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ABSTRACT

MicroArchitectural Attacks (MA), which can be considered
as a special form of Side-Channel Analysis, exploit microar-
chitectural functionalities of processor implementations and
can compromise the security of computational environments
even in the presence of sophisticated protection mechanisms
like virtualization and sandboxing. This newly evolving
research area has attracted significant interest due to the
broad application range and the potentials of these attacks.
Cache Analysis and Branch Prediction Analysis were the
only types of MA that had been known publicly. In this
paper, we introduce Instruction Cache (I-Cache) as yet an-
other source of MA and present our experimental results
which clearly prove the practicality and danger of I-Cache
Attacks.
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1. INTRODUCTION

Side-channel cryptanalysis exploit the information leakage
from execution time, power consumption or any such side-
channels during the computation of cryptographic opera-
tions, c.f. [19, 20]. Cryptographic implementations leak sen-
sitive information because of the physical properties and re-
quirements of the cryptographic implementations and com-
putational environments. Classical cryptography analyzes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSAW’07, November 2, 2007, Fairfax, Virginia, USA.

Copyright 2007 ACM 978-1-59593-890-9/07/0011 ...$5.00.

11

the cryptosystems as perfect mathematical models and ig-
nores such physical requirements, thus fails to identify side-
channel leakages. Therefore it is inevitable to utilize both
classical cryptography and side-channel cryptanalysis in or-
der to develop and implement secure systems and security
architectures.

The initial focus of side-channel research was on smart
card security. We discuss the reasons of this situation in
the next section. For now, we just want to mention that
side-channel analysis of computer systems started to attract
more attention after Brumley and Boneh demonstrated a
successful and practical remote timing attack on real ap-
plications over a local network [14]. Since then, we have
seen increased research efforts on the security analysis of the
daily life PC platforms from side-channel point of view. The
most important recent advance in the field is the realization
of MicroArchitectural Analysis.

MicroArchitectural Analysis (MA), which is a newly evolv-
ing area of side-channel cryptanalysis, studies the effects of
common processor components and their functionalities on
the security of software cryptosystems, c.f. [11, 2, 4, 3, 7,
29, 32]. As a natural consequence of strictly throughput,
performance, and “performance per watt” oriented goals of
modern processor designs and also highly “time-to-market”
driven business philosophy, the resulting products, i.e. com-
modity processor architectures in the market, lack a thor-
ough security analysis. The main element that gave birth
to MicroArchitectural Analysis area is indeed this partic-
ular gap between the current processor architectures and
the ideal secure computing environment. The advances in
MicroArchitectural Analysis field initiated a new research
vector to identify, analyze, and mitigate the security vulner-
abilities that are caused by the design and implementation
of processor components.

All of these cited pure software MicroArchitectural at-
tacks, including the one presented in this paper, can com-
promise security systems despite of sophisticated methods
such as memory protection, sandboxing or even virtualiza-
tion. The reason for the failure of these trust mechanisms is
because these new attacks “simply exploit deeper processor
ingredients below the trust architecture boundary’ as stated
in [2, 4]. The new security and virtualization technologies
such as Intel’s LT and VT, AMD’s Pacifica, ARM’s Trust-
zone, software based virtualization mechanisms are all po-
tentially susceptible to MA attacks. We want to emphasize
that so far there had not been any publicly known MA attack
incidents on these systems. But we believe it is only a matter
of time until they are shown to be compromised via MA.



It is crucial to identify every possible MicroArchitectural
vulnerability in order to understand the real potential of Mi-
croArchitectural Analysis and to develop more secure sys-
tems by employing appropriate software countermeasures
and making required hardware changes to future architec-
tures.

In this paper, we identify a new MicroArchitectural attack
source, in other words, another processor component that
causes security vulnerabilities. We show that Instruction
Cache, which is used to reduce the average time to read
instruction codes from main memory, can be exploited to
extract sensitive information regarding the execution of a
cryptosystem. Our results clearly show the practicality and
danger of I-cache attacks and put I-cache into the list of
known MicroArchitectural attack sources.

In the next section, we give an overview of MicroArchitec-
tural Analysis including a brief history. We explain what an
instruction cache is and how it works in Section 3. The ba-
sics of RSA cryptosystem and the details of OpenSSL’s RSA
implementation are presented in Section 4. Sections 5 and 6
outline the underlying idea of instruction cache attacks and
detail a sample attack on sliding window exponentiation of
RSA implemented in OpenSSL. We also present our exper-
imental results, which prove the practicality of instruction
cache analysis concept, in Section 6. Then we point out a
protected RSA implementation and conclude our paper in
the last section.

2. OVERVIEW AND BRIEF HISTORY OF
MICROARCHITECTURAL ANALYSIS

The initial focus of side-channel research was on smart
card security. Smart cards store secret values and they are
designed to protect and process these secrets. Therefore,
there is a serious financial gain involved in cracking smart
cards, as well as, analyzing them and developing more se-
cure smart card technologies, and this is one of the main
reasons why smart cards had the initial focus of side-channel
research. However, the recent advances and trends in micro-
processor market, especially the development of micropro-
cessor based security features (e.g. Intel’s LT and VT Tech-
nologies, AMD Pacifica), and also the recent promises from
the Trusted Computing community indicate the security as-
surance of storing and processing secret values, establishing
virtually separate execution environments, etc. on computer
platforms. As an eventual result, the side-channel analysis
of computer platforms has become a necessity.

Another reason of the high attention to side-channel anal-
ysis of smart cards is due to the ease of applying such attacks
on smart cards. The measurements of side-channel informa-
tion on smart cards are almost “noiseless”, which makes
such attacks very practical. On the other hand, there are
so many factors that affect such measurements on real com-
modity computer systems. These factors make it much more
difficult to perform successful side-channel attacks on “real”
computers within our daily life. Thus, the side-channel vul-
nerability of computer systems was not seriously considered
to be harmful until 2003. This was changed when Brum-
ley and Boneh demonstrated a successful and practical re-
mote timing attack on real applications over a local network
[14]. They simply adapted the attack principle introduced
by Schindler in [34] and applied it to a real web server to
show that side-channel attacks are a real danger not only
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to smart cards but also to widely used computer systems.
Their work was significantly improved by Aciigmez et. al.
in 2005 [9].

We have seen increased research efforts on the side-channel
analysis of commodity PC platforms for the last few years.
Soon, it was realized that the functionality of some mi-
croprocessor components cause serious side-channel leakage.
These efforts led to the development of MicroArchitectural
Analysis area.

MicroArchitectural Attacks exploit the microarchitectural
components of a processor to reveal cryptographic keys. The
functionality of some processor components generates data
dependent variations in execution time and power consump-
tion during the execution of cryptosystems. These variations
either directly gives the key value out during a single cipher
execution (c.f. [2]) or leaks information which can be gath-
ered during many executions and analyzed to compromise
the system (c.f. [29, 11, 24]).

The actual roots of MA goes a long way back to [18,
36]. Although the security risks of processor components
like cache were implicitly pointed out in these publications,
concrete and widely applicable security attacks based upon
processor functionalities have recently been worked out and
immediately attracted significant public interest. There are
currently two types of MA in the literature': Cache Analysis
and Branch Prediction Analysis.

A cache-based attack, abbreviated to “cache attack” from
here on, exploits the cache behavior of a cryptosystem by ob-
taining the execution time and/or power consumption vari-
ations generated via cache hits and misses. The cache vul-
nerability of computer systems has been known for a long
time, c.f. [18, 19, 21], however actual realistic and practical
cache attacks were not developed until recent years.

Cache analysis techniques enable an unprivileged process
to attack another process, e.g., a cipher process, running
in parallel on the same processor as done in [29, 24, 32].
Furthermore, some of the cache attacks can even be carried
out remotely, e.g., over a local network [7].

The previous cache attacks are data-path attacks, i.e., ex-
ploit the data access patterns of a cipher. The memory ac-
cesses of software cryptosystems, especially S-box based ci-
phers like DES and AES, employ key-dependent table lookups,
indices of which are simple functions of the key and the
plaintext. Revealing these memory access patterns, i.e. lookup
indices, via cache statistics and the knowledge of the pro-
cessed message, e.g. in a known-text attack, make it rela-
tively easy to break these ciphers.

A new group of MA attacks, called Branch Prediction
Analysis (BPA), on the other hand, exploit instruction path
of a cipher [2, 1, 4, 3]. In other words, an adversary can
reveal the execution flow of a cipher using BPA, and if this
execution flow is key dependent as in the case of RSA and
ECC, then he can compromise the system. The most pow-
erful BPA, which is called Simple Branch Prediction Anal-
ysis (SBPA), was shown to extract almost all of the RSA
key bits during a single RSA operation. Immediately af-
ter it became public around the end of 2006, SBPA at-
tracted very significant attention due to its implications.

'There is, in fact, a new paper describing a recently dis-
covered MA type [6]. The details of it were not publicly
available by the time we wrote this current paper. There-
fore we omit this attack here and prefer not to disclose the
details.



Aciigmez et. al. briefly outlined why SBPA endangers most
of the current systems and detailed some techniques to show
how SBPA can be used to break even “thought-to-be-side-
channel-immune” systems in [2, 1, 5].

In this paper, we combine these two concepts: exploit-
ing cache architecture and revealing instruction paths. We
present several attacks that rely on instruction cache (I-
cache) architecture of CPUs. All of the previous cache at-
tacks exploit the side-channel leakage through data cache
of a CPU. To the best of our knowledge, this is the first
approach to exploit side-channel leakage due to I-cache ar-
chitectures. Our experimental results indicate that I-cache
analysis is as efficient as SBPA.

3. INSTRUCTION CACHE

Our software I-cache timing attack exploits the function-
ality of I-cache implemented in microprocessors. A high-
frequency processor needs to retrieve data at a very high
speed in order to utilize its functional resources. The latency
of a main memory is not short enough to match this demand
of high-speed data delivery. The gap between the memory
and the processor speed has been continuously increasing
for the last 3 decades as Moore’s Law holds. Common to all
processors, the attempt to overcome the drawbacks of this
gap is the employment of a special buffer called cache.

A cache is a small and fast storage area used by a CPU to
reduce the average memory access time. It acts as a buffer
between the main memory and the processor core and pro-
vides the processor fast and easy access to the most fre-
quently used data (including instructions) without frequent
external bus accesses.

Cache stores the copies of the most frequently used data.
When the processor needs to read a location in main mem-
ory, it first checks to see if the data is already in the cache.
If the data is already in the cache (a cache hit), the pro-
cessor immediately uses this data instead of accessing the
main memory, which has a significantly longer latency than
a cache. Otherwise (a cache miss), the data is read from the
memory and a copy of it is stored in the cache. This copy is
expected to be used in the near future due to the temporal
locality property.

A cache is partitioned into a number of non-overlapping
fixed size blocks, called cache blocks or cache lines. The
minimum amount of data that can be read from the main
memory into a cache at once is called cache line or cache
block size, i.e., each cache miss causes a cache block to be
retrieved from a higher level memory. The reason why a
block of data is transferred from the main memory to the
cache instead of transfering only the data that is currently
needed lies in spatial locality property. Since a cache is
limited in size, storing new data in a cache mandates eviction
of some of the previously stored data.

Before moving on to the next section, we want to men-
tion two very important concepts that affect the functional
behavior of a cache: the mapping strategy and the replace-
ment policy. We will only give very brief information on
these concepts in this paper.For further discussion on cache
architectures and locality properties see [16, 33, 15].

Cache mapping strategy is the method of deciding where
to store, and thus to search for, a data in a cache. Three
main cache mapping strategies are direct, fully associative
and set associative mapping. In a direct mapped cache, a
particular data block can only be stored in a single certain
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location in the cache. On the contrary, a data block can be
placed in potentially any location in a fully associative cache.
The location of a particular placement is determined by the
replacement policy. Set associative mapping is a blend of
these two mapping strategies. Set associative caches are
divided into a number of same size sets, called cache sets,
and each set contains the same fixed number of cache lines.
A data block can be stored only in a certain cache set (just
like in a direct mapped cache), however it can be placed in
any location inside this set (like in a fully associative cache).
Again, the particular location of a data inside its cache set
is determined by the replacement policy.

The replacement policy is the method of deciding which
data block to evict from the cache in order to place the
new one in. The ultimate goal is to choose the data that
is most unlikely to be used in the near future. There are
several cache replacement policies proposed in the literature
(c.f. [16, 33]). In this document, we focus on a specific
one: least-recently-used (LRU). It is the most commonly
used policy and it picks the data that is least recently used
among all of the candidate data blocks that can be evicted
from the cache.

Many processors employ different caches for data and code
segments of a process. The instruction cache is responsible
for storing recently used instructions from the code segment
and quickly delivering them to the processor core when the
accessed instructions are in the I-cache. When a process
starts executing a code block that is not in the cache, i.e., in
case of a cache miss, the processor loads these instructions
from main memory into the cache. This situation happens
either at the initial execution of a function (i.e., a cold miss),
or after a cache conflict (i.e., conflict miss). Since a cache is
limited in size, several different code blocks share the same
cache sets/lines. A cache conflict or collision is the situ-
ation that occurs when an attempt is made to store two
or more different data/code items at a cache location that
can hold only one of them. In case of a cache conflict be-
tween different code blocks, they evict each other from the
instruction cache when their executions are interleaved. In
our I-cache attacks, we exploit this particular consequence
of cache conflicts by creating intentional conflicts between
the instructions of RSA cipher and a spy code and forcing
the processor to evict the RSA instructions out of I-cache.

4. THE CONCEPT OF I-CACHE ATTACKS

Cryptosystems have data-dependent memory access pat-
terns, which can be revealed by observing cache hit/miss
statistics through side channels. Cache attacks rely on the
cache hits and misses that occur during the encryption /
decryption process of a cryptosystem. Even if the same
instructions are executed for any particular (plaintext, ci-
pherkey) pair, the cache behavior during the execution was
shown to cause variations in the program execution time
and power consumption. Cache attacks try to exploit such
variations to narrow the exhaustive search space of crypto-
graphic keys, c.f. [31, 39, 40, 7, 8, 29, 30, 11, 25, 22, 24, 32,
12, 13].

The previous studies in MicroArchitectural Analysis area,
such as [29, 32, 24, 2, 4], initiated a new attack paradigm,
which relies on simultaneous multi-threading / multi-tasking
functionality of modern processors. Simultaneous multi-
threaded (SMT) processors have the capability of execut-
ing more than one execution thread simultaneously on the



same physical processor. Multi-core processors also have the
same capability. The main difference between multi-core
and SMT is that expensive resources of a processor core (
e.g., functional units, data and instruction cache, BTB) are
shared between different threads in a SMT processor. The
basic and simple resources are explicitly doubled to give the
sense of two logical processors on a single physical processor
core. Thus, this design technique enables the simultaneous
execution of more than one process on the same physical pro-
cessor core by taking advantage of thread-level parallelism,
as if there were more than one processor [35, 37).

Single-threaded processor cores, on the other hand, exe-
cute only a single process/thread at any given time. How-
ever, the operating systems manage to distribute the pro-
cessor time among all the active processes and give the users
the feeling of a parallel, multi-threading execution. The OS
basically decomposes the execution of each process into a
series of short threads and schedules the execution of these
threads with respect to each other.

Irrespectively of single-threaded or hardware-assisted multi-

threaded, some processor resources are always shared among
the active threads on the system, which enables one process
to spy on another process, c.f. [29, 32, 24, 2, 4]. Although
the memory protection mechanisms prevent a process to di-
rectly read other processes’ data, the functionality of shared
resources leak the so-called metadata and causes the disclo-
sure of secret / private keys used in security systems.

In our I-cache attacks, we rely on the concept of executing
a spy code, which keeps track of the changes in the state
of I-cache, i.e., metadata, during the execution of a cipher
process. A spy code / process can run simultaneously or
quasi-parallel with the cipher process and determine which
instructions are executed by the cipher. It achieves this goal
by spying on the cipher execution via observing the I-cache
state transitions.

Assume that an adversary tries to understand whether a
certain I-cache set is “touched” by the cipher, i.e., modi-
fied, during the execution of a part of cipher code. The
spy allows the cipher to run and takes over the processor
shortly before the execution of the “spied-on” part of cipher
code. This task of pausing the cipher execution at a deter-
mined point, even though it sounds nice, is very tricky and
requires very fine-crafted spy code. However, it is feasible
and was successfully used in earlier studies on cache attacks
by Neve et. al. in [24] to devise an attack on the last AES
round, which is composed of a relatively small number of
instructions. A similar idea is also presented in a recent pa-
per [38]. Although [38] proposes to exploit OS scheduling
mechanism to steal CPU cycles unfairly, the cheating idea
and the source code can easily be adapted to MicroArchi-
tectural Analysis attacks.

After the spy takes over, it ensures that this particular I-
cache set does not contain any instructions from the cipher
by executing a set of “dummy” instructions. These dummy
instructions are not intended to perform any calculations or
tasks other than filling some I-cache space. These dummy
instructions shall fill completely and precisely this I-cache
set, no more no less. During the execution of dummy in-
structions, the processor has to store them into the cache,
which inevitably causes the eviction of the previous entries
in that I-cache location. That way, the spy sets the state of
this particular I-cache set to a known predetermined state
and then it lets the cipher run the “spied-on” part of code.
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The spy takes control of the processor after the execu-
tion of a relatively small number of cipher instructions. If
the executed cipher instructions touch the I-cache set un-
der observation, this will cause the eviction of some of these
spy-owned dummy instructions from the I-cache. When the
spy takes control of the processor, it re-executes the same
dummy instructions but this time also measures their total
execution time. If some of these dummy instructions are not
in I-cache, which indicates the modification of this I-cache
set due to cipher execution, then the measured execution
time will take longer simply because the evicted instructions
must be retrieved from the memory which has a significantly
larger latency compared to the cache.

During the quasi-parallel execution of spy and cipher pro-
cesses, a malicious spy routine can continuously interrupt
the cipher execution with short intervals and apply the above
basic technique to every single I-cache set each time it takes
the control. On simultaneous multi-threading systems, the
spy routine does not even need to interrupt the cipher exe-
cution and can observe it “on-the-fly” as done in [32, 1]. If
the adversary can get measurements with high enough reso-
lution , i.e., if he can estimate which cache sets are modified
during the execution of which part of the cipher code, this
will reveal the execution flow of the cipher. Therefore, such
a spy routine has the potential of revealing the entire execu-
tion flow of the cipher on almost any processor architecture
as long as there is an I-cache and its metadata is preserved
during the transfer of processor time between different pro-
cesses.

In the next section, we will outline a sample cache attack
on OpenSSL’s sliding window exponentiation. We want to
mention that we use OpenSSL’s SWE just as a case study to
prove the concept of I-cache analysis. The actual application
range of I-cache attacks is much more broader than this
simple case study. Our results from this case study show
that an adversary can easily get a measurement resolution
high enough to compromise very critical security systems.

5. A CASESTUDY: ATTACK ON OPENSSL’S
SLIDING WINDOW

OpenSSL takes advantage of the difference between mul-
tiprecision multiplication and square operations to improve
the performance of its RSA implementation. During a mont-
gomery operation, OpenSSL first calls either multiplication
or square functions from BIGNUM library and then reduces
the result to the modulus via montgomery reduction func-
tion. In case of sliding window exponentiation, this tech-
nique causes key-dependent sequence of multiplication and
square function calls. The current version of OpenSSL em-
ploys either sliding window or fixed window exponentiation
depending on the user’s choice.

A practical method to reveal the multiplication/square
operation sequence is the following. The spy function can
evict the instructions of multiplication function (or square
function, resp.) and measure the execution time of its own
dummy instructions as described in the previous section.
The higher execution time in spy measurements indicate
the execution of this multiplication (square, resp.) func-
tion. Therefore, the spy can determine when the cipher
calls this particular function, which also directly reveals the
multiplication/square operation sequence. The spy function
can perform the attack either “on-the-fly” on simultaneous



multi-threading systems (c.f. [32, 1])or via exploiting OS-
scheduling (c.f. [24]).

Our attack scenario is the following. A “protected” crypto
process executes the RSA signing/decryption process and
also a spy process is executed simultaneously or quasi-parallel
with the cipher and it continuously does the following:

1. continuously executes a number of dummy instruc-
tions, and

2. measures the overall execution time of all of these in-
structions

in such a way that these dummy instructions precisely evicts
the instructions of BIGNUM multiprecison multiplication
function from I-cache.

Assume that the multiplication function instructions span
from logical address A to B. Due to the properties of cache
architectures, an instruction block, i.e., continuous consecu-
tive instructions, must span from logical address A; to Bi to
map to the same I-cache sets with the multiplication func-
tion, where the least significant parts of A and A; and also
B and B; must be equal. To completely evict the multiplica-
tion function from I-cache, the spy routine has to execute a
number of different such instruction blocks and this number
needs to be equal or greater than the number of associativ-
ity of the I-cache. Clearly, implementing this spy routine
requires the knowledge of logical address space of the mul-
tiplication function and the details of the I-cache. We want
to mention that it is easy to learn the properties of an I-
cache either from the manufacturer specs or by using simple
benchmarks as explained in [41].

To validate our aforementioned I-cache analysis strategy,
we performed some practical experiments. We compiled
the RSA decryption function of OpenSSL (version 0.9.8d)
with the choice of SWE Exponentiation. We disassembled
the executable file to see the logical addresses of BIGNUM
multiprecision multiplication function instructions. GNU
Project debugger (i.e. gdb) has two functions, “info line”
and “disas”, that we used for this task. Then we imple-
mented our spy routine based on these logical addresses and
the parameters of the I-cache architecture on our platform.
Then we carried out our attack by letting the spy routine
run and make measurements with relatively short intervals
during the execution of RSA signing operation.

After analyzing the spy measurements, we ended up with
the results shown in Figure 1. These timing measurements
are taken during a single RSA operation under a random
1024-bit key. It is clear in the figure that one can observe
the operation sequence of RSA via I-cache analysis. These
results clearly indicate that such I-cache attacks are feasible
and as dangerous and serious as Simple Branch Prediction
Analysis, which attracted very significant attention immedi-
ately after its publication because of the several very serious
security vulnerabilities it implied. The same vulnerabilities
sketched out in [2, 1] can also be exploited via I-cache anal-
ysis.

6. DISCUSSIONS

Looking closely to this graph, one can also distinguish
different phases of sliding window exponentiation:

A table initialization phase of the first exponentiation

B the first exponentiation phase
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C table initialization phase of the second exponentiation
D the second exponentiation phase

E the remaining RSA operations including CRT combi-
nation

If an adversary runs a stand-alone spy process on a machine,
he also needs to ensure that the measurement results from
the spy indeed correspond to the cipher process. Since there
are possibly many other processes running on the same ma-
chine, he needs to distinguish when the spy process is mea-
suring the cipher execution but not another process. In an
experimental setup, we can set the system to ensure this
synchronization by (e.g.) assigning high priorities to spy
and cipher processes. However, in a real attack, where the
adversary does not have privileges to configure such param-
eters, this synchronization issue becomes problematic. As
seen in our results, different RSA phases are distinguish-
able, which can enable an adversary to understand whether
the spy process is spying on a cipher or another process and
thus overcome the synchronization problem.

We could reveal the operation sequence of sliding window
exponentiation almost completely during a single RSA op-
eration via I-cache analysis. Revealing the multiplication /
square sequence of an RSA with binary exponentiation algo-
rithm, which was the case in [1], would directly give the value
of d out. In our ”proof-of-concept” attack on sliding window
exponentiation, the multiplication / square sequence reveals
around 200 ”scattered” bits of each 512-bit exponents, c.f.,
[32]. It is not clear today whether the knowledge of 200
bits scattered over 512-bit exponent is sufficient to break
RSA. In other words, we do not know any methods that
can directly leverage this information to factorize the public
modulus. However, the application range of I-cache analysis
is definitely not limited to SWE. [1] and [5] discuss several
situations that are potentially vulnerable to SBPA, which
are also valid for I-cache analysis. For example, leakage of
just a few secret bits of the respective ephemeral keys leads
to a total break of (EC)DSA, c.f., [17, 26, 27].

Unfortunately, the discussions in [1] and [5] are not com-
prehensive in terms of covering the potential threats due to
MicroArchitectural analysis. We have discovered a vulnera-
bility, which is not mentioned in [1, 5], in OpenSSL library
that can be exploited via I-cache analysis. A new patch was
already prepared by OpenSSL team to fix this vulnerability
and it will be available in future version of OpenSSL soon.
Our objective in this paper is to describe and prove only
the concept of I-cache analysis. Our results and details on
this OpenSSL vulnerability will follow in subsequent publi-
cations.

Comparison of I-cache Analysis to Data Cache and
Branch Prediction Analysis

Data cache attacks try to reveal the data-access patterns
of cryptosystems. On the other hand, we reveal the in-
struction flow of cryptosystems in I-cache analysis. The
cryptosystem implementations with fixed instruction flow,
which is usually the case for block ciphers like AES, are not
vulnerable to I-cache and Branch prediction analysis whilst
data cache attacks can exploit the table lookups of such ci-
phers. It is also possible to determine the execution flow of
a cipher (e.g. RSA) by analyzing the data access patterns
as done in [32]. However, implementations can avoid this
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threat by carefully handling the data structures. For exam-
ple, OpenSSL changed to way it handles the RSA structures
to avoid data cache attacks like [32]. Even when the data
structures are handled in a special way, I-cache analysis can
compromise the implementations if the execution flow re-
mains key-dependent. Similarly, data cache attacks can be
applied on implementations with fixed execution flow if the
data access patterns are key-dependent. Therefore, both
data and instruction cache analysis must be considered dur-
ing the design and implementation of security critical sys-
tems.

The basic difference between I-cache and Branch predic-
tion analysis is the following. Branch prediction analysis
presented in [1, 3] specifically targets conditional branches.
A conditional branch controls the execution of different in-
struction paths. Thus, the outcome of a conditional branch,
which can be observed via BPA, leaks the instruction path
to an adversary. However, using conditional branch is only
one way to implement execution flow control. There are
other techniques, which may be protected against BPA, to
conditionally alter the execution flow without the use of con-
ditional branches. In this sense, I-cache analysis is broader
than BPA because it reveals the execution flow regardless
of how execution flow control is implemented. For example,
[10] proposes to use indirect jumps instead of conditional
branches as a countermeasure to BPA, which is still vulner-
able to I-cache analysis.

7. CONCLUSIONS

We have showed that a major processor component, In-
struction Cache (I-cache), causes serious security vulnera-
bilities and can be used in a side-channel attack as a source
of information leakage. The special side-channel area that
exploits processor components is called MicroArchitectural
Analysis (MA) and there are currently two types of MA in
the literature: Cache Analysis and Branch Prediction Anal-
ysis. Our contribution in this paper is to introduce I-cache
Analysis as yet another MA type.

We have presented a simple pure software-based I-cache
attack on OpenSSL’s RSA implementation as a “proof of
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concept” to show that I-cache attacks have the potential to
reveal the execution flow of cryptosystems like RSA, which
can lead to a complete break if the cryptosystem is imple-
mented with key-dependent execution flow. I-cache analy-
sis, just like cache and branch prediction analysis, can com-
promise security systems even in the presence of security
mechanisms like sandboxing and virtualization because all
of these attacks exploit deep processor functionalities which
are below the trust architecture boundary of these security
mechanisms.

I-cache attacks are instruction-path attacks unlike the pre-
vious cache attacks, which exploit the data-path of a cipher
execution. Branch Prediction Analysis is the first instance
of MA that reveals the instruction paths of the cryptosys-
tems. Similar to Simple Branch Prediction Analysis, which
is the most powerful Branch Prediction Analysis variant, I-
cache analysis has the potential to reveal the complete oper-
ation sequence of a cryptosystem during a single execution.
Simple Branch Prediction Analysis attracted very signifi-
cant attention immediately after its publication because of
the several very serious security vulnerabilities it implied.
The same vulnerabilities pointed out in [2, 1] can also be
exploited via I-cache analysis.

It is extremely important and urgent to identify every
possible MicroArchitectural vulnerability in order to under-
stand the real potential of MicroArchitectural Analysis and
to develop more secure systems by developing and employing
appropriate software countermeasures and possibly making
required hardware changes to future processors. It is ad-
visable to avoid key-dependent instruction paths in crypto-
graphic software implementations as much as possible. A
method was already outlined in [5] to protect RSA against
instruction path attacks like Branch Prediction and I-cache
Analysis. We believe, such techniques and countermeasures
shall be developed for other cryptosystems and employed in
cryptographic applications / libraries.
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