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Abstract
Caches are integral parts in modern computers; they leverage
the memory access patterns of a program to mitigate the gap
between the fast processors and slow memory components.

Unfortunately, the behavior of caches can be exploited
by attackers to infer the program’s memory access patterns,
by carrying out cache-based side-channel attacks, which can
leak critical information.

Secure caches that were proposed employ cache par-
titioning or randomized memory-to-cache mapping tech-
niques to prevent these attacks. Such techniques may add
to the complexity of cache designs.

In this work, we suggest the use of specialized prefetch-
ing algorithms for the purpose of protecting from cache-
based side-channel attacks. Our prefetchers can be combined
with conventional set associative cache designs, are simple
to employ, and require low incremental hardware overhead
costs, if the base prefetching scheme is already employed.

We integrated our prefetching policies with commonly
used GHB and stride prefetching schemes, and compared
their performance with the standard implementations of
those schemes, on both conventional and secure cache de-
signs. More specifically, our results show that the use of our
secure prefetching policy delivers original prefetching per-
formance when integrated with a stride prefetcher. Finally,
we demonstrate how a disruptive prefetching scheme can
protect the cache from an access based side-channel attack.

Categories and Subject Descriptors B.3 [Memory Struc-
tures]: Cache memories

; D.2.8 [Computer Systems Organization]: General—
Security and protection
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1. Introduction
On-chip memory caching solutions are ubiquitous, as they
serve as an integral part of almost every computation-based
system. Caches enable high application performance by stor-
ing a program’s code or data likely to be accessed in the near
future. Caching algorithms predict future data or code based
on the program’s behavior, and therefore couple the behavior
of the caching module with the behavior of the program.

Unfortunately, by analyzing on-chip cache behavior, an
attacker can exploit this behavioral coupling to carry out
cache-based side-channel attacks, which leverage distinct
patterns in the program’s behavior to extract the victim’s
secrets.

Cache-based side-channel attacks (Page 2002; Bernstein
2005; Percival 2005; Osvik et al. 2006; Tromer et al. 2010;
Bonneau and Mironov 2006; Yarom and Falkner 2013) typ-
ically combine the timing measurements collected by ma-
licious code with the knowledge of the inner workings of
cryptographic algorithms (e.g., AES (Daemen and Rijmen
1999)) to reveal the attacked program’s sensitive data. In or-
der for such attacks to be feasible, several conditions must be
met: (i) an attacker should possess the knowledge of a vic-
tim program’s cryptographic algorithm, which uses memory
and caches (ii) the attacker should exploit the fact that cache
designs tend to have fixed memory-to-cache mapping and
behavior, and (iii) there is a significant difference between
the cache hit and miss times. If these conditions are met, it
is possible to conduct a cache-based attack using the victim
program’s data access sequence, extract secret information
from the attacked program, such as a cryptographic key, and
obtain sensitive information.

Secure cache solutions should ideally keep the program’s
secrets secured in the presence of side-channel attacks, and
have a minimal impact on performance. Existing secure
cache proposals often deflect cache-based attacks by pre-
venting the reflection of cache-mapping between processes.
These designs typically employ cache partitioning or cache



remapping, thus eliminating possible projections of the vic-
tim process’ cache footprint to an attacking process’ obser-
vations of the shared cache state, and more generally, pre-
venting information leakage across different trust domains.

In this work, we investigate an approach using security-
enhanced cache prefetching policies to protect from cache-
based side-channel attacks. We leverage the traditional
prefetcher purpose of boosting cache performance, and com-
bine it with a memory-to-cache mapping aware scheme that
can produce cache access patterns that are not useful to the
attacker. Our prefetchers are designed to mitigate cache-
based side-channel attacks, and thus serve as cheap and
highly-performing alternatives to proposed secure cache de-
signs. We suggest two new extensions to standard prefetch-
ing schemes: (i) a randomized prefetching policy, that varies
in the level of aggressiveness and prefetch ordering, and (ii)
a ”set-balancer” extension, that attempts to balance the load
induced by the prefetched lines across all cache sets.

We evaluate our prefetching policies with both stride(Fu
et al. 1992) and GHB D/GC (Nesbit and Smith 2004)
prefetchers, and integrate them with both a standard cache
design and the security-aware Newcache (Wang and Lee
2008) design. The main contributions of this work are as
follows:

• We suggest several cache prefetching policies that can
obfuscate a victim’s cache accesses from cache side-
channel attackers. We integrate our policies with com-
monly used prefetching schemes and compare them with
prefetchers connected to both a standard set-associative
cache and a security-aware cache.

• We show when a cache prefetching policy is capable of
disrupting a cache-based Prime+Probe side-channel at-
tack (Osvik et al. 2006; Tromer et al. 2010) , and we also
discuss the reasons and conditions where a prefetcher is
incapable of disrupting such an attack.

The rest of this paper is organized as follows: Section 2
provides the background for the main issues dealt with in
this work: (i) a brief survey of cache-based side-channel at-
tacks, (ii) an overview of recent secure cache designs, and
(iii) the role of prefetchers in a modern computer system,
and brief description of the commonly used schemes we em-
ployed. Section 3 outlines the basic algorithms and motiva-
tion for our prefetcher policies. Section 4 outlines the per-
formance experiments conducted for our randomized and
set balanced prefetching policies integrated with two com-
mon prefetching schemes. Section 5 demonstrates how us-
ing our prefetching schemes we can defeat an access based
”Prime+Probe” attack, and also discusses when it is impos-
sible to do so. Section 6 summarizes this work, and possible
future directions.

2. Background and Related Work
Today’s personal computing based devices extend beyond
traditional PCs. As cloud services, personalized content, and
smartphones are becoming more ubiquitous, more hardware
is used by commercial companies to store personal user in-
formation, increasing the motivation for attackers to conduct
hardware-based thefts and gain access to sensitive informa-
tion. There have been several studies, both commercial and
non-commercial, on data-driven attacks, and ways to miti-
gate them by software or hardware. In this section, we focus
on cache side-channel attacks, and security-aware cache de-
signs, and present some of the recent work done in these
fields.

When suggesting a new security-aware design, one must
first establish the threat model the design wishes to protect
from, and the Trusted Computing Base (TCB) (Lee 2013)
which contains the system’s trusted modules. The TCB pro-
vides the foundations for the capabilities that a secure design
relies on.

In this work, our threat model is that of an attacker con-
currently running a malicious process that carries out an at-
tack by periodically polling a cache shared by both the vic-
tim and attacker processes. The secure design presented in
this work relies on a data cache prefetcher connected to an
L1 data cache, therefore, our TCB contains the processor
core, including its Level 1 caches (i.e. L1 instruction and
data caches) and the data cache prefetcher. We also assume
that the Level 2 and higher caches, their controllers, and soft-
ware memory management all behave correctly and are not
under the control of an attacker. This assumption essentially
means that we assume these hardware (and software) com-
ponents are correctly implemented and have no malicious
hardware (or software) embedded in them.

We discuss the various classes of cache-based side-
channel attacks, focusing on the access-based ”Prime+Probe”
side-channel attack, demonstrated in this work as a case
study. We then present some of the recent work on secure
cache designs. Finally, we discuss how cache prefetchers
achieve performance, focusing on two commonly used im-
plementations, on which we based our prefetching scheme.

2.1 Side-Channel Attacks
Side-channel attacks exploit secrets that can be uninten-
tionally leaked via shared resources; e.g., shared caches,
shared physical cloud server (Wu et al. 2012; Ristenpart
et al. 2009), shared memory and storage systems (Jana and
Shmatikov 2012), etc. With the growing popularity of paral-
lel computing, the ubiquity of shared resources is increasing.

Several studies have investigated side-channel attacks in
various domains. Jana and Shmatikov (Jana and Shmatikov
2012) suggested a user-level attack that leverages the mem-
ory usage table in an operating system. Their attack attempts
to capture the timely evolution of an application’s memory



working set and infer its contents using a large database con-
structed from application footprints.

Percival suggested a cache-based side-channel attack on
the RSA encryption in an SMT environment (Percival 2005).
This attack repeatedly occupies the entire cache with the
attacker’s lines and reads the system timer to detect which
lines are missing from the cache, and by that inferring some
of the bits in the victim program’s RSA key. Bernstein’s
attack on AES (Bernstein 2005) assumes the attacker has
no knowledge of the victim’s memory accesses. This attack
also uses the timing disparity between a cache hit and a
cache miss: the attacker attempts to encrypt a large number
of plaintext blocks and measures the time taken for each
block encryption. The Prime+Probe attack on AES (Osvik
et al. 2006; Tromer et al. 2010) assumes a separate victim
memory space, and, therefore, does not assume shared AES
tables between the victim and the attacker. As demonstrated
in this work, this attack occupies all cache lines, and uses
cache mapping conflicts to conduct an attack to measure
which cache sets are used by the victim. By doing this, it
is possible to infer the memory address (and the table index)
used by the victim, and thus the bits of the secret key used
by the victim to access AES tables.

Cache based side-channel attacks are roughly divided into
two classes:

• Timing-based attacks: in these attacks, the attacker ex-
ploits the difference in timing between cache hits and
cache misses and measures the timing difference for a
whole operation (e.g., block encryption) on each chunk
of data. By knowing typical system times (for exam-
ple, after constructing a large learning database extracted
from a large possible number of cache states) the attacker
can infer some or all of the encrypted data’s key bits.

• Access-based attacks: in these attacks, the attacker and
victim share the same cache, but not necessarily the same
address space. The attacker exploits the fixed memory-
to-cache-set mapping, and polls on the cache lines to
measure typical cache access times, in order to find which
sets the victim has used.

The Prime+Probe attack addressed by this work is an
access-based side-channel attack, with which we target the
AES encryption algorithm. In the attack, an attacker and a
victim run concurrently on the same machine using the same
cache. The attacker periodically fills the data cache with
an array, and then periodically probes the cache by reading
the array members, thus checking whether each cache line
hits or misses. If the access time is high, this means that
the victim program evicted the attacker’s cache line. By
gathering cache state samples, the attacker can post-process
the gathered data to construct the access time of the victim’s
encryption process.

For example, as we demonstrate in Section 5.1, since
AES-128 relies on factoring of 16 byte keys and 16 byte

plain-text data blocks, it is possible to construct a database
containing the typical cache set access times of all 256
possible values of datai given keyj for each i, j ∈ (1..16),
and compare the gathered cache probe times and extract the
values of datai, keyj for the plain-text data and key bytes
used by the victim. In the rest of this paper, we tend to focus
on only ”Prime+Probe” attacks on the data cache, and do not
consider other kinds of cache side-channel attacks.

We will show that using our prefetching policies we were
able to disrupt such an attack, and prevent an attacker from
obtaining useful probe data.

2.2 Secure Cache Designs
Secure caches have been proposed to defend against cache
side-channel attacks. They have used cache partitioning
techniques or cache randomized-mapping techniques. Se-
cure cache designs disrupt the inter-process observability of
a system’s cache; the goal is to prevent an attacking process
from being able to manipulate the system in a way that will
expose other processes’ behavior by leveraging the cache’s
memory-to-set mapping. Among recently studied cache de-
signs are:

• The Partition-Locked Cache: A locking-based cache de-
sign (PLCache) (Wang and Lee 2007) that prevents the
eviction of the security-critical cache lines of the vic-
tim process by another process. It performs selective,
dynamic partitioning by presenting two techniques for
cache line locking: ISA-based and region-based. Both
techniques require the involvement of the operating sys-
tem to prevent other malicious processes from misus-
ing the cache locking mechanism, e.g., a DoS attack
(lock all lines so no other processes will be able to use
them). PLCache, therefore, assumes the operating system
is trusted.

• The Random-Permutation Cache(RPCache): A remapping-
based cache design (Wang and Lee 2007) that uses a
per-domain permutation table for randomized cache set
mapping. RPCache also employs a clever replacement
technique which calculates an on-the-fly set remapping
when a secure line is being evicted, in order to prevent
collisions from leaking data that can expose remapping
independent behavior. This approach requires the storing
of a permutation table for each trust domain and adding
the domain ID field to the cache tag.

• The Newcache design: Newcache (Wang and Lee 2008)
is a different secure cache design based on randomized
memory-to-cache mapping that appears to have the best
performance and security of the proposed secure cache
designs. Newcache adds a level of indirection for remap-
ping memory to cache addresses, based on an inverse
mapping table implemented as line number registers
(LNregs). This is a fully-associative mapping from an
ephemeral large direct-mapped cache, achieved by in-



creasing the number of bits in each LNreg. The pur-
pose of the hybrid direct-mapped and fully-associative
mapping of Newcache is to improve performance or
power while achieving dynamic randomized memory-
to-cacheset address mapping. The designers claim equiv-
alent cache miss rates and cache access latencies com-
pared to conventional set-associative L1 caches of the
same size. We used the gem5 implementation of New-
cache used in the secure cache evaluation conducted by
Liu and Lee (Liu and Lee 2013). We integrated New-
cache with some of the prefetchers suggested in this
work, and its performance is evaluated in Section 4.2.

• Random-Fill cache design: This is the most recent imple-
mentation of a secure cache design (Liu and Lee 2014).
Random fill cache was the first to integrate randomized
fetching techniques for the purpose of security. Our work
shows that by adding directed fetching techniques to ran-
domized fetches, it is possible to integrate our policy with
commercially used prefetchers and conventional set as-
sociative caches, while achieving performance as well as
mitigating some cache-based side-channel attacks.
Cache line protection proposals extend beyond the scope
of secure cache designs; Kim et al. proposed Stealth-
Mem (Kim et al. 2012), a system-level cache locking
scheme protecting from cross-VM side-channel attacks
in a cloud environment. Zhang and Reiter proposed Dp-
pel (Zhang and Reiter 2013), an OS-based technique that
consists of a background kernel process, which intention-
ally evicts some of the cache lines used by the processes
in a targeted VM.

While a correct implementation and correct usage of the
secure cache designs mentioned above can eliminate the fea-
sibility of cache side-channel attacks, they require one or
more of the following: a new cache structure, a change in the
processor’s instruction set architecture, or reliance on the op-
erating system to manage and constrain process behavior. In
addition, for remapping-based cache designs, the effective-
ness of cache prefetching mechanisms might be adversely
affected, if the cache prefetcher is oblivious of the secure
cache’s remapping. By implementing sophisticated prefetch-
ing policies, we wish to avoid these issues, and achieve a
scheme that has high performance, low incremental hard-
ware overhead, and also improves security.

2.3 Cache Prefetchers
Cache prefetching is a technique that further ameliorates the
effect of memory latency on performance, as provided by the
cache hierarchy.

With the growth in the CPU-memory gap, commonly
termed ”the memory wall” (Wulf and McKee 1995), the
potential loss of performance induced by the memory wall
becomes more pronounced, and prefetchers become more
common.

Figure 1. Stride Prefetching scheme

Prefetchers attempt to identify distinct program streams,
and predict each stream’s future memory accesses based
on past stream characteristics. By eliminating some of the
demand misses, or at least saving some of their average
waiting time, the prefetcher reduces the overall number of
cycles in which the processor waits for memory data to
arrive.

We now briefly discuss the design and logical flow of the
Stride(Fu et al. 1992) and GHB D/GC (Nesbit and Smith
2004) prefetching schemes upon which we build and evalu-
ate our new security-enhanced prefetching policies in this
work. We chose to evaluate these schemes since they are
found in commonly used commercial processors (Doweck
2006; ARM 2010).

2.3.1 Stride Prefetcher
The Stride prefetching scheme records tuples of {PC, ad-
dress} generated by cache misses, and attempts to compose
streams of address deltas (or ”strides”) manifested from the
same program location (identified by the PC). Figure 1 de-
picts a typical lookup and prediction process. Each stride
table entry is indexed by the miss PC and contains a tuple
of {last miss address, stride}. Let A be the current miss ad-
dress A, and PC be the miss PC. If PC matches a stored
PC ′, and the stride of the current and stored miss address
A′ matches the stored stride ∆′, i.e. ∆ = A − A′ equals
∆′ = A′ −A′′ the stride prefetcher assumes steady state for
the miss PC and predicts the next miss address for that PC
will be A + ∆.

2.3.2 GHB G/DC Pretecher
The global history buffer (GHB) with global delta correla-
tion prefetching scheme tracks cache miss addresses, and
records vectors of address deltas. Figure 2 depicts a gen-
eral flow of the GHB G/DC prefetcher. Delta vectors are
recorded into a GHB table with m entries. Each vector con-
tains n deltas, divided into k ”history deltas”; these deltas
are used as index to the GHB entry. The entry’s value is the
sequence of the succeeding (n− k) ”future deltas”. By cap-
turing a recurring sequence of history deltas and fetching
the subsequent sequence of predicted deltas, the GHB G/DC



Figure 2. GHB G/DC Prefetching scheme

prefetcher attempts to correlate occurrences of a program’s
temporal-spatial streams.

3. Disruptive Prefetching
While prefetchers are traditionally used for performance
purposes, we study whether in the context of cache-based
side-channel attacks, can prefetchers disrupt the stability
of cache occupancy, leveraged by side-channel attackers?
Can we formulate a way to use prefetchers as means to im-
prove security? Will it be possible to use our security aware
prefetchers with a conventional, non-secure, cache design? If
the answer is yes to these questions, our prefetching schemes
might serve as a cheap, simple, and highly-performing alter-
native to sophisticated secure cache designs.

The key motivation for this disruptive use of prefetchers
is the fact that a prefetcher disrupts a program’s cache foot-
print, by scheduling memory accesses not yet requested by
the program (and sometimes not requested at all). We can
think of prefetching accesses as noise added to the original
memory access sequence, and we wish to see what type of
noise would be useful to mitigate access-based side-channel
attacks.

It is important to note that standard prefetching schemes
are not suitable as means for handling cache side-channel
attacks, since altering the stability of cache line occupancy
might not suffice to prevent side-channel attacks; if an at-
tacker has prior knowledge of the cache mapping, and the
prefetching policy is deterministic, it is possible for the at-
tacker to model the prefetcher as well, and attempt to mimic
the cache behavior in the presence of the prefetcher. In this
section, we suggest ways to alter the prefetching policy, in
order to make the cache behavior less predictable, while
maintaining reasonable performance.

3.1 Prefetching Degree
One of the behavioral properties of a prefetcher is its ag-
gressiveness, which can be quantified by the prefetching
degree that is defined as follows: given a detected stream
S of addresses: {AS,1,AS,2,...,AS,N} the degree D is the
length of the stream’s extrapolation, meaning the number of
future addresses {AS,N+1,AS,N+2,...,AS,N+D} predicted

and fetched by the prefetcher. A high degree, or aggressive
prefetching, indicates high confidence in the stream predic-
tion and can potentially deliver high performance if done
in a timely manner. On the other hand, this means a higher
degree of speculation. Therefore, if prediction is not accu-
rate enough, it is possible that not all D addresses will be
used, and fetching them can pollute the cache and harm per-
formance. Prefetching degree, therefore, has an effect on
performance, and should be carefully tuned.

3.2 Random Prefetching Policy

Algorithm 1 Random Prefetching Policy
function CACHE MISS(ADDRESS ADDR, PC PC)

D ← rand(1, ..,MAX DEGREE)
if ({ADDR,PC} match stream S) then

;HIT: randomize default prefetcher policy
{AS,N+1, ..., AS,N+D} ← (predicted next D addresses)

else
;MISS: randomize ”next-line” fallback policy

{AS,N+1, ..., AS,N+D} ← (D cache lines addresses following
ADDR)

pf addresses← rand permutation{AS,N+1, ..., AS,N+D}
end if
T ← 0
for pf addr ∈ pf addresses do

mark pf addr for prefetch at time T
T ← T + 1

end for
end function

In order to reduce the predictability of the cache access
pattern, we wish to apply a randomized prefetching policy.
Our policy works as follows: when a cache miss is detected,
and the prefetcher can associate the miss with a match-
ing stream, we randomize both the length of the extrapo-
lated stream (i.e., the prefetching degree D), and the order
in which the addresses {AS,N+1, ..., AS,N+D} are queued
for prefetching. In case the default prefetching policy fails
to match a stream, we incorporate a fallback ”next-line”
policy that prefetches the D succeeding cache lines, i.e.,
{AS,N + 1, ..., AS,N + D} , in a randomized order. We do
this to trigger accesses to adjacent cache sets, and prevent an
attacker from being able to pinpoint the exact sets that are
accessed by the victim program. The pseudo-code for our
prefetching policy is outlined in Algorithm 1.

The prefetching degree has a high impact on prefetching
policy. A high degree is likely to have inaccurate prefetching
that could pollute the cache. Furthermore, when attempting
to randomize the order in which an extrapolated stream is
being prefetched, we affect the prefetcher’s timeliness (i.e.
scheduling the next predicted line after lines predicted for
later use). These two key insights limit the maximal possi-
ble degree in which our prefetcher can deliver high perfor-
mance. On the other hand, we wish to have a degree that is
high enough to achieve a sufficient level of randomness, to
make side-channel attacks infeasible. In our experiments, we
found that a maximal degree of 10 serves as a good ”sweet



Figure 3. Cache Prefetcher with Set-Balancer Prefetching

spot”, as it did not pollute the cache on most workloads
tested, and made it harder to conduct side-channel attacks.

3.3 Set-Balancer Prefetching Policy

Algorithm 2 Set-Balancer Prefetching Policy
ref set← 0, 0, ..., 0
function SET BALANCED(ADDRESS ADDR)

;finds the address mapped to the closest un-accessed set
ret addr ← ADDR
if ref set = 1, 1, .., 1 then

ref set← 0, 0, ..., 0
end if
orig set← addr.cache set
target set←{ closest s to orig set with ref set[s]=0 }
ret addr.cache set← target set
return ret addr

end function
function CACHE MISS(ADDRESS ADDR, PC PC)

misses← misses + 1
if ({ADDR,PC} match stream S) then

pf addresses← (predicted next D addresses)
for pf addr ∈ pf addresses do

final pf addr ← SET BALANCED(pf addr)
mark final pf addr for prefetch at time T
set← final pf addr.cache set
ref set[set]← 1
T ← T + 1

end for
end if

end function
function CACHE HIT(ADDRESS ADDR, PC PC)

set← addr.cache set
ref set[set]← 1
if misses mod 16 = 0 then

;aggressive relaxation: PF on hit every 16th cache miss
pf addresses← (D lines addresses following ADDR)
for pf addr ∈ pf addresses do

final pf addr ← SET BALANCED(pf addr)
mark final pf addr for prefetch at time T
set← final pf addr.cache set
ref set[set]← 1
T ← T + 1

end for
end if

end function

In order to understand the motivation behind a set-
balancer policy, we must carefully examine the threat model

of access-based side-channel attacks. In this model, a mali-
cious program polls the cache lines while a victim program
is concurrently executed.

These accesses provide the attacker with periodic snap-
shots of cache state, from which the victim’s temporal cache
access traces can be extracted. As conventional caches rely
on fixed address-to-cache mapping, the distribution of cache
sets accessed is connected to the victim’s data structure ac-
cesses, which is often a function of the bits of cryptographic
keys used to access a table, e.g., in the AES encryption pro-
cess.

We wish to tackle this problem by suggesting a prefetch-
ing scheme that attempts to achieve a uniform cache set
access pattern at any given time, since it is implausible to
extract useful information from a uniform distribution. Our
goal is to create a prefetcher that keeps track of currently
accessed cache sets, and invokes prefetching requests to un-
accessed sets. Our prefetcher employs this technique in or-
der to distribute the program’s memory accesses across all
cache sets at any given time, so when a malicious process
polls that cache, it will not be able to pinpoint specific cache
sets that are occupied by the victim program. Our policy is
integrated with basic prefetching schemes and alters an ad-
dress targeted for prefetching to the address mapped to the
nearest un-accessed cache-set. Our scheme relies on a regis-
ter holding a a bit for each cache set, which is set upon ref-
erence to that set. If needed, our scheme changes an address
marked for prefetching to an address mapped to the closest
un-accessed set. Once all sets are accessed, all per-set bits
are cleared.

Figure 3 and Algorithm 2 depict how a set-balancer can
be integrated with a standard prefetching scheme. The per-
set reference register (ref set in Algorithm 2) is set upon
cache access or when an address is marked for prefetching.
Before an address can be marked for prefetching, in case it
refers to an address already referenced (i.e. the correspond-
ing bit is set in the reference register), the set-balancer at-
tempts to find the closest address that is mapped to an un-
mapped set. By integrating this directed prefetching policy
with an existing prefetcher scheme, we attempt to achieve
an approximation for a uniform cache set occupancy at any
given time. Since prefetching on every access is too aggres-
sive, we’ve added an aggressiveness relaxation factor to pre-
vent cache trashing; the on-hit next line prefetch policy is set
only every 16th cache miss. This assures that too many lines
will not be prefetched for the common case of low miss rate,
but on the other hand it will be triggered by a high miss rate
that is typical for access based attacks (in which the attacker
evicts the victim’s lines).

3.3.1 Set-Balancing Example
The best way to demonstrate the concept of set-balanced
prefetching is by a simplified example. Assume we have
a cache of 4 sets, with 16 byte lines. The cache is con-
nected to a conservative (degree=1) delta prefetcher with



Memory Calculated PF Reference Final PF
Reference Address Register Address

LD 0x1020(set=2) - 0,0,0,0→0,0,1,0 -
LD 0x1040(set=0) - 0,0,1,0→1,0,1,0 -
LD 0x1060(set=2) 0x1080(set=0) 1,0,1,0 0x1090(set=1)
PF 0x1090(set=1) - 1,0,1,0→1,1,1,0 -
LD 0x2020(set=2) - 1,1,1,0 -
LD 0x2040(set=0) - 1,1,1,0 -
LD 0x2060(set=2) 0x2080(set=0) 1,1,1,0 0x20B0(set=3)
PF 0x20B0(set=3) - 1,1,1,0→0,0,0,0 -
LD 0x2070(set=3) - 0,0,0,0→0,0,0,1 -
LD 0x2080(set=0) - 0,0,0,1→1,0,0,1 -
LD 0x2090(set=1) 0x20A0(set=2) 1,0,0,1→1,1,0,1 0x20A0(set=2)
PF 0x20A0(set=2) - 1,1,0,1→0,0,0,0 -

Table 1. Set-Balanced Prefetching Example

a set-balanced prefetching policy. Table 1 depicts a pro-
gram’s memory trace; each reference is a load instruction
(LD) which is part of the program or a prefetch access (PF)
invoked by the prefetcher. Each time the prefetcher calcu-
lates an address, the set balancer evaluates the reference reg-
ister to determine which set has not been referenced yet; the
invoked (final) prefetch address is mapped to the nearest un-
accessed set.

We assume the cache is initially empty, so all accesses are
misses. When encountering the load sequence of {0x1020,0x1040,
0x1060} the prefetcher calculates 2 consecutive 0x20 deltas,
therefore predicts the next fetched address to be 0x1060 +
0x20 = 0x1080, but since it is mapped to cache set #2 which
is already marked as accessed by the reference register, the
set-balancing policy changes it to the nearest un-accessed
set, which is set #3, which results in 0x1090 being the final
address to be prefetched. By employing this technique the
set-balancer attempts to distribute all prefetched accesses
in a uniform manner across all cache sets, using prefetch
accesses to obfuscate the cache footprint produced by the
program’s memory access pattern. In this example address
0x1090 is fetched but not accessed by the program, causing
cache pollution and a possible loss in performance. How-
ever, as we demonstrate in Section 4, the performance of a
set-balanced prefetcher is comparable to the standard cache
prefetchers.

4. Performance Evaluation
4.1 Methodology
For the purpose of evaluation, the gem5 simulator (Binkert
et al. 2011) was used. We simulate a single Out-Of-Order
microprocessor connected to a 2-level cache hierarchy over
a 2 GB physical memory. Figure 4 shows a top-level block
diagram of the simulated system. To test our randomized-
prefetching policy we applied it to two commonly used
cache prefetching schemes: a stride prefetcher (Fu et al.
1992), and a GHB-based prefetcher with global delta-
correlation (GHB G/DC (Nesbit and Smith 2004)). Table
2 summarizes the simulation parameters used.

We ran 17 different workloads taken from the SPEC
CPU2006 benchmark suite (Standard Performance Eval-

Parameter Value
General

Instruction Set Architecture amd64 (x64)
CPU clock rate 2.0 GHz
CPU configuration 8-wide OOO
L1 DCache size 32KB
L1 DCache line size 64B
L1 DCache associativity 4 way LRU
L1 DCache hit latency 4 cycles (2 tag+2 data)
L1 ICache size 32KB
L1 ICache line size 64B
L1 ICache associativity 2 way LRU
L1 ICache hit latency 4 cycles (2 tag+2 data)
L2 cache size 2MB
L2 cache line size 64B
L2 cache hit latency 20 cycles
Physical memory size 2048MB
Physical memory latency 93 cycles

Stride Prefetcher (if applicable)
Table entries 256 fully associative

GHB G/DC Prefetcher (if applicable)
Table entries 256 fully associative
History Length 3 Last miss address deltas

Table 2. Simulation Parameters

Figure 4. Top-level system diagram

uation Corporation 2006). For the purpose of steady state
measurements, for each benchmark the simulator skipped
a given number of instructions to hit the memory intensive
region of the benchmark. From within the memory intensive
regions, the actual simulation recorded the first 500 Mil-
lion instructions. We used Jaleel’s SPEC workload analysis
(Jaleel 2009) to roughly determine the number of instruc-
tions to skip for each benchmark.

4.2 Performance Results
We will now show the performance results of a randomized
prefetcher and a randomized prefetcher with set-balancing.
To evaluate the randomized prefetching and randomized set-
balanced schemes, we implemented prefetching schemes
against three different configurations.

• Base configuration - a standard L1 data-cache that does
not possess any security-aware mechanism, and it is not
connected to any prefetcher
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Figure 5. GHB-Based Randomized Prefetcher Performance
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Figure 6. Stride-Based Randomized Prefetcher Performance

• Standard Prefetcher - a standard L1 data-cache connected
to the basic configuration of a cache prefetching scheme
(either GHB G/DC or Stride).

• Newcache + Prefetcher - the secured cache design sug-
gested by Wang and Lee (Wang and Lee 2008), con-
nected to a GHB/stride prefetching scheme.

Figure 5 depicts the performance results achieved for
GHB prefetcher simulations, and Figure 6 shows the results
achieved for stride prefetcher simulations. IPC was normal-
ized to the base configuration’s IPC.

The purpose of the fallback policy was not to gain perfor-
mance, but to maintain a high prefetching aggressiveness,
in case the default prefetching policy does not succeed in

matching. We saw that the performance difference when not
employing a fallback ”next-line” policy was negligible, e.g.,
a randomized stride prefetcher without the fallback policy
achieved an average speedup of 26% instead of a speedup of
27% gained by a stride prefetcher with a fallback policy. We
did not show the results for this policy for brevity reasons.

4.2.1 Discussion
We see from the performance results that while a random-
ized GHB G/DC prefetcher (Figure 5) often performed
poorly and achieved an average slowdown of 1% for all
workloads tested, a randomized stride prefetcher achieved
the best performance for 7 of the 17 workloads tested and
achieved an average speedup of 27%, compared to the 18%



achieved by the second-best performing, standard stride
prefetcher.

This indicates that the randomized GHB G/DC pollutes
the cache with unused lines, due to the noisy miss pattern
induced by the randomization.

There are two main reasons for which randomization
worked better for a stride prefetcher: (i) Localized stream
construction: since a stride prefetcher is PC-directed, stream
randomization was employed locally and separately for each
PC. When stream randomization is applied for global mem-
ory stream correlation, as in the case of GHB G/DC, it cre-
ates a noisy pattern that disrupts the correlation process,
and induces global miss patterns that are translated to unsta-
ble delta vectors recorded under the same history deltas. A
stride prefetcher, on the other hand, attempts to extrapolate
memory streams locally by PC-based partitioning. Adding
randomization to the process, introduces locally employed
noise, that is corrected and regenerated, periodically, for
long memory streams. The superior performance of the ran-
domized stride prefetcher was achieved due to the aggressive
prefetching of the randomized policy. (ii) Faster stream de-
tection: as outlined in Figures 1 and 2, both prefetchers use
recorded history tables to detect memory streams. However,
the difference is that a GHB G/DC relies on a sequence of
several history deltas, and as mentioned in Table 2, our sim-
ulation uses 3 history delta sequences as index. The stride
prefetcher, on the other hand, matches a current delta with a
single history delta, enabling easier and faster detection of a
stabilized, non-noisy, stream.

We also see that in both GHB and Stride prefetcher
schemes the integration with Newcache achieves a speedup
comparable to the speedup achieved with the conventional
set-associative cache. This is interesting and unexpected,
showing that Newcache does not degrade the performance
of a standard prefetcher, as we originally feared. Newcache
achieves the same speedup of 18% for the standard stride
prefetcher. We initially thought that the performance of
Newcache with a prefetcher would be hurt by the random-
ized remapping caused by Newcache replacement. Surpris-
ingly, this rarely happened and is noticeable only in one case
- when running ’soplex-pds50’ for the stride prefetcher. In
fact, in two cases (for ’namd-namd’ and ’libquantum’), the
stride prefetcher with Newcache performed better than the
stride prefetcher with the conventional set-associative cache.

We conclude that it is both the localized stream partition-
ing that constrains randomized prefetching noise, and faster
detection by short histories, which make a stride prefetcher
more suitable for a randomized prefetching policy.

Finally, we see that a randomized stride prefetcher policy
with set-balancing achieves a speedup of 18%, compara-
ble to the standard prefetcher configuration, but less than
the speedup achieved by the randomized stride prefetcher
(without set-balancing). The reason is the added prefetch-
ing aggressiveness that causes some amount of cache pol-

Algorithm 3 Prime+Probe Attack
initialize cache occupying array Arr
byte chunk[16]
k ← 128 bitAES key
f ← open(file to cipher)
repeat

;Attacker code: Prime phase
for set ∈ (0..cache sets− 1) do

index← set× cache line size
for i ∈ (0..num ways− 1) do

Read Arr[index+cache way size× i]
end for

end for
;Victim code: AES Encryption

chunk ← read(f, 16 bytes)
AES encrypt(chunk,k)

;Attacker code: Probe phase
for set ∈ (0..cache sets− 1) do

for i ∈ (0..num ways− 1) do
index← set× cache line size
start time← time()
load Arr[index+cache way size× i]
end time← time()
record (end time− start time)

end for
end for

until EOF (f)

lution by prefetched lines that are not later accessed by
the program. Clear evidence of that are ’gobmk’, ’sjeng’,
and ’sphinx’benchmarks in which the randomized prefetcher
with set-balancer achieves worse performance than that of
the ”Base” configuration. This clearly indicates that the
prefetcher is inaccurate and has an adverse effect on perfor-
mance. An interesting case is the ’libquantum’ benchmark
which is the only benchmark for which the the addition of
the Set-balancing policy achieves the best performance. This
may be because the set-balancing policy prefetches future
accessed lines by accessing neighboring lines that have not
been accessed recently, when trying to achieve a uniform
access distribution over the cache sets.

Although, as anticipated, the set-balancer did not achieve
a performance gain comparable to the randomized prefetch-
ing scheme on which it was built, it did gain performance
comparable to the standard configuration. We show next the
important role of the set-balancer based prefetcher in miti-
gating cache side-channel attacks.

5. Security Evaluation
In this section, we evaluate how our new prefetcher poli-
cies deal with a real side-channel attack, determine whether
prefetchers can be used to defeat a side-channel attack, and
under what conditions.

5.1 Case Study: Prime+Probe Attack
To demonstrate a prefetcher’s ability to mitigate cache-based
side-channel attacks, we ran a synthetic code implementing
the ”Prime+Probe” cache-based side-channel attack (Os-
vik et al. 2006; Tromer et al. 2010) on an application that
encrypts a file via AES encryption.



Figure 7. Prime+Probe attack cache set access times

In a Prime+Probe attack, the attacker does not have ac-
cess to the victim application’s memory space, and there-
fore attempts to construct the cache footprint by tracking the
”hot” cache sets used by the victim, as they indicate which
AES table entries are accessed using the outcome of the vic-
tim’s plaintext byte XOR’ed with an AES key byte (round 1
AES attack). The attacker polls the cache by repeatedly ex-
ecuting the attack code (i.e. the cache fill and cache probe
phases) while the victim application (that executes AES en-
cryption) is concurrently executed. During the online phase
of the attack, many samples of the encryption time of a plain-
text block are taken. Then, in the offline phase of the attack,
a ”heat map” is constructed, giving the encryption times for
each (plaintext byte value, cache set number), for each of
the 16 key bytes. Figure 7 shows the heat map for one key
byte, where a lighter spot indicates a longer execution time.
Algorithm 3 depicts the pseudo-code for the Prime+Probe
attack we used in this work. In the prime phase, the attacker
repeatedly loads each cache line with elements read from an
array, Arr. In the probe phase the attacker samples the ac-
cess times for all cache sets, and primes the cache for the
next timing sample.

Our code simulates a sequential execution of both the at-
tacker and the victim program, further favouring the attacker.
We therefore mimic a sophisticated form of attack in which
the attacker can achieve absolute scheduler priority, possibly
by timely gaming the scheduler, a technique demonstrated
by Ristenpart et al. (Ristenpart et al. 2009). For the purpose
of producing a steady state cache footprint, we performed
an encryption for a file of 750KB, which produced ∼48000
rounds of encryption. In our model after each round the at-
tacker samples the cache state by using the x86’s ”rdtsc”
time counter sampling instructions(Paoloni 2010).

We ran our attack on gem5 simulating a system with a 4-
way set-associative 16KB L1 Dcache with LRU replacement
policy. We tested the results obtained for three different
prefetching configurations:

• base: the basic cache configuration, not integrated with
any prefetching mechanisms.

• random stride prefetcher: the basic cache connected to a
randomized stride prefetcher.

• set-balanced random stride prefetcher: the basic cache
connected to a randomized stride prefetcher, with the set
balancer prefetching extension.

For brevity purposes we do not show the results of a New-
cache design, but a previous study (Liu and Lee 2013)
demonstrated how Newcache defeats the cache side-channel
attack and produces a noisy pattern for this attack.

The attack presented in Figure 7 shows heat maps con-
taining the average set access times for every possible value
of the first encrypted plain-text byte (i.e. data[0]), using an
all-zero key.

5.1.1 Discussion
Figure 7 depicts a heat map that contains the distribution of
cache set timing with respect to the value of the first plaintext
byte. This heat map is an example of an outcome from the
Prime+Probe access based timing samples.

In the heatmap produced by the ”base” configuration
we see some cache sets are more frequently accessed than
others; more importantly, we see a diagonal line that can
couple the plaintext byte with the cache set. This is the result
of parts of the AES encryption data flow being governed by
values of the key and the plaintext byte to be encrypted. Both
prefetching schemes produce a vertical line at set 46, due to
a simulation bias caused by virtual memory mapping and the
prefetcher’s implementation.

The heatmap shown for the ”random stride prefetcher” re-
veals an interesting insight. While one might have expected
a randomized prefetcher to produce a noisy heat map, and al-
though some of the distribution was altered, we still clearly
see the diagonal line. The reason for this result is that af-
ter many samples, the noise produced by the randomized



prefetcher cannot hide the actual cache access pattern in-
duced by the AES encryption process.

We conclude from a failure of a randomized prefetcher to
defeat this attack, that random noise induced by prefetch-
ing cannot defeat a well-timed side-channel attack that
obtains many samples. This insight motivated our Set-
balancer scheme described in Algorithm 2. The set-balancer
prefetcher is both aggressive enough to hide the actual ac-
cess pattern, and targets an even distribution of all mem-
ory accesses among cache-sets. We can see that, in fact,
the heat map gathered by the attack on a ”Random stride
prefetcher+Set Balancer” configuration that combines a ran-
dom prefetcher with a set-balancer extension is too noisy for
one to infer from.

Since the prefetcher targets only the L1 D-cache, our
security-enhanced prefetching techniques would only apply
to attacks on the L1 D-cache, and not to the L1 I-cache, the
L2 cache or the L3 cache (Last Level cache in servers).

Also, we do not know if our prefetching techniques can
mitigate other side-channel attacks (not Prime and Probe) on
the L1 D-cache. This can be future work.

6. Conclusions And Future Work
In this work, we explored the security, performance, and
design issues due to cache-based side-channel attacks. We
studied current solutions and suggested a new approach
leveraging randomized and set-balanced prefetchers as attack-
disruptive prefetching policies that do not hurt the perfor-
mance of a prefetcher, without having to change conven-
tional set-associative cache designs.

We presented a brief survey of side-channel attack classes
that exploit the access timing disparity of cache hits and
misses, and the static memory-to-cache mapping to leak
sensitive information. We then presented the recent secure
cache designs that deal with these attacks, discussed their
main features, and questioned whether it might be possible
to achieve similar features by using a smart prefetching
scheme integrated with a conventional set-associative cache.

We described the traditional role of prefetchers in mod-
ern computer systems and presented the two basic prefetch-
ing schemes evaluated in this work. We then suggested the
randomized and set-balanced prefetching policies, as alter-
natives to secure cache designs. Our approach does not re-
quire any architectural changes and relies on simple data-
structures.

In our performance study, we saw that the integration
of Newcache with a prefetcher achieves a speedup compa-
rable to that of the prefetcher connected to a conventional
set-associative cache. We showed that for some cases, the
aggressiveness of our new randomized and set-balanced
prefetchers performs better than the standard, more-conservative,
prefetching scheme. We also saw that the randomized prefetch-
ing policy integrates better with a simple PC-based stride
prefetcher scheme than with a global delta-correlated scheme,

due to both the use of a PC to partition different streams
and the use of short stride histories for faster stream learn-
ing. We, therefore, conclude that the robustness of a stride
prefetcher makes it fit for a randomized prefetching policy.

This work also confirms that Newcache has high perfor-
mance, and even has the same performance improvement
from both stride and global history prefetchers as do conven-
tional caches. A detailed comparison of the hardware com-
plexity of Newcache versus security-enhanced prefetchers
could also enlighten the discussion on how best to defeat
cache side-channel attacks.

Finally, we demonstrated the ability of a randomized and
set-balanced stride prefetcher to disrupt the cache footprint
constructed by a Prime+Probe attack, thus creating a noisy,
hard-to-classify footprint that does not leak any significant
information from the original program running on an inse-
cure cache.

We therefore showed that it is possible to use a prefetcher
for the purposes of security and defeat a Prime+Probe side-
channel attack, while keeping the prefetcher’s original po-
tential performance gain.

This work can set the path for many future studies, on
how prefetchers can secure other aspects of computer sys-
tems prone to side-channel attacks. It would be interesting
to integrate our schemes with secure cache designs and also
to evaluate how and whether set-balancing can affect other
applications of computer architectures.
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