π̄) is also present, makes the bias of every linear approximation
zero.

Differential Cryptanalysis: Differential cryptanalysis [16] exploits the prop-
erty of difference being propagated from input to the output of the cipher
function. This attack again requires the properties of the known compo-
nents in the system (S-boxes) in order to estimate the difference propaga-
tion probabilities. In Maya, the S-boxes are chosen at random from the

Published in WCC 2009
Do not redistribute without permission.

16 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

set NL4
π thus requiring any differential analysis to be done on this whole

set. But the set NL4
π is complete with respect to differential analysis in

the sense that every differential pair is equally probable. Thus differential
cryptanalysis is not feasible against Maya. A variant of this attack is im-
possible difference attack [17] which again uses the principle of identifying
differences that do not propagate from input to output.

Boomerang Attack: This attack [18] relies on the difference analysis of
round function properties and existence of some block in the system which
is independent of the input to cipher function. This can be thought of as
meet-in-the middle version of differential cryptanalysis. Again Maya is
resistant to this attack as there are no blocks (gates) in the system that
are independent of either the key or the input.

Sliding Attack: This attack [11] exploits the weakness of the round func-
tions. It assumes that given two pairs P,C and P ′, C ′ such that P ′ = f(P)
and C ′ = f(C), the round function can be deciphered or at least a sig-
nificant fraction of key bits can be extracted. These attacks once again
use the property of round functions being built using some known compo-
nents (S-boxes) and key bits being used only in xor operations. Maya has
unique round keys which make every round function unique thus resisting
slide attack.

Related Key Attack: Round key generation algorithm of Maya mixes the
key bits in such a way that small difference in the key bits gets propagated
to all the round key bits.

6 Implementation

One of the main advantages of Maya is that the design is easily imple-
mentable in hardware hence should have better efficiency results compared
to the conventional cipher algorithms. We used AES-128 bit implementa-
tion as the basis for our comparison as this is the most widely used cipher
function.

We implemented Maya in VHDL and used the 128-bit AES from Open-
cores [19]. The designs are synthesized, placed and routed using Xilinx ISE
9.1 [20] targeting Virtex-4 xc4vlx100-12ff1148 with Block RAM turned
off. We maximize the clock frequency to a value that ISE can place and

Published in WCC 2009
Do not redistribute without permission.

17 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

Table 3. FPGA Implementation Results

(a) Maya(64,4)

Rounds Period Latency Gate Equiv. Throughput Energy/bit
per Stage ns ns 103 109bits/s 10−12J/bit

16 21.5 21.5 21.0 2.98 429.34
8 11.0 22.0 21.5 5.82 261.89
4 6.5 26.0 22.5 9.85 192.73
2 4.5 36.0 24.6 14.22 160.76
1 3 48.0 28.7 21.33 144.03

(b) AES-128

Rounds Period Latency Gate Equiv. Throughput Energy/bit
per Stage ns ns 103 109bits/s 10−12J/bit

10 50.0 50.0 293.4 2.56 538.94
5 40.0 80.0 272.9 3.20 486.17
2 29.0 145.0 276.4 4.41 370.61
1 28.0 280.0 283.1 4.57 390.83

route without timing violation. We updated AES design to make it run
in pipelined mode. In order to get the measure of total area consumed
by the logic, Gate Equivalent metric is chosen. This data approximates
the number of gates needed in ASIC. We also measure the power con-
sumption of the FPGA using Xilinx XPower. The results are presented in
Tables 3(a) and 3(b).

One of Maya’s main advantages in FPGA implementation is that we can
make use of the native 4-LUTs to store our key and perform multiplexer
function. This greatly reduces the number of LUTs needed compared with
AES FPGA implementation. From the results, we can see that an order of
magnitude improvement with respect to speed and area. Any configuration
of Maya requires only 7% of the gates needed for the minimal configu-
ration of the AES. The efficiency of design is reflected in the parameter
throughput per gate, which for Maya is 46 times higher than that of AES.
This shows that every gate is used much more effectively in Maya design.
Even with a higher throughput than that of AES the energy consumed by
Maya is less than half of that of AES. This proves our contention that
Maya design is inherently suitable for hardware implementation.

AES throughput can be increased further by increasing the number of
pipeline stages [21,22,23,24,25]. The highest throughput design is pre-
sented by Zambreno et al. [25] implemented on XC2V4000 FPGA by un-
rolling and heavily pipelining the AES design with Distributed ROM prim-

Published in WCC 2009
Do not redistribute without permission.

18 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

itives. The throughput achieved by this design is 23.57Gbps using 16938
slices which is 1.39Mbps/slice. Our Maya design achieves a throughput of
21.33Gps using 2050 slices, i.e., 10.4Mbps/slice which is 7.49 times more
efficient than the best known pipelined design for AES.

Acknowledgments

The authors wish to thank Prof. Ahkilesh Tyagi of Iowa State University
for his help in the design and analysis of Maya algorithm. The authors
wish to thank Ka-Ming Keung of Iowa State University for his help in the
VHDL design and synthesis of Maya and AES-128 ciphers.

7 Conclusion

We have argued for a block cipher design based on S-boxes or gates de-
rived from the secret, but with a published dataflow architecture. This
is a novel design methodology for Block Cipher functions which results
in better hardware implementation efficiency, and increased cryptanalysis
resistance. Our design has used key-dependent S-boxes to the limit. We
have designed a specific cipher,Maya, based on this methodology. We ana-
lyzed the properties of the Maya and argued its resistance to conventional
cryptanalytic techniques. The fundamental advantages of our methodol-
ogy are increased secret size in relation to block size and much more
efficient hardware implementation compared to the conventional crypto-
graphic design. As a proof of concept we show that the FPGA imple-
mentation of Maya is an order of magnitude efficient in every design
parameter compared to 128-bit AES implementation.

References

1. Canteaut, A., Augot, D., Biryukov, A., Braeken, A., Cid, C., Dobbertin, H., En-
glund, H., Gilbert, H., Granboulan, L., Handschuh, H., Hell, M., Johansson, T.,
Maximov, A., Parker, M., Pornin, T., Preneel, B., Robshaw, M., Ward, M.: Ongo-
ing research areas in symmetric cryptography. In: ECRYPT Report. (Jan 2006)

2. National Institute of Standards and Technology: FIPS PUB 197: Advanced En-
cryption Standard (AES). (Nov 2001)

3. National Institute of Standards and Technology: FIPS PUB 46-3: Data Encryption
Standard (DES). (Oct 1999)

4. Anderson, R.J., Biham, E., Knudsen, L.R.: The case for serpent. In: AES Candi-
date Conference. (2000) 349–354

Published in WCC 2009
Do not redistribute without permission.

19 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

5. Lie, D., Thekkath, C.A., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J.C.,
Horowitz, M.: Architectural support for copy and tamper resistant software. In:
Architectural Support for Programming Languages and Operating Systems. (2000)
168–177

6. Suh, G., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: aegis: Architecture
for tamper-evident and tamper-resistant processing. In: Proceedings of the 17 Int’l
Conference on Supercomputing. (2003) 160–171

7. Wikipedia Article: GOST 28147-89. (1970-)
8. Wikipedia Article: TREYFER. (1997)
9. Biryukov, A.: Slide attack. In van Tilborg, H.C.A., ed.: Encyclopedia of Cryptog-

raphy and Security. Springer (2005)
10. L’Ecuyer, P., Simard, R.J.: Testu01: A c library for empirical testing of random

number generators. ACM Trans. Math. Softw. 33(4) (2007)
11. Biryukov, A., Wagner, D.: Slide attacks. In Knudsen, L.R., ed.: FSE. Volume 1636

of Lecture Notes in Computer Science., Springer (1999) 245–259
12. Biryukov, A., Wagner, D.: Advanced slide attacks. In: EUROCRYPT. (2000)

589–606
13. Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions

and applications to higher order differential cryptanalysis. In: EUROCRYPT ’02:
Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, London, UK, Springer-Verlag (2002) 518–533

14. Matsui, M.: Linear Cryptoanalysis Method for DES Cipher. In: EUROCRYPT.
(1993) 386–397

15. Miyaguchi, S.: The FEAL Cipher Family. In: CRYPTO. (1990) 627–638
16. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.

Cryptology 4(1) (1991) 3–72
17. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31

Rounds Using Impossible Differentials. J. Cryptology 18(4) (2005) 291–311
18. Wagner, D.: The boomerang attack. In: Fast Software Encryption. (1999) 156–170
19. OpenCores: AES IP Core
20. Xilinx Incorporated: Xilinx ISE 9.1
21. Feldhofer, M., Lemke, K., Oswald, E., Standaert, F.X., Wollinger, T., Wolkerstor-

fer, J.: State of the art in hardware architectures. Technical Report D.VAM.2,
ECRYPT, European Network of Excellence in Cryptology (September 2005)

22. Chodowiec, P., Khuon, P., Gaj, K.: Fast implementations of secret-key block
ciphers using mixed inner- and outer-round pipelining. In: FPGA ’01: Proceedings
of the 2001 ACM/SIGDA ninth international symposium on Field programmable
gate arrays, New York, NY, USA, ACM (2001) 94–102

23. Hodjat, A., Verbauwhede, I.: A 21.54 gbits/s fully pipelined aes processor on
fpga. Field-Programmable Custom Computing Machines, 2004. FCCM 2004. 12th
Annual IEEE Symposium on (April 2004) 308–309

24. Zhang, X., Parhi, K.K.: High-speed vlsi architectures for the aes algorithm. IEEE
Trans. Very Large Scale Integr. Syst. 12(9) (2004) 957–967

25. Zambreno, J., Nguyen, D., Choudhary, A.N.: Exploring area/delay tradeoffs in an
aes fpga implementation. In: FPL. (2004) 575–585

Published in WCC 2009
Do not redistribute without permission.

20 M. Gomathisankaran and R. B. Lee
mgomathi,rblee@princeton.edu

http://wcc2009.org

