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Abstract

Side-channel attacks try to break a system’s confidentiality using physical information
emitted from the targeted system. Such information is leaked out through cache side
channels, which can exist in many parts of the system. Cache memories are a potential
source of information leakage through side-channel attacks, many of which have been
proposed. Meanwhile, different cache architectures have also been proposed to defend
against these attacks. Thus it is necessary to evaluate the effectiveness of the proposed
defense approaches.

In this paper, we propose two methods to evaluate a system’s vulnerability to cache
side-channel attacks. First, we run actual attack programs and recover the cipher keys to
directly show if the target system is attackable through such side-channel attacks. We also
provide a new key-vote metric to quantify the system’s vulnerability to the attack. The
actual attack is accurate, but is slow and cipher specific. Hence, we propose a second method
based on new models of cache architectures and their information leakage potential. We
define a novel Interference Matrix to evaluate a system’s vulnerability to entire categories
of cache side-channel attacks, rather than to a specific attack. These models can give more
comprehensive conclusions on a system’s vulnerability to side channel attacks. Finally we
check whether the two methods give consistent results.

1 Introduction

Confidentiality is a major concern in information security. One solution for the confidentiality
problem is to use strong cryptography. With ciphers, the encrypted data or secrets can be freely
sent over public networks or stored in publicly-accessible storage, as long as the encryption key
is kept secret and accessible only by authorized parties. In modern cryptography, Kerckhoff’s
principle states that a cryptosystem should be secure even if everything about the system is
public knowledge except the key. So the confidentiality of the encryption key is particularly
important: if the encryption key is leaked, then the confidentiality protection provided by
strong encryption is nullified.

Ingenious cryptographic algorithms have been designed to enhance the strength of ciphers.
However, different attacks have been proposed to break these ciphers and recover the keys. The
simplest one is a brute-force attack, which tries all the possible keys. It requires exponential time
and energy, and is computationally infeasible if the key is long enough. Other mathematical
attacks include differential cryptanalysis [1] or linear cryptanalysis [2]. These attacks target the
weakness of the cryptography algorithms and try to recover the keys through mathematical
analysis, which is usually specific to each cipher.

Unlike the attacks mentioned above, side-channel attacks are information leaks through a
medium which is not intended for communications. This medium is called a side-channel. Side
channels convey physical characteristics of the system and leak secret information indirectly.
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Hardware-based side-channel attacks are very hard to defend against for several reasons.
First, side-channel attacks target the vulnerabilities of the system instead of the cryptographic
algorithms. The same attack strategy can often be applied to different ciphers. Second, side-
channel attacks can be successfully performed in a short period of time (e.g., average 3 minutes
in [3]), which will not cause any noticeable impact on the system. Third, the attackers do not
need high privileges to launch an attack. All the operations are within their authorized privilege
level. They only need to know the plaintext (known or chosen plaintext attack), or just the
ciphertext, or even neither of them [3, 4]. Fourth, side-channels exist widely in different systems.
Power [5, 6], electromagnetic radiation [7, 8], timing [9], etc., all can be observed by the attacker
to infer the inaccessible critical information. Fifth, the observable side-channel information
is due to the natural physical features of the system, so it is very difficult to eliminate these
side-channels. Particularly worrisome is the fact that performance and power optimization
features in modern processors are a source of side-channel leaks. For example, the use of the
caches in the memory system can significantly reduce the effective memory access time, and is
one of the most important features for improving performance in a modern processor. However,
the different access time characteristics due to cache hits and misses also provide attackers a
source of side-channel information leakage. It is typically unacceptable to disable the cache (to
disable such side-channels), because of the severe performance degradation that would result.

Since side-channel attacks exploit the physical features of systems, many defense strategies
focus on security improvements of the system implementations. For instance, to defend
against cache side-channel attacks, a variety of secure cache architectures have been proposed
in recently years [10, 11, 12]. These cache architectures aim to thwart certain types of side-
channel attacks without huge performance cost. The performance of these architectures can
be tested by different benchmarks, but their security effectiveness have only been analyzed
qualitatively. Thus, general quantitative methods of measuring the potential side-channel
information leakage are desirable when trying to compare different cache architectures. Such
methods are important because they can reveal which features of the system are more prone
to leaking critical information, and contribute to the trade-off analysis between performance,
power and security of different cache architectures.

In this paper, we propose two quantitative evaluation methods for a system’s vulnerability to
cache side-channel attacks. For clarity, we focus on one class of attacks: the one induced by cache
misses due to external interference (described in section 2). With certain modifications, these
methods can be applied to other types of cache side-channel attacks. The main contributions of
this paper are:

• Proposal of a first evaluation method using an actual attack program with a new key-byte
recovery metric;

• Proposal of a second evaluation method based on new state machine modeling of cache
architectures and computation of an Interference Matrix.

Section 2 gives the background of cache side-channel attacks and various cache defenses.
Section 3 describes the first evaluation method and its results. In section 4, we build abstract
models of cache architectures and define the Interference Matrix to measure the information
leakage. Section 5 compares the two methods, their scope and the consistency of their results.
Section 6 discusses related work. Section 7 gives our conclusions and suggestions for future
work.
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Figure 1: Concept of cache side-channel attacks

2 Background

2.1 Cache Side-channel Attacks

Side-channel attacks try to break a cipher through by-product information from side-channels.
Among all the potential sources of information leakage, cache side-channels are particularly
dangerous, as caches exist in essentially all modern processors, from embedded systems to
cloud servers. Besides, many cipher programs involve memory accesses that depend on the
encryption keys, so the usage of the memory (thus the cache) gives the attacker the chance to
break the ciphers through cache side-channel attacks.

As programs execute on the system, they may have different cache behaviors (hits or misses)
when accessing the memory. These behaviors have different timing characteristics. The attackers
try to capture these timing characteristics, and then deduce the victims’ memory accesses that
might help them finally break the ciphers. They have different ways to realize this goal: if the
attacker shares the caches with the victim, he can measure his own cache access time to test
the state of the cache, thus to infer the victim’s cache accesses. This is called an access-based
attack [13, 3], shown in figure 1a. The attacker can also measure the victim’s execution time
to deduce the victim’s cache hits or misses during his execution, to infer his memory accesses.
This is called a timing-based attack [14, 15], shown in figure 1b.

2.2 Attack Categories

A large number of side-channel attacks based on caches have been proposed during the past
few years [13, 14, 16, 15, 4, 17, 3]. The root cause of all such attacks is due to interference: either
external interference between the attacker’s program and the victim’s program, or internal
interference inside the victim’s own program [10]. Combined with the cache behaviors the
attackers want to observe (cache misses or hits), we have the four cache side-channel attack
categories [18] shown in Table 1 and described below.

Type I: Cache Misses due to External Interference. In this class, the attacker and the victim
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Table 1: Cache side-channel attack categories

External Internal
Interference Interference

Cache I. Access-based attacks III. Timing-based attacks
Misses e.g., Percival’s attack e.g., Bernstein’s attack
Cache II. Access-based attacks IV. Timing-based attacks
Hits e.g., Shared library e.g., Bonneau’s attack

run their processes on the same processor, and they share the same data cache. So the victim’s
process may evict the cache lines holding the attacker’s data, which will cause the attacker
future cache misses and give the attacker the chance to infer the victim’s cache accesses. Some
access-based attacks belong to this class, and a typical one is Percival’s attack [13].

The attacker usually adopts the technique of "Prime and Probe" [4] to perform this kind
of access-based attacks. In this method, the attacker assigns his program a contiguous byte
array, the size of which is equal to the cache size. In the "Prime" stage, he reads every memory
block in the array. Then the cache is fully occupied by the attacker. After a certain time interval,
the attacker performs the second "Probe" stage: he again reads each block in the array, and
measures the access time of each cache set. A large access time means the attacker has a cache
miss, indicating that this cache set has been accessed by the victim during that interval, and the
attacker’s data in that set has been evicted out of the cache by the victim. By inferring the state
of the cache for the victim’s execution between the Prime and Probe stages, the attacker can
get to infer the cache accesses of the victim’s program. Then he can analyze such side-channel
information to recover critical confidential data, such as an encryption key used by the victim.

Type II: Cache Hits due to External Interference. In this class, the attacker and the victim
share some memory space (e.g, a shared cryptography library). First, the attacker evicts all the
shared memory blocks out of the cache. After a certain time interval of the victim’s execution,
the attacker reads every shared memory block and measures the access time. A small time
means the attacker has a cache hit, indicating that this cache line has been accessed by the victim
during that interval and re-fetched into the cache by the victim. Then the attacker can infer the
memory addresses the victim has accessed. The access-based attack in [3] belongs to this class.

Type III: Cache Misses due to Internal Interference. In this class, the attacker does not
run programs simultaneously with the victim. Instead, he only measures the total execution
time of the victim, e.g., for encryption of one plaintext block. A longer execution time indicates
there may be more cache misses from the victim’s own execution (which includes its wrapper
code); this can give the attacker some information about the victim’s memory accesses. Some
timing-based attacks belong to this class, such as Bernstein’s attack [14].

Type IV: Cache Hits due to Internal Interference. Similar to the above attack, in this class,
the attacker still only needs to measure the total execution time of the victim. But he only cares
about cache hits inside the victim’s code. If the attacker measures a shorter execution time, it
may be due to more cache hits during the victim’s execution. So the attacker may be able to infer
information about the encryption keys through "cache collision" (i.e., cache hits) of memory
accesses. Some timing-based attacks belong to this class, such as Bonneau’s attack [15].

In this paper, we focus on category I cache attacks, which are induced by cache misses due
to external interference. These attacks require less time to succeed than the internal interference
attacks (categories III and IV), and they do not need to share some memory addresses with the
victim (as in category II attacks). Hence, they are often considered the most powerful cache
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side-channel attacks.

2.3 Cache Defenses and Architectures

In this section, we discuss proposed cache defenses and secure cache architectures. We de-
scribe two general approaches to protect against cache side-channel attacks: Isolation and
Randomization. Then we give some examples of secure caches that adopt these two approaches.

2.3.1 Isolation.

The reason that caches can be exploited as side-channels in the external interference attacks is
the attacker and the victim can share the caches. So one straightforward approach to prevent
information leakage is to prevent the cache sharing between the attacker and the victim, by
dividing the cache into different zones for different processes. We have the following cache
designs using this idea:

Static-Partitioning (SP) cache: This cache is statically divided into two parts either by ways
or by sets. In set-associative caches partitioned by ways, each way is reserved for either the
victim or the attacker program. The cache can also be partitioned by sets, where each set is
reserved for either the victim or the attacker program. Due to the elimination of cache line
sharing, SP caches can effectively prevent external interference, but at the cost of degrading the
performance because of the static cache partitions. (Note that allowing the partitioning to be
adjusted dynamically, rather than only statically, can leak some information.)

Partition-Locked (PL) cache: PL cache [10] uses a finer-grained dynamic cache partitioning
policy. In PL cache, each memory address has a protection bit to represent if this memory block
needs to be locked in the cache. Once the protected block (e.g., the victim’s critical data) is
locked in the cache, it can not be replaced by an unprotected block (e.g., the attacker’s data).
Instead, the attacker’s data will be directly sent between the processor and the memory, without
filling the cache. This replacement policy will thwart the attacker’s plot to spy on the victim’s
cache accesses. If all the sensitive data are pre-loaded before encryption starts, then PL cache
enables constant-time memory accesses, since all accesses to sensitive data will result in cache
hits.

2.3.2 Randomization.

In this approach, side-channel information is randomized, thus no accurate information is
leaked out from caches. There are at least two ways to realize randomization: adding random
noise in the attacker’s observations and randomizing the mappings from memory addresses to
cache sets.

Random-Eviction (RE) cache: a RE cache periodically selects a random cache line to evict.
This can add random noise into the attacker’s observations so he cannot tell if an observed
cache miss is due to the cache line replacement or the system’s random eviction. This will
increase the attacker’s difficulty in recovering secret information like a cipher key.

Random-Permutation (RP) cache: RP cache [10] uses random memory-to-cache mappings
to defend against cache side-channel attacks. There is a permutation table (PT) for each process.
This enables a dynamic mapping from memory addresses to hardware-remapped cache sets.
When one process A wants to insert a new block D into the cache, it checks A’s permutation table
and finds a victim block R in set S. If this R belongs to another process B, instead of evicting R,
thus revealing information to outsiders, a random block R’ in a random set S’ is selected, evicted
and replaced by D. At the same time, the sets S and S’ in A’s permutation table are swapped, and
the blocks in these two sets belonging to A are invalidated. Since the victim’s memory-to-cache
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mappings are dynamic and unknown to the attacker, the attacker cannot tell which lines the
victim actually accessed. This is different from conventional caches, which have static and fixed
memory-to-cache mappings, rather than dynamic and randomized mappings.

NewCache: NewCache [11, 19] also randomizes the memory-to-cache mappings, but does
this by introducing a Logical Direct-Mapped Cache (LDM), which does not physically exist. The
mapping from memory addresses to the LDM cache is direct-mapped, with the benefits of
simplicity and speed or power efficiency. The mapping from the LDM cache to the physical
cache is fully-associative and random. This dynamic and random mapping can enhance the
security against information leakage. For the replacement policy, if the incoming block D cannot
find any block in the physical cache with the same index (called an index miss), it will randomly
choose a block R to replace. If the incoming block can find a block R in the physical cache with
the same index, but the tag is different (called a tag miss), then D may replace R (when either D
and R are both protected or both unprotected) [19].

The questions we want to answer in this paper are: "Do these secure caches really defend
against cache side-channel attacks?" and "What are the relative vulnerabilities of different cache
architectures to side-channel attacks?". In the next two sections, we will use two different
methods to evaluate the effectiveness of these cache designs for preventing attacks induced by
cache misses and external interference.

3 Actual Attack Programs and Key Recovery

In this section, we describe the first evaluation method –running the actual attack program.
This method is straightforward as the success or failure of the attack can directly reflect the
system’s vulnerability to this attack. We launch a synchronous "Prime and Probe" attack on the
AES cipher [4]. Then we try to recover the cipher keys, and use the votes of candidate keys to
quantitatively show the feasibility of this attack, and hence the system’s vulnerability.

3.1 AES -the Advanced Encryption Standard

AES is a powerful symmetric-key cipher, which is widely used throughout the world. It is an
iterated block cipher with block sizes of 128, 192 or 256 bits. For encryption, the plaintext block
is converted into the ciphertext block with several rounds. Each round consists of four functions:
SubBytes, ShiftRows, MixColumn and AddRoundKeys. These functions include linear and
nonlinear operations, e.g., shifting or substitution, which consume computation resources.

To efficiently implement AES, most systems adopt the table lookup technique. Several
tables are precomputed and stored in memory before the encryption. At each round, instead
of calculating the four functions, the pre-computed tables are looked up to get the output of
this round. This can have an order of magnitude performance improvement over the separate
algebraic computations. However, accessing the memory (thus accessing the cache) provides
the attacker a potential side-channel to observe which entries in the AES lookup tables are used
during the encryption. Thus, the use of lookup tables in memory is the cause of many cache
side-channel attacks on software AES implementations.

3.2 Attack Strategy

We consider AES encryption with an encryption block size of 16 bytes. Assume the plaintext
is P = {p0, . . . , p15} and the encryption key is K = {k0, . . . , k15}. The attacker can use the
synchronous "Prime and Probe" technique [4] to recover the key K. Before encryption, the
attacker executes the "Prime" stage to fill the cache with his own data. Then it is the victim’s
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turn to encrypt one block of plaintext P. The victim calculates xi = pi ⊕ ki (i = 0, . . . , 15) as the
index to access the lookup tables in the first round. If the table entry indexed by xi is mapped to
the cache set si, the victim will occupy one cache line in set si. After the encryption, the attacker
will take over to execute the "Probe" stage. He will observe a cache miss in accessing set si.

The attacker does not know the mappings from xi to his observation of cache miss or hit for
si, but he can perform two phases to recover the key: the study phase and the attack phase. In the
study phase, the attacker provides a known key K and plaintext P to the system for encryption.
So the index xi = pi ⊕ ki is mapped to cache set si. In the attack phase, the system will encrypt
the plaintext P’ provided by the attacker with key K’, which the attacker does not know and
wants to recover. So the index x′i = p′i ⊕ k′i is mapped to cache set s′i. If in the two phases the
victim accesses the same table entry (xi = x′i), the attacker will observe cache misses in the same
set (si = s′i), which indicates pi ⊕ ki = p′i ⊕ k′i. Then the attacker can easily recover the unknown
key with the equation below:

k′i = p′i ⊕ pi ⊕ ki (1)

The attacker provides a large quantity of plaintexts to the victim for encryption. For each
plaintext, the attacker performs the "Prime and Probe" attack, and measures the access time of
each set. After all the encryptions are done, the attacker calculates the average access time for
each cache set s, for each of the 16 plaintext bytes i, for each byte value b. Algorithm 1 shows
the pseudo code for generating such access time profiles. (We have 16 plaintext bytes, each byte
has 256 possible vaues (0, 1, ...,28 − 1), and we assume the cache has 128 sets.)

Algorithm 1 Generating profiles for each phase
sum[16][256][128]: sum of access time for each byte, value and set
count[16][256][128]: sum of counts for each byte, value and set
total_sum[128]: sum of access time for each set
total_count[128]: sum of counts for each set
avg[16][256][128]: normalized average access time for each byte, value and set

for (each plaintext p) do
for (each set s of 256 cache sets) do

let t = time measurement of set i
for (each byte i of 16 plaintext bytes) do

let b=value of byte i of p
total_sum[s] = total_sum[s]+t
total_count[s] = total_count[s]+1
sum[i][b][s] = sum[i][b][s]+t
count[i][b][s] = count[i][b][s]+1

end for
end for

end for
for (each set s) do

let t_avg = total_sum[s] / total_count[s]
for (each byte i) do

for (each value b) do
avg[i][b][s] = sum[i][b][s] / count[i][b][s] - t_avg

end for
end for

end for
return avg[16][256][128]

3.3 Implementation

We use gem5 [20, 21] to implement cache systems and launch the above side-channel attack.
The system configuration we use for all the experiments in section 3 is summarized in Table 2.
We simulate L1 caches, with cache size of 32KB, line size of 32B and set-associativity of 8-way,
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which are standard configurations in modern processors. The victim runs AES encryption for
218 random blocks of 16 bytes, in two phases. In the study phase, the known key is all zeros,
i.e., ki = 0x00, (i = 0, . . . , 15). In the attack phase, the key is unknown to the attacker. The
attacker primes the cache before encrypting one block and probes the cache after this block
encryption, collecting the access time of each set. Then based on Algorithm 1 he can generate
the three-dimensional average access time array, avg[16][256][128] for each phase.

Table 2: Configurations in gem5 implementation.

Parameter Value
CPU-type out-of-order
ISA x86
Execution mode system call emulation
CPU clock 2GHz
# of cache levels 1
Cache size 32KB
Line size 32B
Associativity 8-way

3.4 Attack Results

The results from the attacker’s measurements can visually show if the attack is successful or
not, even without needing the off-line phase to recover the keys. Since each of the 16 bytes
of plaintext and key are independent, we can consider one byte at a time. We draw a two-
dimensional grayscale figure to show the average access time. Figure 2 shows the avg[14][b][s]
of a conventional cache in the study (left) and attack (right) phases for byte 14 (the other bytes
have similar results). In the two figures, the vertical axis is value b (0-255) of byte 14 and the
horizontal axis is the cache set s (0-127). The lighter pixels in (s, b) denote a larger average
access time, meaning the attacker observes a cache miss of set s, when the value of plaintext
byte 14 is b. Thus the attacker can infer that the victim may have accessed a table entry located
in set s when encrypting this block.

From figure 2 we can clearly see some light line patterns in both phases. In the study phase,
because the key is all 0, x14 = p14 ⊕ k14 = p14. In a conventional cache, x14 is approximately
linearly mapped to the cache set s14. Thus the cache set s14 is approximately linearly mapped to
p14. That is why we can see one diagonal line in the study phase. In the attack phase, as the key
is non-zero, some segments of the line are shifted due to the operation of XOR between the key
and the plaintext. The patterns in the two phases can reveal the unknown key-byte k14 to the
attacker. So this attack on the conventional cache succeeds.

3.4.1 Isolation.

We consider the attack results for the isolation approach. Figures 3 and 4 show the access
time profiles for SP cache and PL cache. From these figures, the attacker cannot detect lighter
patterns, unlike in figure 2. The vertical dot lines in some sets of the two figures are due to the
cache footprints, and cannot leak critical information. So it is impossible to recover the keys
from these two phases. Thus the attack on the SP cache and the PL cache fails.
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Figure 2: The result of "Prime and Probe" attack on a conventional cache in the study phase (left)
and attack phase (right)

3.4.2 Randomization.

Next we consider the randomization approach. Figures 5 and 6 show the results of RE-1000
cache and RE-10 cache (randomly evict a line every 1000, or every 10, memory accesses,
respectively). We can still see line patterns in the two caches (The pattern in figure 6 is not very
clear since more noise is introduced to the attacker’s observations as more frequent random
evictions are performed). So the attack on RE cache succeeds.

Figures 7 and 8 show the results of RP cache and NewCache. The two figures do not show
any light line patterns to the attacker. Thus no information about the encryption keys is leaked
out. The attack on RP cache and NewCache fails.

3.5 Key Recovery Analysis

Detection of patterns can only qualitatively tell us if the attack is successful or not. In order to
compare the vulnerability of different caches, we try to recover the keys based on the attack
results, and then use the number of votes of the candidate keys to quantitatively reveal the
system vulnerability to this attack.

Algorithm 2 describes the algorithm to recover keys. For each byte i of the plaintext in the
study phase, we consider each value b of this byte and find the set s with the maximum access
time (argmax avg[i][b][y]). This means the attacker observes the victim’s access to set s when
the value of plaintext byte i is b. Then in the attack phase, the attacker scans the 256 possible
byte values and finds the ones b′ which have the maximum access time in the same set (s = s′).
So with the unknown key, the attacker observes the victim’s access to the same set when the
value of plaintext byte i is b′. It may be possible the two accesses refer to the same table entry.
Then based on equation 1, the attacker can find a candidate key-byte.

After the attacker considers all the byte values in the study phase, the ideal case is that
each candidate key-byte generated is the correct one. However, due to measurement noise,
some false key-bytes may also be generated as candidates. To distinguish the correct key from
the false ones, we define the vote for key-byte as the number of generations of that key-byte
value during the key recovery process. Algorithm 2 gives the votes of each candidate key-byte
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Figure 3: SP Cache
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Figure 4: PL Cache
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Figure 5: RE-1000 Cache
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Figure 6: RE-10 Cache

for each byte value. In a successful attack, the correct key-byte value should have many more
votes than the false ones. If the correct key cannot be distinguished from the other candidates,
the attacker will be unable to recover it. We show the recovery result of key-byte 14 in the next
few sections.

3.5.1 Cache parameters.

Let’s first consider the effects of cache parameters on the feasibility of the attack. Figure 9
shows the votes of key-byte 14 candidates for conventional caches with different cache sizes
(32KB/16KB), associativities (4-way/8-way), and line sizes (32B/64B). The horizontal axis is the
key-byte candidate from 0 to 255, and the vertical axis is the votes for each candidate. Figure 9a
shows the 32KB cache size, 8 way set-associative and 32B line size conventional cache. We can
see that eight key candidates (32-39) get more than 230 votes while the rest are close to zero. The
correct key-byte value 35 is among the top eight candidate keys, but the attacker cannot pick it
out. This is clear because one cache line contains 8 AES entries. When the attacker observes
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Figure 7: RP Cache
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Figure 8: NewCache

Algorithm 2 Generating votes of each candidate key
key_votes[16][256]: votes of key candidate for each key-byte value

for (each byte i of 16 plaintext bytes) do
for (each value b of 256 byte values) do

let s = argmax
y

avg[i][b][y]

for (each value b’ of 256 byte values) do
let s’ = argmax

y’
avg′[i][b’][y’]

if ( s = s’ ) then
k′i = b′ ⊕ b⊕ ki
key_votes[i][k′i] = key_votes[i][k′i] + 1

end if
end for

end for
end for
return key_votes[16][256]

the victim’s access to one cache line, he is unable to differentiate which AES entry is actually
accessed. He needs other methods like brute-force to find the correct key from the 8 possible
values -which is not hard to find. If we compare different associativities (figures 9a and 9b)
and different cache sizes (figures 9a and 9d), there are no huge differences on the feasibility
of the attack. If we compare different line size (figures 9a and 9c), we can see 64B line size
cache has 16 top (32-47) candidate keys which the attacker cannot differentiate, as one cache
line contains 16 AES entries. So it will be more difficult for the attacker to recover the correct
key. For the vulnerability of the different cache parameters, we have the following relation:
32B line size > 64B line size

3.5.2 Isolation.

We study the key recovery results of SP cache and PL cache, displayed in figures 10 and 11. From
these two figures, we see that neither the SP or PL caches have distinguished candidate keys
revealed to the adversary. So we have the following relation for the vulnerability of isolation
approaches: Conv > {SP, PL}
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Figure 9: Votes of key-byte candidates for conventional cache.

3.5.3 Randomization.

The key recovery results of the randomization approaches, for RE-1000, RE-10, RP cache and
NewCache, are shown in figures 12, 13,14 and 15. We see that RE-1000 cache can leak eight
candidate keys to the attacker, similar to the conventional cache. RE-10 cache can also leak eight
candidate keys, but they have fewer votes than a conventional cache and RE-1000 cache. This
indicates that a RE cache with more frequent random evictions is more difficult to attack. For
RP cache and NewCache, no candidate keys are leaked to the attacker, It is almost impossible
for the attacks on these two caches to succeed, and they are very effective at defending against
this type of side-channel attack. The relative vulnerabilities of these caches to this attack is:
{Conv, RE-1000} > RE-10 > {RP, New}

4 New Models of Cache Architectures and Interference

Using an actual attack program, as in section 3, can accurately reflect the system’s vulnerability
to side-channel attacks. However, it has some limitations. First, it has a narrow scope as it only
applies to a specific cipher algorithm. Second, running an actual attack usually takes a long
time (in the gem5 simulator, it takes 30 to 70 hours to tell if the attack is successful on one cache
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Figure 10: SP cache.

0 50 100 150 200 250
0

50

100

150

200

250

Candidate KeyByte Value

Vo
te

s

Figure 11: PL cache.
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Figure 12: RE-1000 Cache
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Figure 13: RE-10 Cache

configuration). Hence, we hope to find a faster and more general approach to measure the cache
side-channel leakage of different cache architectures. In this section, we build abstract models
of cache architectures which focus on the essential features of caches that can be exploited to
leak information. For clarity, we focus on category I cache attacks (observing cache misses due
to external interference) in Table 1, and the goal with our new cache modeling technique is
to try to cover all attacks in category I on all ciphers, rather than only the specific "Prime and
Probe" attack on AES described in section 3. Our modeling methodology can also be extended
to apply to the other categories of cache attacks.

4.1 General Model of Side-channel Leakage

We first look at a model of information leakage in a generic system. We consider a system
which can be modeled as a finite-state machine (FSM), with different states, and transitions
between states under some predefined rules. The states in the FSM are modeled as either high
or low confidentiality. We use Bell-LaPadula (BLP) [22] Multilevel Security (MLS) [23] policy
to describe the information leakage in this system. To protect the system’s confidentiality, the
BLP security policy enforces two properties for the system: (1) a subject (e.g., program) at a low
confidentiality level cannot read data classified at a higher confidentiality level ("No read up"),
and (2) a subject at a higher confidentiality level cannot write data to a lower confidentiality
level ("No write down"). So the basic idea in the BLP security policy is "No information flows
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Figure 15: NewCache

from high confidentiality to low confidentiality". This can be used to model no information leaks
from the victim (high confidentiality level) to the attacker (low confidentiality level).

Now, we show how to apply the BLP policy to model side-channel information leakage.
The side-channel leakage is a statistical process. The attacker does the analysis combining all
the information he collected during the attack process. So to evaluate the information leakage,
we should consider the overall effects of information flow. Figure 16 shows two cases with no
side-channel information leakage. In figure 16a, there is no information flow from the victim’s
high confidentiality level to the attacker’s low confidentiality level. So there is no information
leakage. In figure 16b, the attacker observes two streams of information flows. However, the
two flows contain inconsistent or ambiguous information. The attacker cannot deduce accurate
conclusions from these two flows. Hence, this can result in no useful side-channel leakage. So
we postulate that two criteria need to be satisfied in order for an attacker to acquire useful
(or accurate) confidential information:

1. There is information flow from a victim’s high confidentiality level to an attacker’s low
confidentiality level;

2. The information flows observable by a low confidentiality subject (e.g., an attacker pro-
gram) should be unambiguous.

4.2 Cache Model of Side-channel Leakage

Now let’s apply our general model to the side-channel leakage in the cache system. A cache
shared between the attacker and the victim can be modeled as a FSM. We define the victim’s
lines in the cache as the high confidentiality (Hi) information, and the attacker’s lines in the
cache as the low confidentiality (Lo) information. For category I cache attacks, the attacker
observes cache misses due to external interference. Information flow from Hi to Lo occurs when
the victim’s cache lines interfere with the attacker’s cache lines. In the next few sections, we
build models for the different cache architectures described earlier and propose an Interference
Matrix to study the information flow in these caches.

4.2.1 Conventional Cache.

We model each cache line in a conventional cache as being in one of three states: A (occupied
by the attacker - or low confidentiality, Lo), V (occupied by the victim - or high confidentiality,
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Figure 16: No information leakage

Hi) or I (invalid - does not have any valid contents). The state machine of a single cache line is
shown in figure 17, including the transitions between different states. For clarity of exposition,
let’s assume that only two programs are running: the attacker and the victim. Then there are
four events that cause state transitions: V_miss, the victim has a cache miss for a memory block
that maps into this cache line, A_miss, the attacker has a cache miss for data that maps into this
cache line, and similarly, V_hit and A_hit, which indicate a cache hit for this cache line by the
victim or the attacker, respectively. The state of the entire cache is the combination of all the
cache line states.

We define Vi as the victim’s cache line with an index of i. This is the high confidentiality
information. We define Ai as the attacker’s cache line on set i. This is the low confidentiality
information. Whenever a cache line occupied by an attacker is over-written (replaced) by a
cache line belonging to a victim, we have a violation of the "No write down" rule of BLP. This
replacement can be observed by the attacker by detecting a cache miss when he next accesses
this cache line that he had previously filled with his own data. This is an information flow from
the victim’s high confidentiality level to the attacker’s low confidentiality level. We denote
Ai → Vi as such a case of a cache miss due to external interference. The reverse situation
where a cache line occupied by a victim at high confidentiality is replaced by an attacker at low
confidentiality is allowed in the BLP policy, since the high confidential program (the victim) is
allowed to read (observe) low confidentiality information. Hence, this reverse situation does not
leak high confidentiality information, and is not labelled an "external interference" information
leak in figure 17.

Now we consider how to model the transitions in the cache line states. Table 3 shows
the transition rules for a conventional cache. It has four columns. With the Input, the cache
will transit from the Current State to the Next State, and produce the Output. Assume i is the
number of ways for set-associativity, and j is the number of cache sets. Then the State Matrix
is the current and next state of each line: Sp,q = {A, V, I} is the state of set p and way q. The
Input Vector: Tp = {A_miss, A_hit, V_miss, V_hit} is the cache event on set p that causes a state
transition from Sp,q to S′p,q.

We use a Replacement Matrix: lp,q = {0, ..., i− 1} to model the LRU (Least Recently Used
replacement policy) order of set p and way q to be replaced. If lp,q = 0, the line in set p and way
q is in the highest priority to be replaced. If lp,q = i− 1, then this line has the lowest priority to
be replaced.
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Figure 17: State machine for a single line of a conventional cache.

A particularly novel aspect of our state machine model of a cache is the modeling of the
information leak as a pseudo output which we call the Interference Matrix. For this paper, the
Interference Matrix: Ap → Vq = {1, 0} depicts the external interference between two processes
which leaks confidential (protected) information, as described above for the BLP security policy
model, when an attacker cache line in set p is replaced by a victim cache line with a cache index
of q. In conventional caches, shown in Figure 17 and Table 3, a victim process would replace Aq

with Vq. However, in randomized cache approaches, Vq may replace a cache line in a randomly
selected set p – thus replacing Ap with Vq instead. This will become clearer in the following
descriptions of different cache architecture models.

We propose a novel use of Murphi [24, 25] to realize the above model. Murphi is a FSM
model checker, used to verify the invariants of the system by enumerating all the explicit states.
Instead of checking the invariants, we use Murphi to go over all the possible cache states and
count the number of each kind of external interference. Then, we generate the Interference
Matrix (IM) by calculating the ratio of each type of external interference as:

IM(Ai, Vj) =
# of external interferences (Vj → Ai)

total # of external interferences
(2)

Without loss of generality, we assume a 3-set, 2-way set-associative conventional cache. We
consider 10 rounds of memory accesses. The results are shown in table 4. From this table, we
can see that for a conventional cache, (1) there is information flow from Vi to Ai, and (2) each Ai
is only replaced (interfered) by Vi, so the interferences at different times are quite unambiguous.
Since it satisfies both criteria for leakiness, we conclude the conventional cache is very leaky.
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Table 3: Conventional cache state transition

Current State Input Output Next State
State Matrix Input Vector Interference Matrix State Matrix S0,0 · · · S0,i−1

...
. . .

...
Sj−1,0 · · · Sj−1,i−1


 T0

...
Tj−1


 A0 → V0 · · · A0 → Vj−1

...
. . .

...
Aj−1 → V0 · · · Aj−1 → Vj−1


 S′0,0 · · · S′0,i−1

...
. . .

...
S′j−1,0 · · · S′j−1,i−1


Replacement Matrix Replacement Matrix l0,0 · · · l0,i−1

...
. . .

...
lj−1,0 · · · lj−1,i−1


 l′0,0 · · · l′0,i−1

...
. . .

...
l′j−1,0 · · · l′j−1,i−1


Table 4: Interference Matrix for conventional cache

Set ID V1 V2 V3

A1 33.3% 0.0% 0.0%
A2 0.0% 33.3% 0.0%
A3 0.0% 0.0% 33.3%

(total # of interferences: 27,996)

4.2.2 Static-Partitioning Cache.

SP cache is modeled in figure 18. The difference with the conventional cache is that each cache
line can only have two states (I and V, or I and A). So transitions of Aj → Vi or Vi → Aj can
never happen. The Interference Matrix of an SP cache is shown in Table 5. We can clearly see
that there is no interference between Aj and Vi for SP cache. So there is no information flow
from any Vi to any Aj. It does not satisfy the first criterion of side-channel leakage. So SP cache
can effectively reduce this category of side-channel leakage to zero.

Table 5: Interference Matrix for SP cache

Set ID V1 V2 V3

A1 0.0% 0.0% 0.0%
A2 0.0% 0.0% 0.0%
A3 0.0% 0.0% 0.0%

(total # of interferences: 0)

4.2.3 Partition-Locked Cache.

We consider two uses of PL cache: without preload and with preload. For PL cache without
preload (figure 19a), the cache is initially empty. Both the victim and attacker can fill the cache
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Figure 18: State machine for a single line of SP cache.

Table 6: Interference Matrix for PL cache

(a) without preload

Set ID V1 V2 V3

A1 33.3% 0.0% 0.0%
A2 0.0% 33.3% 0.0%
A3 0.0% 0.0% 33.3%

(total # of interferences: 13,794)

(b) with preload

Set ID V1 V2 V3

A1 0.0% 0.0% 0.0%
A2 0.0% 0.0% 0.0%
A3 0.0% 0.0% 0.0%

(total # of interferences: 0)

with its data. However, once the victim’s cache lines are locked in the cache, they can not be
replaced by the attacker. So we have the transition of Ai → Vi, but Vi → Ai is forbidden. For PL
cache with preload (figure 19b), the victim initially occupies the cache line and locks it in the
cache. So neither transition of Ai → Vi, or Vi → Ai can happen. Tables 6a and 6b display the
Interference Matrix of PL cache without and with preload. PL cache without preload has the
same interference distribution as the conventional cache, which indicates that PL cache, without
preloading can leak information when loading the victim’s cache lines into the cache for the first time.
PL cache with preload has the same interference distribution as the SP cache, which indicates
that with proper usage like preloading the victim’s sensitive cache lines, PL cache prevents information
leakage. So even through the PL cache without preload can survive the "Prime and Probe" attack,
the abstract model still reveals its vulnerability: there may be information leakage targeting the
cache warm-up stage.

4.2.4 Random-Eviction Cache.

Now let us consider the randomization approach. The state machine of one line for a Random-
Eviction cache is shown in figure 20. Comparing with a conventional cache, here we add two
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Figure 19: State machine for a single line of PL cache

Table 7: Random-Eviction cache state transition

Current State Input Output Next State
State Matrix Input Vector Interference Matrix State Matrix S0,0 · · · S0,i−1

...
. . .

...
Sj−1,0 · · · Sj−1,i−1


 T0

...
Tj−1


 A0 → V0 · · · A0 → Vj−1 A0 → I

...
. . .

...
...

Aj−1 → V0 · · · Aj−1 → Vj−1 Aj−1 → I


 S′0,0 · · · S′0,i−1

...
. . .

...
S′j−1,0 · · · S′j−1,i−1


Replacement Matrix Eviction Vector Replacement Matrix l0,0 · · · l0,i−1

...
. . .

...
lj−1,0 · · · lj−1,i−1


 E0

...
Ej−1


 l′0,0 · · · l′0,i−1

...
. . .

...
l′j−1,0 · · · l′j−1,i−1



more transitions: A→ I (attacker’s line is randomly chosen to be evicted) and V→ I (victim’s
line is randomly chosen to be evicted). Among them, A→ I is introduced as a new interference.
This interference will cause the attacker’s observation of cache miss, but it is not due to the
victim’s execution. So we call it fake interference. The existence of fake interference can help to
reduce the information leakage as it can satisfy the two criteria we proposed: (1) There is no
information flow from the victim since it does not carry any victim information. (2) It makes
the attacker’s observation ambiguous as the attacker cannot differentiate the cache miss due to
the victim’s execution or to random invalidation. Table 7 gives the transition rules of RE cache.
Comparing with the conventional cache, we add an Eviction Vector: Ep = {0, ..., i} to indicate
which cache line in set p is to be evicted. We also add a new column in the Interference Matrix
to denote the fake interference: Ap → I = {1, 0}

The Interference Matrix of RE cache is shown in Table 8. The results show that a large
amount of interference is fake (23.6%). Although it is still possible for the attacker to retrieve
side-channel information from the rest of the interferences (9.7%), it will be a hard job to filter
the noise due to fake interference from the observations. The larger the proportion of fake
interference, the more difficult it is for the attacker to retrieve useful information.
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Figure 20: State machine for a single line of RE cache.

Table 8: Interference Matrix for RE cache

Set ID V1 V2 V3 Fake
A1 9.7% 0.0% 0.0% 23.6%
A2 0.0% 9.7% 0.0% 23.6%
A3 0.0% 0.0% 9.7% 23.6%

(total # of interferences: 117,349,797)

4.2.5 Random-Permutation Cache.

Figure 21 shows the cache line state machine of RP cache. The mapping update procedure
involves two sets. When Line 1 in set S is in state V and encounters an A_miss, this line will
still stay in state V. Instead, a random Line 2 in a random set S′ is selected. Whatever state
Line 2 is in, it will be replaced by the incoming attacker’s line and jump to state A. All the
lines of set S and S′ that are in state A will be evicted out of the cache (Line 3 in figure 21).
In the meantime, the mappings of set S and S′ will be swapped in the attacker’s permutation
table. A similar procedure happens when Line 1 is in state A and encounters a V_miss. Line 4
in figure 21 is randomly selected and replaced, and Line 5 is evicted out of the cache when
swapping the two sets in the victim’s permutation table.

Table 9 shows the transition rules of RP cache. Comparing with RE cache, we add the victim’s
permutation table Vp = {0, ..., j− 1} and the attacker’s permutation table Ap = {0, ..., j− 1} in the
Current State, Input as well as the Next State.

Table 10 displays the Interference Matrix for RP cache. We can see the fake interference
constitutes a rather high percentage of the total interferences (26.8 %). This is due to the line
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Table 9: Random-Permutation cache state transition

Current State Input Output Next State
State Matrix Input Vector Interference Matrix State Matrix S0,0 · · · S0,i−1

...
. . .

...
Sj−1,0 · · · Sj−1,i−1


 T0

...
Tj−1


 A0 → V0 · · · A0 → Vj−1 A0 → I

...
. . .

...
...

Aj−1 → V0 · · · Aj−1 → Vj−1 Aj−1 → I


 S′0,0 · · · S′0,i−1

...
. . .

...
S′j−1,0 · · · S′j−1,i−1


Permutation Table Permutation Table Permutation Table V0

...
Vj−1


 A0

...
Aj−1


 V ′0

...
V ′j−1


 A′0

...
A′j−1


 V ′0

...
V ′j−1


 A′0

...
A′j−1


Replacement Matrix Eviction Vector Replacement Matrix l0,0 · · · l0,i−1

...
. . .

...
lj−1,0 · · · lj−1,i−1


 E0

...
Ej−1


 l′0,0 · · · l′0,i−1

...
. . .

...
l′j−1,0 · · · l′j−1,i−1



invalidation when updating the permutation table. In addition, we can see there are not huge
differences for the interference of each Vi on each Aj, making the attacker’s observations quite
ambiguous. When the attacker observes a cache miss in set j, it is hard for him to tell which set
is accessed by the victim. This is due to the random mapping from memory address to cache
set. Both reasons can enhance the security of RP cache against side-channel leakage.

4.2.6 NewCache.

Finally, we model NewCache. Figure 22 displays the state machine model of each cache line in
NewCache. According to NewCache’s replacement policy [11, 19], if there is an index miss for
the attacker or the victim, a random cache line (Line 1 in figure 22) is selected to be replaced,
and Line 1 will jump to state A (attacker’s index miss) or state V (victim’s index miss). The
importance with a conventional cache is that for this cache line p being modeled, the A_miss
and V_miss can be from any cache line q, for q = 1, 2, .., j, and not just from cache line p. If there
is a tag miss for the attacker or the victim for Line 2 , this cache line will be directly replaced by
the incoming line, jumping from state A to A (attacker’s tag miss) or from state V to V (victim’s
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Table 10: Interference Matrix for RP cache

Set ID V1 V2 V3 Fake
A1 2.17% 2.19% 2.19% 26.8%
A2 2.19% 2.17% 2.19% 26.8%
A3 2.19% 2.19% 2.17% 26.8%

(total # of interferences: 7,842,324)

Table 11: NewCache state transition

Current State Input Output Next State
State Matrix Input Vector Interference Matrix State Matrix S0

...
Sj−1


 T0

...
Tj−1


 A0 → V0 · · · A0 → Vi−1 A0 → I

...
. . .

...
...

Ai−1 → V0 · · · Ai−1 → Vi−1 Ai−1 → I


 S′0

...
S′j−1


LNreg LNreg LNreg N0

...
Nj−1


 N′0

...
N′j−1


 N′0

...
N′j−1
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Figure 22: State machine for NewCache.

Table 11 shows the transition rules for NewCache. Assume the number of physical cache
lines is j, and the number of LDM cache lines is i, (i > j). We also have the Line Number register
(LNreg) Np = ({0, ..., i− 1}, {A, V, I}), recording which lines in the LDM cache are stored in
the set p.

We use Murphi to simulate a NewCache with 3 logical cache lines and 2 physical cache lines.
The Interference Matrix is shown in table 12. Due to the fully-associative mappings from the
LDM to physical cache, the interference of Vp on any Aq happens with the same probability. So
the attacker’s observations are quite ambiguous. This means NewCache does not leak information
through side-channel attacks due to cache misses arising from external interference.
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Table 12: Interference Matrix for NewCache

Set ID V1 V2 V3 Fake
A1 11.1% 11.1% 11.1% 0.0%
A2 11.1% 11.1% 11.1% 0.0%
A3 11.1% 11.1% 11.1% 0.0%

(total # of interferences: 1,368,954)

Table 13: Results comparison for different methods

Methods Isolation Randomization
Actual Attack Conv > {PL, SP} {Conv, RE1000} > RE10 > {RP, New}

Cache Model {Conv, PL-w/o preload} > {PL-w/ preload, SP} Conv > RE > RP > New

4.3 Discussion

4.3.1 Cache Defenses.

In section 4.1, we use information flow and the BLP policy to build abstract models, which can
show the information leakage. Specifically, we propose two criteria that can cause side-channel
information leakage: (1) there is information flow from a victim’s high confidential level to
an attacker’s low confidential level; (2) the side-channel information the attacker observes
is unambiguous at different times, so the attacker can get correct conclusions through the
off-line statistical analysis. When we use this model to evaluate the cache architectures, it is
interesting to find that different approaches usually focus on different criteria. For the isolation
approach, the defenses usually try to nullify the first criterion: eliminating the information
flow to reduce the information leakage. From the Interference Matrix of SP and PL (with
preload) cache, the total number of interferences between the victim and the attacker is zero,
so there is no information flow. For the randomization approach, the defenses usually try to
nullify the second criterion: using randomization to increase the inconsistency of the attacker’s
observations. From the Interference Matrix of RE, RP and NewCache, each Ai observed by the
attacker can be caused by any Vj of the victim’s action with approximately equal probabilities, or
caused by the fake interference, so the ambiguous interferences create difficulties for the attacker
to get accurate conclusions. Either way is effective at reducing the side-channel leakage. The
elimination of one criterion or both can inspire researchers to propose more defense approaches
other than isolation and randomization.

4.3.2 Extensions.

In our cache model, we count the cache misses that will cause external interference between
the attacker and the victim. This can help to evaluate category I cache attacks. However, with
some modifications, our model can also be applied to the other three categories in Table 1. For
instance, if we want to model category III cache attacks induced by cache misses due to internal
interference, we can consider only transitions of "V_miss" from state V to V and create such
an Interference Matrix. If we want to model category IV attacks induced by cache hits due to
internal interference, we can count the transitions of "V_hit" from state V to V and create such
an Interference Matrix. If we are interested in category II attacks induced by cache hits due to
external interference, the cache line needs a fourth state A/V, which means this line contains
the shared memory between the victim and the attacker. Thus we can count the transitions
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of "A/V_hit" from state A/V to A/V and create the corresponding Interference Matrix. So our
cache models are very flexible and can be applied to model different types of attacks.

5 Comparisons of Evaluation Methods

We compare the features of these two evaluation methods. Running the actual attack program
on the caches with the off-line key recovery is more realistic, while the Interference Matrix is
only an abstract model.

For scope, the attack program only evaluates the "Prime and Probe" attack on AES, so it
is cipher-specific and has a very limited scope. The cache models with Interference Matrix
consider all the attacks induced by external interference due to cache misses. It applies to all
attacks in category I and has a much broader scope.

Table 13 shows that the conclusions we get from the two evaluation methods are consistent.
For the isolation approach, PL and SP caches can effectively defend against side-channel attacks.
For the randomization approach, RP and NewCache are also very effective in reducing side-
channel leakage. RE caches are attackable, but if the eviction frequency increases, the attack
will become harder.

6 Related Work

For actual attack programs, researchers have designed different side-channel attacks [13, 14, 15,
4, 3] on the caches. But they seldom analyzed the feasibility of these attacks. In [26], Success Rate
and Guessing Entropy are defined as general metrics to evaluate the feasibility of side-channel
key recovery. Then [27] defines the average Success Rate to evaluate the profiled cache timing
attacks. It also builds an analytical model to estimate the Success Rate for determining the best
attack strategy. Our proposed key-byte votes is a novel metric.

Some side-channel metrics have also been proposed to accelerate the evaluation processes.
In [28], a metric called Side-channel Vulnerability Factor (SVF) was proposed to measure
the information leakage. However, SVF has some limitations in its scope, definition and
measurements. These issues have been discussed and corrected, and an improved metric
called Cache Side-channel Vulnerability (CSV) metric was also proposed in [29]. [30] also
made some improvements over SVF and proposed the timing-SVF metric for timing-based
cache side-channel attacks. However, the timing-SVF still needs the execution of an actual
attack, requiring a large number of samples for accuracy. In [26], the authors applied mutual
information theory to evaluate the feasibility of key-recovery, and try to find the connections
between mutual information with Success Rate and Guessing Entropy. [31] proposed static
analysis to establish formal security guarantees against cache side-channel attacks, which can
capture the upper bound of the side-channel information leakage.

Some side-channel models and formal verification methods have also been proposed. [32]
built the models of timing side-channel leakage from the program code level. [33] uses the
technique of self-composition to do the formal verification of cryptographic software. [34]
presented an information-theoretic metric for adaptive side-channel attacks, which can tell the
attacker’s remaining uncertainty in order to adjust his strategy. These models do not reflect the
features of cache architectures and cache-based attacks, so they cannot be applied to evaluate
cache side-channel information leakage. Unlike these past models, we are the first to model
the cache architecture itself, and define the Interference Matrix, which includes the cache state
transitions that can leak information.
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7 Conclusions

This work proposes new methods for the evaluation of a system’s vulnerability to cache side-
channel attacks. We categorize the cache attacks based on their root cause, and focus on the
most powerful cache side-channel attacks: category I attacks induced by cache misses due to
external interference.

In the first evaluation method we propose, we design and run actual attacks on different
caches and recover the keys to evaluate the feasibility of such an attack. We define the number
of key-byte votes as a new metric to quantitatively compare the vulnerability of different
cache architectures to a given attack. In the second method, we build general models of cache
architectures and define the Interference Matrix to reveal the sources of information leakage,
and the frequcency of leakage for each source. We compare the features of the methods and
their results, and find them to be consistent.

Our evaluation methods can be applied to other categories of cache side-channel attacks. For
evaluation with actual attacks, we can run other types of attacks proposed recently. Calculating
the votes of candidate keys is still applicable since it is general for all key-recovery methods.
Our new models of caches and interferences can be extended to other attacks, as discussed in
section 4.3.2. Future work can extend these evaluation methods to new cache architectures, and
information leakage from other side channels.
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