
Accelerating the Whirlpool Hash Function Using
Parallel Table Lookup and Fast Cyclical

Permutation

Yedidya Hilewitz1, Yiqun Lisa Yin2, and Ruby B. Lee1

1 Department of Electrical Engineering,
Princeton University, Princeton NJ 08544, USA

{hilewitz,rblee}@princeton.edu
2 Independent Security Consultant

yiqun@alum.mit.edu

Abstract. Hash functions are an important building block in almost
all security applications. In the past few years, there have been ma-
jor advances in the cryptanalysis of hash functions, especially the MDx
family, and it has become important to select new hash functions for
next-generation security applications. One of the potential candidates is
Whirlpool, an AES-based hash function. Whirlpool adopts a very dif-
ferent design approach from MDx, and hence it has withstood all the
latest attacks. However, its slow software performance has made it less
attractive for practical use. In this paper, we present a new software im-
plementation of Whirlpool that is significantly faster than previous ones.
Our optimization leverages new ISA extensions, in particularly Parallel
Table Lookup (PTLU), which has previously been proposed to acceler-
ate block ciphers like AES and DES, multimedia and other applications.
We also show a novel cyclical permutation algorithm that can concur-
rently convert rows of a matrix to diagonals. We obtain a speedup of
8.8× and 13.9× over a basic RISC architecture using 64-bit and 128-
bit PTLU modules, respectively. This is equivalent to rates of 11.4 and
7.2 cycles/byte, respectively, which makes our Whirlpool implementa-
tion faster than the fastest published rate of 12 cycles/byte for SHA-2
in software.

1 Introduction

Hash functions form an important component in almost all security applications,
e.g., digital signature schemes, to ensure the authenticity and integrity of data.
Some of the most popular hash functions are MD5 [20] and SHA-1 [4]. Both
have been widely deployed in practice and adopted by major security standards
such as SSL/TLS and IPsec.

In the past few years, there have been major breakthroughs in the cryptanal-
ysis of hash functions. New collision attacks on MD5 [24] and SHA-1 [23] have
demonstrated serious weaknesses in their design. Built upon these attacks, re-
searchers have also developed new attacks on hash-based security protocols such

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 173–188, 2008.
c© International Association for Cryptologic Research 2008

174 Y. Hilewitz, Y.L. Yin, and R.B. Lee

as X.509 digital certificate protocol [22]. While practical impact of these attacks
is still debatable, it is obvious that new hash functions are needed. Indeed, NIST
has already hosted two hash function workshops and has started an AES-like
competition to select an Advanced Hash Standard (AHS) [17].

Whirlpool [1] is a hash function designed by Barreto and Rijmen in 2000. It is
designed based on the AES with very similar structure and basic operations. It
has been adopted by the International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC) as part of the joint
ISO/IEC international standard.

Since its publication, there have been some studies on fast implementation of
Whirlpool [12,19], mostly in hardware. A comprehensive comparative study on
hash function implementation [16] shows that Whirlpool is several times slower
than MD5 or SHA-1 in software. Due to its relative slow performance and the
prevalence of MD5 and SHA-1 in existing implementations, Whirlpool has not
attracted too much attention for practical use.

With the emergence of new hash proposals, there is some renewed interest
in Whirlpool. Compared with most of the new proposals, Whirlpool stands out
with its AES-based clean design. Its design approach is very different from the
MDx hash family, and hence may resist existing attacks that are applicable
to MDx. Also, since AES is now the NIST standard for block ciphers, there
is intense interest in faster implementations of AES and its security analysis.
Whirlpool’s similarity to AES can leverage these fast implementation techniques
and facilitate its security analysis.

In this paper, we present a new software implementation of Whirlpool that
is significantly faster than previous implementations. Our optimization method
takes advantage of the heavy use of table lookups and byte-oriented operations in
Whirlpool by leveraging processor ISA (Instruction Set Architecture) extensions
that are tailored to such operations. In particular, the Parallel Table Lookup
module (PTLU) [6,11] is a natural fit for the Whirlpool computation steps,
thereby providing major speedup. In addition, a subword permutation instruc-
tion called check [14] is also useful for accelerating cyclical permutations, giv-
ing further performance enhancements. These ISA extensions have been defined
previously for other purposes such as multimedia and cryptographic processing.
Besides general-purpose microprocessors, these operations are even more suit-
able for crypto-processors and hardware ASIC (Application Specific Integrated
Circuit) implementations, for fast software and hardware implementations of
Whirlpool.

Our software implementation of Whirlpool attains a speedup of 8.8× with a
64-bit PTLU module and 13.9× with a 128-bit PTLU module, compared with a
baseline single-issue processor. These performance results show that ISA exten-
sions are much faster - with significantly simpler hardware - than using conven-
tional micro-architectural performance-enhancing techniques such as superscalar
execution. For example, 4-way superscalar execution achieves a speedup of only
3.3×. We also compare our Whirlpool performance with other 512-bit hash func-
tions like SHA-2; we have a rate of 11.4 cycles/byte for the 64-bit PTLU module

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 175

and 7.2 cycles/byte for the 128-bit PTLU module, while the best reported rate
for SHA-2 is 12 cycles/byte on Intel Core 2 and AMD Opteron processors [21].
This suggests that Whirlpool is a viable hash function choice, providing excellent
security and excellent performance.

We remark that the use of the PTLU functional unit provides not only major
performance advantages but also security advantages in preventing side-channel
attacks. A new concern with software implementations of cryptographic algo-
rithms based on table lookups is the leakage of the secret key due to cache-based
software side channel attacks, which do not require additional equipment like
power or timing physical side channel attacks. Our proposed fast implementation
of Whirlpool, when it is used in keyed hash mode, is free from such cache-based
software side channel attacks.

The rest of the paper is organized as follows. Section 2 provides a high-level
overview of Whirlpool. Section 3 provides the motivation for our fast imple-
mentation of Whirlpool. Section 4 describes the parallel table lookup module
and other ISA extensions. Section 5 explains how to use these ISA extensions
to accelerate Whirlpool. Section 6 presents performance results and Section 7
considers security advantages. Section 8 is the conclusion.

2 Whirlpool

2.1 Algorithm Overview

Like most hash functions, Whirlpool operates by iterating a compression func-
tion that has fixed-size input and output. Its compression function is a dedi-
cated AES-like block cipher that takes a 512-bit hash state M and a 512-bit
key K. (Hence, both the state and the key can be conveniently represented as
8 × 8 matrices with byte entries.) The iteration process adopts the well-known
Miyaguchi-Preneel construction [15].

In what follows, we provide a concise description of the compression function
that is most relevant to our implementation. Technical details of the algorithm
can be found in [1]. At a high level, each execution of the compression function
can be divided into two parts:

a. expanding the initial key K into ten 512-bit round keys, and
b. updating the hash state M by mixing M and the round keys.

Part b consists of ten rounds, and each round consists of the following four
steps (labeled W1 through W4 below) with byte-oriented operations:

W1. Non-linear substitution. Each byte in the state matrix M is substituted by
another byte according to a predefined substitution, S(x) (aka S-box).

W2. Cyclical permutation. Each column of the state matrix M is cyclic shifted
so that column j is shifted downwards by j positions.

W3. Linear diffusion. The state matrix M is multiplied with a predefined 8 × 8
MDS matrix C.

W4. Addition of keys. Each byte of the round key is exclusive-or’ed (XOR) to
each byte of the state.

176 Y. Hilewitz, Y.L. Yin, and R.B. Lee

The key expansion (part a) is almost the same as the above state update, ex-
cept that the initial key K is treated as the state and some pre-defined constants
as the key. Hence, both parts consist of ten similar rounds.

Note that Whirlpool differs from AES in that the rounds operate on 512-bit
inputs rather than 128-bit inputs. Because of the larger block size, the design of
the S-box and MDS matrix is also adjusted accordingly, but the general design
philosophy remains the same.

2.2 A Useful Observation by the Designers

In [1], the designers of Whirlpool suggested a method to implement each round
of the compression function using only table lookup and XOR operations on a
64-bit processor. We exploit this in our optimization.

Their idea is to first define a set of tables which combine the computation of
the S-box S and MDS matrix C. For 0 ≤ k ≤ 7, let Ck be the k-th row of the
MDS-matrix C. Define eight tables of the following form:

Tk(x) = S(x) · Ck, 0 ≤ k ≤ 7. (1)

Note that each table Tk has 28 = 256 entries, indexed by the input x. For each x,
the entry S(x)·Ck has eight bytes (by multiplying S(x) with each of the eight bytes
in the row Ck) . Hence, each table Tk is 211 bytes, and the total storage is 214 bytes
(16 KB) for the eight tables. Given these tables, one can rewrite the operations
in Steps W1 through W3 as follows. Let Mi,j denote the (i, j)th byte in the state
matrix before Step W1, and let M ′

i denote the ith row in the state matrix after
Step W3. Then M ′

i (which is 8 bytes) can be computed as

M ′
i =

7⊕

k=0

Tk(M(i−k) mod 8,k). (2)

For example, the first output row M ′
0 can be computed as

M ′
0 = T0(M0,0) ⊕ T1(M7,1) ⊕ T2(M6,2) ⊕ T3(M5,3) ⊕

T4(M4,4) ⊕ T5(M3,5) ⊕ T6(M2,6) ⊕ T7(M1,7). (3)

Equation (3) produces the first row of the updated state matrix M ′. It is repeated
to generate all 8 rows of the new state matrix, M ′

i , for i = 0, 1, . . . , 7.

3 Motivation for Our Fast Implementation

How fast can a software implementation of Whirlpool be? Considering Equation
(3), each row of the updated matrix M ′ can be computed with 8 selections of byte-
elements of the current 8 × 8 matrix M , 8 table lookup operations using these 8
selected bytes as indices, and 7 exclusive-or operations. Hence, this computation
takes 8d+8+7 instructions, where d is the number of instructions needed to select
a byte and place it in a register in a form that can be used by the next instruction

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 177

for a load instruction (to perform the table lookup). In a typical RISC processor,
d = 3 instructions: shift target byte to correct position, mask byte, and add to base
address of table. Since Equation (3) is repeated for each of 8 rows, the number
of instructions required is 8 × (8d + 8 + 7) = 8 × 39 = 312 instructions. An
additional 8 exclusive-or instructions are required for key addition, for a total of
320 instructions. Since this is performed for both the state and key matrices, the
total number of instructions per round is 2 × 320 = 640 instructions.

Since the only serial dependences are between generating the index for a ta-
ble lookup, doing the table lookup, then combining this result with other results
using an XOR, can we achieve a faster software implementation with appropri-
ate new instruction primitives? By appropriate instruction primitives, we mean
instructions that are reasonable in cost, and have general-purpose usage for a
variety of applications. Reasonable cost also suggests that any new instruction
should fit the datapath structure of general-purpose microprocessors, which im-
plies that an instruction can have at most 2 source registers and 1 result register.

Equation (3) can also be described in two steps to generate each new row of
the state matrix, M ′:

A1. Cyclical Permutation. Select all the 8 byte-elements in parallel, placing them in
the appropriate order in a register. (Step W2)

A2. Substitution and Diffusion. Look up 8 tables in parallel, using the bytes in the
register generated in step A1 as indices, and immediately combine these 8 results
into a single result using an XOR tree. (Steps W1 and W3)

Fig. 1. Main steps in our optimized Whirlpool software implementation

Suppose Step A1 takes x instructions and Step A2 takes y instructions. Then,
the total number of instructions taken for 8 rows, for the state and key matrices, is:

2 × 8 × (x + y). (4)

Note that x = 24 instructions and y = 15 instructions in the above calculations
for the basic RISC processor.

With the microprocessor datapath restriction described above where an in-
struction can have at most 2 source registers and 1 result register, Step A1 would
require x = 4 instructions since it needs to read from 8 different registers. Step
A2 could potentially be done in y = 1 instruction since it has only one operand
and one result. It turns out that we can indeed achieve step A2 in y = 1 in-
struction using a powerful parallel table lookup instruction (Section 4). We can
do better in Step A1 using effectively only x = 3 instructions rather than 4, by
cyclically permuting all 8 rows of the matrix concurrently (Section 5).

4 ISA Extensions

Whirlpools’s heavy use of table lookup and byte-oriented computations motivate
us to pay special attention to ISA extensions that are related to such operations.

178 Y. Hilewitz, Y.L. Yin, and R.B. Lee

We describe a parallel table lookup instruction (Section 4.1) and a subword per-
mutation instruction (Section 4.2) previously proposed to accelerate multimedia,
block ciphers and other applications.

In general, ISAs are extended when new applications emerge that require a
set of operations that are not well supported by existing instructions. Emula-
tion of these operations can take many tens or hundreds of existing instructions.
Consequently, new instructions are added to perform the operations, yielding
significant acceleration and, typically, reduced power consumption. For micro-
processors, the goal is that the new operations are “general-purpose”, meaning
that they are useful in other applications beyond the initial motivating ones -
the more applications the more likely the new operation will be supported in
future generations of microprocessors. We show that two previously proposed
operations are also useful for Whirlpool.

4.1 Parallel Table Lookup

Parallel table lookup was initially proposed to speed up block cipher execution,
including AES [6], and other block ciphers including DES, 3DES, Mars, Twofish
and RC4 [5]. It has also been used for fingerprinting and erasure codes to accel-
erate storage backup [11] and other algorithms that can employ table-lookup as
an optimization.

An n-bit Parallel Table Lookup (PTLU) module consists of n/8 blocks of
memory, each with its own read port. Fig. 2 shows a 64-bit PTLU with 8 parallel
memory blocks. (A 128-bit PTLU will have 16 parallel memory blocks.) The
inputs to the module are sourced from two general-purpose registers and the
output is written to a single general-purpose register - hence fitting into the
typical 2-source, 1-result datapath of processors. The n/8 blocks of memory
are configured as a set of 256-entry tables, indexed by the n/8 bytes of the
first source operand. The tables are read in parallel and the outputs from the
tables are combined using a simple combinational logic function - a tree of XOR-
Multiplexers (termed XMUXes). The result is then XORed with the second
source operand and written to the result register.

The PTLU module is read using the following instruction:

ptrd.x1 r1, r2, r3

The bytes of r2 are used as indices into the set of tables in the PTLU module,
the outputs of which are XORed together into one value and then XORed with
r3 before being written to r1. While a parallel table lookup only needs one source
register, r2, to supply the table indices, a second source register is available in
processor datapaths, and so the XOR (or some other combination) with r3 is
essentially free in the above ptrd.x1 instruction.

In the PTLU module proposed in [5,6,11], the XMUX’s can also perform
other operations like logical OR, or select the left (or right) input, in addition
to the XOR operation. The “x1” in the ptrd instruction specifies that the XOR
operation is selected and one 64-bit result is produced. (An “x2” subop is used

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 179

for a 128-bit PTLU module to indicate that two 64-bit results are produced in
the final XMUX stage.)

In [6], a fast instruction for loading the 8 tables in parallel is also proposed. A row
across all 8 tables canbewritten fromthe contents of a data cache line in a singleptw
instruction.Hence, only 256 instructions areneeded to load8 tables eachhaving256
entries, rather than 8 × 256 instructions. In [11], addressing multiple sets of tables
is also described, to allow concurrent processing of different algorithms which use
the parallel lookup tables, without the need for re-loading tables.

Fig. 2. PTLU module

4.2 Byte Permutations

Multimedia applications often require operations on subwords, or data smaller
than the processor word (or register) size, down to a byte. ISAs have been ex-
tended with instructions that perform standard arithmetic or logical operations
on these subwords in parallel as well as with instructions to efficiently rear-
range these subwords in a register and between registers [13,14]. For example,
the check instruction was defined by Lee [14] as one of a small set of subword
permutation instructions for rearranging the elements of matrices in processing
two-dimensional multimedia data like images, graphics and video. We propose
re-using this to accelerate Whirlpool. The check instruction is defined as follows:

check.sw r1, r2, r3

The subwords of size sw bytes are selected alternately from the two source reg-
isters, r2 and r3, in a checkerboard pattern, and the result is written to r1. In
Fig. 3, each register is shown as 8 bytes, and the check instruction is shown for

180 Y. Hilewitz, Y.L. Yin, and R.B. Lee

2-byte subwords. The IBM AltiVec vsel instruction [9], which, for each bit posi-
tion, conditionally selects from the bits of the two source operands depending on
the value of the bit in a third source operand, can also be used to perform check
when executed with the appropriate masks in the third operand. Similarly, the
Intel SSE4 pblend instructions [10], which conditionally select subwords from
two operands depending on the value of an immediate or a fixed third source
operand, can also be used to perform check.

Fig. 3. check.2 r1, r2, r3 (for 64-bit registers)

5 Fast Software Implementation of Whirlpool

We now show in detail how we use the two instructions defined in Section 4 to
implement the two steps in our optimized Whirlpool algorithm shown in Fig. 1.
We will focus on 64-bit processors - the same techniques can be easily extended
to processors with 128-bit registers, with minor variations.

Fig. 4 shows our optimized pseudocode for one round of the state update of
the Whirlpool compression function on a 64-bit processor using PTLU. The 64
bytes of key are held in 8 general purpose registers (RK0-RK7) and the 64 bytes
of state are held in 8 general purpose registers (RM0-RM7). The eight PTLU
tables contain the eight tables from Equation (1), which combine steps W1 and
W3 (Section 2) of the Whirlpool algorithm, also labeled step A2 (Section 3) . A
further optimization with PTLU is that step W4 is also combined with steps W1
and W3 by a single ptrd instruction. Step W2, also labeled step A1 (Section 3),
is performed in the Cyclical Permute function described in Section 5.2.

5.1 Using PTLU for Substitution and Diffusion (Step A2)

A single PTLU read instruction updates a row of the state matrix, performing
the eight table lookups of Equation (2) at once. For example, the instruction

ptrd.x1 RM0, RM0, RK0

corresponds to Equation (3), which details the state transformation of row 0. The
eight bytes in row 0 of M : M0,0, M7,1, . . . , M1,7, are stored in RM0 after the cycli-
cal permutation step. These 8 bytes are used as the indices into the set of eight

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 181

RM0-RM7 are the 8 state registers
RK0-RK7 are the 8 key registers

Cyclical Permute(RM0-RM7)
ptrd.x1 RM0, RM0, RK0
ptrd.x1 RM1, RM1, RK1
ptrd.x1 RM2, RM2, RK2
ptrd.x1 RM3, RM3, RK3
ptrd.x1 RM4, RM4, RK4
ptrd.x1 RM5, RM5, RK5
ptrd.x1 RM6, RM6, RK6
ptrd.x1 RM7, RM7, RK7

Fig. 4. Pseudocode for one round of the state update of Whirlpool compression

R0 00 01 02 03 04 05 06 07 R0’ 00 71 62 53 44 35 26 17
R1 10 11 12 13 14 15 16 17 R1’ 10 01 72 63 54 45 36 27
R2 20 21 22 23 24 25 26 27 R2’ 20 11 02 73 64 55 46 37
R3 30 31 32 33 34 35 36 37 R3’ 30 21 12 03 74 65 56 47
R4 40 41 42 43 44 45 46 47 R4’ 40 31 22 13 04 75 66 57
R5 50 51 52 53 54 55 56 57 R5’ 50 41 32 23 14 05 76 67
R6 60 61 62 63 64 65 66 67 R6’ 60 51 42 33 24 15 06 77
R7 70 71 72 73 74 75 76 77 R7’ 70 61 52 43 34 25 16 07

(a) (b)

Fig. 5. (a) 8 × 8 matrix at start of round; (b) 8 × 8 matrix after cyclical permutation

tables defined by Equation (1) which are stored in the PTLU module (Fig. 2).
The eight 64-bit table entries read out, T0(M0,0), T1(M7,1), . . . , T7(M1,7), are
XORed together by the XMUX tree. At this point, the PTLU module has per-
formed Equation (3). The output of the XMUX tree is also XORed with the
first row of the key matrix stored in RK0, completing the state transformation
of row 0. The updated row 0 of M is then written back to RM0. Seven more
ptrd instructions update the remaining 7 rows of M .

5.2 Novel Algorithm for Cyclical Permutation

The state matrix at the start of a round is shown in Fig. 5(a). The transformed
matrix, used in the table lookup, is shown in Fig. 5(b). This transformation
is the columnar cyclical permutation of the Whirlpool compression function,
accomplished by rotating the jth column down by j positions. We propose a
novel algorithm that accomplishes this in a logarithmic number of steps. First,
move columns 1, 3, 5 and 7 down by 1 row. Second, move columns 2 and 3, 6
and 7 down by 2 rows. At this point, columns 0 and 4 have been moved down
by 0 rows, columns 1 and 5 by 1 row, columns 2 and 6 by 2 rows, and columns
3 and 7 by 3 rows. Third, move columns 4, 5, 6 and 7 down by 4 rows. This
achieves the desired result, where column j has been moved down by j rows.

182 Y. Hilewitz, Y.L. Yin, and R.B. Lee

R0 00 01 02 03 04 05 06 07
R7 70 71 72 73 74 75 76 77

⇓
R0’ 00 71 02 73 04 75 06 77

Fig. 6. check.1 R0’, R0, R7

The transformation by cyclical permutation from Fig. 5(a) to Fig. 5(b) turns
rows of the matrix into (wrapped) diagonals. In [14], Lee showed how two
check.1 instructions can be used to rotate one column of each 2 × 2 matrix
mapped across 2 registers. We propose using the check.sw instructions, dou-
bling the subword size (sw) at each step, to turn the eight rows of the 8 × 8
matrix of bytes (in eight 64-bit registers) into eight diagonals.

First, we execute a check.1 instruction on each row and its neighbor one row
above (Fig. 6), which selects one byte alternately from the two registers. This
has the effect of rotating columns 1, 3, 5 and 7 down by one position (Fig. 7(a)).
Second, we execute a check.2 instruction on each row and its neighbor two rows
above, which selects 2 bytes alternately from the two registers. This has the effect
of rotating columns 2, 3, 6 and 7 down by an additional two positions (Fig. 7(b)).
Third, we execute a check.4 instruction on each row and its neighbor four rows
above, which selects 4 bytes alternately from the two registers. This results in
rotating columns 4, 5, 6 and 7 down an additional four positions to yield the
final permutation (Fig. 5(b)).

R0’ 00 71 02 73 04 75 06 77 R0 00 71 62 53 04 75 66 57
R1’ 10 01 12 03 14 05 16 07 R1 10 01 72 63 14 05 76 67
R2’ 20 11 22 13 24 15 26 17 R2 20 11 02 73 24 15 06 77
R3’ 30 21 32 23 34 25 36 27 R3 30 21 12 03 34 25 16 07
R4’ 40 31 42 33 44 35 46 37 R4 40 31 22 13 44 35 26 17
R5’ 50 41 52 43 54 45 56 47 R5 50 41 32 23 54 45 36 27
R6’ 60 51 62 53 64 55 66 57 R6 60 51 42 33 64 55 46 37
R7’ 70 61 72 63 74 65 76 67 R7 70 61 52 43 74 65 56 47

(a) (b)

Fig. 7. (a) State matrix with columns 1, 3, 5 and 7 rotated down by 1 position; (b)
State matrix with columns 1 and 5 rotated down by one position, columns 2 and 6 by
two positions and columns 3 and 7 by three positions

5.3 Register Usage and Instruction Counts

Register usage: Most RISC processors have only 32 General Purpose Registers.
Our software implementation requires only 24 registers, 8 each for key, state and
scratch space, plus a few registers for memory pointers. The first step of the cycli-
cal permutation writes its result to 8 scratch registers, the second step writes
back to the original 8 registers, the third step writes to the scratch registers,

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 183

and the ptrd instruction writes back to the original registers. Thus our imple-
mentation is not constrained by register allocation.

Instruction Counts : Updating the state matrix takes 32 instructions total as
8 × lg(8) = 24 check instructions are needed to cyclically permute the matrix
and 8 ptrd instructions are needed to complete the update (see Fig. 4). The key
matrix undergoes a similar update with the only difference being an additional
load instruction to retrieve the round constant. Thus one round of the Whirlpool
compression function takes 65 instructions with PTLU-64.

Without PTLU, a round takes approximately 640 instructions on a basic RISC
processor (Section 3). Thus, using PTLU reduces the instruction count by an
order of magnitude. In Section 6, we consider cycle counts of the full Whirlpool
hash function.

5.4 Extending the Techniques to PTLU-128

For a processor with 128-bit registers, a PTLU-128 module with 16 parallel
memory blocks can be used (Fig. 2 shows PTLU-64 with 8 memory blocks). In
a PTLU-128 version of the parallel lookup instruction, ptrd.x2, the 16 bytes
of the first source register are used as indices into the 16 tables, the outputs of
which are XORed into 2 parallel 64-bit values, which are each XORed with the
second source register before being written to the 128-bit destination register.

For 128-bit registers, the cyclical permutation step also requires an instruction
to rearrange the bytes within a word, as two rows are contained within a single
processor register. We use a byteperm instruction, also defined in [6]. In this
instruction, the first source register holds the data to be permuted and the
second source register lists the new ordering for the bytes of the data. This
instruction is similar to the IBM AltiVec vperm instruction [9] or the IA-32
pshufb instruction [10] and is only needed for the 128-bit PTLU module, not
for the 64-bit PTLU module.

In total, 8 check instructions and 8 byteperm instructions are needed to cycli-
cally permute the matrix (held in only 4 128-bit registers) in a 128-bit processor;
the precise sequence of instructions is omitted for brevity. Only 4 ptrd.x2 in-
structions are needed for each of the key and state matrix transformations in
a round as two iterations of Equation (2) are done in parallel with ptrd.x2.
Hence, a Whirlpool round takes only 2 × 20 + 1 = 41 instructions with a 128-bit
PTLU.

Commodity microprocessors have 128-bit register files for their multimedia
instructions like SSE for Intel x86 processors [10] and AltiVec for PowerPC
processors [9]. Hence, it is not unreasonable to add a 128-bit PTLU unit to the
multimedia functional units using the 128-bit registers already present.

6 Performance Analysis

Table 1 summarizes the performance improvement for Whirlpool over the basic
64-bit RISC processor for single-issue 64-bit and 128-bit processors with PTLU

184 Y. Hilewitz, Y.L. Yin, and R.B. Lee

Table 1. Relative Performance of Whirlpool

baseline Speedup with Superscalar Speedup with PTLU, 1-way

2-way 4-way 8-way 64-bit 128-bit

1 1.65 3.26 5.97 8.79 13.90

Table 2. Performance of Whirlpool and SHA-2

Algorithm Processor Cycles per Byte

Whirlpool PTLU-64 11.41
PTLU-128 7.22
Pentium III (asm) 36.52 [16]
Core 2 (C) 44 [21]
Opteron (C) 38 [21]

SHA-2 512 Pentium III (asm) 40.18 [16]
Core 2 (C) 12 [21]
Opteron (C) 12 [21] / 13.4 [8]

and for 64-bit superscalar execution (evaluated using the SimpleScalar Alpha
simulator [2]). We compare our performance using ISA extensions to superscalar
execution, because the latter is the technique typically used by processor design-
ers to increase performance by executing multiple instructions each processor
cycle. k-way superscalar means the execution of k instructions per cycle. In gen-
eral, the hardware cost of superscalar execution increases exponentially with k,
while the performance increases less than linearly with k.

While Whirlpool scales well with superscalar execution, ranging from 1.65×
to 5.97× for 2-way to 8-way superscalar, adding a PTLU module (and using
the check and byteperm instructions) yields even better results: 8.79× with a
64-bit PTLU and 13.90× with a 128-bit PTLU. The latter can be compared
to the 1.65× speedup of a 2-way superscalar processor, as both perform the
equivalent of two instructions per cycle - the processor with 128-bit PTLU is
8.42× faster. Even the 64-bit PTLU with 1 instruction per cycle is faster than
the very complex 8-way superscalar processor.

In Table 2, we compare our results (PTLU-64 and PTLU-128) with the per-
formance of Whirlpool on some existing processors [16,21], and with the per-
formance of the SHA-2 512-bit hash function [16,21,8]. The single-issue 64-bit
processor with PTLU greatly outperforms more complex 3- and 4-way super-
scalar processors like the AMD Opteron or the Intel Core 2.

We also estimated the performance of Whirlpool on the Intel Core 2 hypothet-
ically enhanced with a single PTLU-128 module using its 16 128-bit SSE regis-
ters. The performance result is slightly slower than that of our single issue RISC
processor with PTLU-128. This is due to the Core 2 machine having a byteperm
(implemented by pshufb) with a 3 cycle latency and 2 cycle pipelined instruc-
tion issue. (Note that later Core 2 processors have a “super shuffle engine” with

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 185

a 1 cycle pshufb.) Performance was also impacted by extra copy instructions
due to IA-32 instructions overwriting one of the source operands, and limited
superscalar speedup due to the single PTLU module and serialization restric-
tions on the byte permutation instructions. Nevertheless, due to the tremendous
performance boost provided by the PTLU-128 module, our Whirlpool imple-
mentation still has better performance than SHA-2 on the complex Intel Core 2
microprocessor.

7 Security Advantages

In Section 1, we discussed the security advantages of the Whirlpool algorithm, in
light of recent advances in finding collisions in MD-5 and SHA-1 hash functions.
We now discuss the additional advantages of using PTLU in our Whirlpool
implementation in thwarting side-channel attacks as well.

Cache side-channel timing attacks [18] have recently been shown to be viable
against cryptographic algorithms that use lookup tables stored in cache, such as
AES. One such attack forces part of the lookup table out of the cache and then
measures the time of a subsequent encryption. If the encryption takes longer than
the baseline time, it implies that the part of the table that was evicted from the
cache had to be refetched from main memory. This provides information about
the key bytes. The general idea can also be applied to keyed hash functions that
use lookup tables.

Using PTLU to perform the table lookups precludes these timing attacks from
taking place, as the tables do not reside in cache. Table access time is always
a constant for all tables in the PTLU module. Multiple processes can use the
same Whirlpool PTLU tables without impacting each other. If another process
needs the PTLU module, either multiple sets of tables may be implemented in
hardware or the OS is responsible for fully replacing and restoring the table
contents during context switch. Consequently, the use of PTLU for Whirlpool
not only provides tremendous performance improvements but also increases the
security of the implementation when Whirlpool is used in keyed mode such as
for MACs.

In general, the use of PTLU can protect crypto algorithms from cache-based
side-channel attacks. This would allow table lookup to continue to be an effective
non-linear component in ciphers and hash functions. For the MDx hash family,
the linear relation between the hash state and the input message has proved
to be a major weakness that made these functions vulnerable to the so-called
message modification techniques [23,24]. Whirlpool, with its heavy use of table
lookup, provides excellent resistance against this line of new attacks on hash
functions.

8 Conclusions

We have presented a fast software implementation of the hash function Whirlpool,
based on ISA extensions that permit parallel table lookup and a novel algorithm

186 Y. Hilewitz, Y.L. Yin, and R.B. Lee

that performs the cyclical permutation of the columns of the state (or key) matrix
in parallel. We show that the PTLU (parallel table lookup) module, together with
check, a subword permutation instruction, can greatly improve the performance
of Whirlpool. More specifically, on a single-issue 64-bit processor, our software
implementation provides an 8.79× speedup, more than the 5.97× speedup gained
from the much more complex hardware technique of 8-way superscalar execution.
With our speedup, Whirlpool is faster than SHA-512, both of which produce 512-
bit hash results.

Our optimization approach is somewhat different from existing ones. While
most research in fast software implementations has focused on how to optimize
given existing ISA, we also try to address the problem from the other direction.
That is, what ISA extensions are most useful to speed up existing algorithms?
The ISA extensions used in our implementation have already been defined and
applied earlier to accelerate multimedia and cryptographic processing. Our new
results on Whirlpool, together with the earlier work, support the inclusion of
more powerful ISA extensions in both general-purpose processors and crypto-
processors. In particular, the fact that many crypto algorithms make heavy use
of table lookups make the PTLU module and associated instructions very at-
tractive for future CPUs. Additionally, the use of PTLU inoculates these crypto
algorithms against cache-based software side channel attacks.

Due to Whirlpool’s initial performance problem, its designers have proposed
the Maelstrom-0 hash function [7] as a replacement. This new hash function
changes the key schedule, but uses the same compression function for updating
the hash state. Consequently, the techniques presented in this paper will speed
up Maelstrom-0 as well.

Designing and selecting new hash functions is a hot subject for both the
crypto research community and the security industry. Our new implementation
results suggest that, in addition to its security, Whirlpool can also have great
performance. Therefore, Whirlpool can be a viable hash function choice for next-
generation security applications.

Acknowledgments. Y. Hilewitz is supported by NSF and Hertz Foundation
Fellowships.

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function, http://paginas.
terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

2. Burger, D., Austin, T.: The SimpleScalar Tool Set, Version 2.0. University of
Wisconsin-Madison Computer Sciences Department Technical Report #1342 (1997)

3. CACTI 4.2. HP Labs,
http://www.hpl.hp.com/personal/Norman Jouppi/cacti4.html

4. Federal Information Processing Standards (FIPS) Publication 180-1. Secure Hash
Standard (SHS). U.S. DoC/NIST (1995)

5. Fiskiran, A.M.: Instruction Set Architecture for Accelerating Cryptographic Pro-
cessing in Wireless Computing Devices. PhD Thesis, Princeton University (2005)

http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://www.hpl.hp.com/personal/Norman_Jouppi/cacti4.html

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 187

6. Fiskiran, A.M., Lee, R.B.: On-Chip Lookup Tables for Fast Symmetric-Key
Encryption. In: Proceedings of the IEEE 16th International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 356–363.
IEEE, Los Alamitos (2005)

7. Gazzoni Filho, D.L., Barreto, P.S.L.M., Rijmen, V.: The Maelstrom-0 Hash Func-
tion. In: VI Brazilian Symposium on Information and Computer Systems Security
(2006)

8. Gladman, B.: SHA1, SHA2, HMAC and Key Derivation in C,
http://fp.gladman.plus.com/cryptography technology/sha/index.htm

9. IBM Corporation. PowerPC Microprocessor Family: AltiVec Technology Program-
ming Environments Manual. Version 2.0 (2003)

10. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 1-2 (2007)

11. Josephson, W., Lee, R.B., Li, K.: ISA Support for Fingerprinting and Erasure
Codes. In: Proceedings of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP). IEEE Computer Society
Press, Los Alamitos (2007)

12. Kitsos, P., Koufopavlou, O.: Whirlpool Hash Function: Architecture and VLSI
Implementation. In: Proceedings of the 2004 International Symposium on Circuits
and Systems (ISCAS 2004), pp. 23–36 (2004)

13. Lee, R.B.: Subword Parallelism with MAX-2. IEEE Micro. 16(4), 51–59 (1996)
14. Lee, R.B.: Subword Permutation Instructions for Two-Dimensional Multimedia

Processing in MicroSIMD Architectures. In: Proceedings of the IEEE International
Conference on Application-Specific Systems, Architectures and Processors, pp. 3–
14. IEEE Computer Society Press, Los Alamitos (2000)

15. Menezes, A., van Orschot, P., Vanstone, S.: Handbook of applied cryptography.
CRC Press, Boca Raton (1997)

16. Nakajima, J., Matsui, M.: Performance Analysis and Parallel Implementation of
Dedicated Hash Functions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 165–180. Springer, Heidelberg (2002)

17. NIST. Hash Function Main Page, http://www.nist.gov/hash-competition
18. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: the

Case of AES. Cryptology ePrint Archive, Report 2005/271 (2005)
19. Pramstaller, N., Rechberger, C., Rijmen, V.: A Compact FPGA Implementation

of the Hash Function Whirlpool. In: Proceedings of 14th International Symposium
on Field Programmable Gate Arrays, pp. 159–166 (2006)

20. Rivest, R.L.: The MD5 message-digest algorithm. Request for comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force (1992)

21. St. Denis, T.: LibTomCrypt Benchmarks, http://libtomcrypt.com/ltc113.html
22. Stevens, M., Lenstra, A., de Weger, B.: Chosen-prefix Collisions for MD5 and

Colliding X. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22.
Springer, Heidelberg (2007)

23. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

24. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

http://fp.gladman.plus.com/cryptography_technology/sha/index.htm
http://www.nist.gov/hash-competition
http://libtomcrypt.com/ltc113.html

188 Y. Hilewitz, Y.L. Yin, and R.B. Lee

Appendix A: Hardware Cost Analysis

We estimate the cost in terms of area and latency of adding PTLU, byteperm
and check. For PTLU we used CACTI [3] to estimate the latency and area of
the tables and we synthesized the XMUX tree using a TSMC 90nm library. We
compare the access time latency and area of our 64-bit PTLU module with a
cache of the same capacity (i.e., 16 Kilobyte cache), and also compare our 128-bit
PTLU with a 32 Kilobyte cache. The 64-bit PTLU module, which has 16KB of
tables, has 88% of the latency and 92% of the area of a 16KB 2-way associative
cache with 64 byte lines. The 128-bit PTLU module has 75% of the latency and
79% of the area of a 32KB 2-way associative cache with 64 byte lines. In each
case, we find that the PTLU module is faster and smaller than a typical data
cache of the same capacity. Still, the two modules have larger latencies than an
ALU, so we conservatively estimate the ptrd instruction to take two processor
cycles. Since the results of the table lookups are not needed right away (Fig. 4),
this has no impact on performance.

For byteperm and check, in an ISA such as IA-32 or IA-64 that has a multi-
media subword permutation unit, the cost of adding these instructions, if they
do not already exist, is negligible. For other ISAs, support for the byteperm
instruction can be added to the shifter unit with minimal impact to area and
without affecting the cycle time [6]. The check instruction can be implemented
by a set of n/8 8-bit 2:1 multiplexers with the control bit pattern selected from
a small set of fixed bitstrings: (0k1k)n/2k, k = 1, 2, 4, . . . and n the register width
in bytes. Thus, it can also be easily added without area or cycle time impact.

Appendix B: Related Work

Byte permutation instructions such as the byteperm instruction described (or
the PowerPC AltiVec vperm [9] or Intel SSSE3 pshufb [10] mentioned above), can
be used as a limited PTLU instruction. For example, in the vperm instruction,
which uses three 128-bit registers, the bytes of the third source operand are
indices that select bytes in the first two source operands. The latter can be
considered a single 32-entry table, with byte entries. With byteperm or pshufb,
which only have 2 source registers, the first operand functions as a 16-entry table.
These instructions can be used for the S-box non-linear substitutions, which map
a byte to a byte, in AES or Whirlpool implementations that explicitly perform all
four steps (W1, W2, W3, W4) of the state transformation (Section 2). However,
the PTLU instruction used in this paper is much more capable.

	Accelerating the Whirlpool Hash Function Using Parallel Table Lookup and Fast Cyclical Permutation
	Introduction
	Whirlpool
	Algorithm Overview
	A Useful Observation by the Designers

	Motivation for Our Fast Implementation
	ISA Extensions
	Parallel Table Lookup
	Byte Permutations

	Fast Software Implementation of Whirlpool
	Using PTLU for Substitution and Diffusion (Step A2)
	Novel Algorithm for Cyclical Permutation
	Register Usage and Instruction Counts
	Extending the Techniques to PTLU-128

	Performance Analysis
	Security Advantages
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

