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Abstract. Replay attacks are often the most costly attacks to thwart when 
dealing with off-chip memory integrity. With a trusted System-on-Chip, the 
existing countermeasures against replay require a large amount of on-chip 
memory to provide tamper-proof storage for metadata such as hash values or 
nonces. Tree-based strategies can be deployed to reduce this unacceptable 
overhead; for example, the well-known Merkle tree technique decreases this 
overhead to a single hash value. However, it comes at the cost of performance-
killing characteristics for embedded systems – e.g. non-parallelizable hash 
computations on tree updates. In this paper, we propose an alternative solution: 
the Tamper-Evident Counter Tree (TEC-Tree). It allows for tamper-evident off-
chip storage of the nonces involved in a replay countermeasure; TEC-Tree 
parallelizes the computations involved in both the authentication and tree 
update processes. Moreover, because our tree relies on block encryption, it 
provides data confidentiality at no extra cost. TEC-Tree is a deployable solution 
for memory integrity, with low performance hit and hardware cost.  

Keywords: Memory Integrity, Replay Attacks, Physical Attacks, Tamper 
Evidence, Merkle Trees, Parallelizability, Confidentiality. 

1   Introduction 

As the range of services provided by embedded systems grows, the amount of 
sensitive data they manipulate increases. As a result, there are currently significant 
incentives for attackers wishing to benefit from attacks on these systems [1]. Board-
level attacks such as bus probing provide a point of entry to the system for 
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adversaries, as shown by the well-known Xbox cracking exploit [2]. Attacks on buses 
allow retrieving bus data going to or from memory and thus raise the issue of data 
confidentiality. Typically, encryption schemes are implemented to ensure data 
confidentiality. However, the attack launched by Markus Kuhn [3] on a bus 
encryption system demonstrates encryption alone is not enough when an adversary is 
able to modify or manipulate data without detection. The issue of memory integrity is 
thus a prime concern in protecting a computing platform against active attackers. 

In this paper, we focus on protecting the integrity of data transferred by a System-
on-Chip (SoC) to or from a RAM (Random Access Memory) chip. Our objective is to 
deploy an efficient mechanism providing a tamper-evident environment to software 
executing on the SoC: data deletion, corruption or permutation within the system’s 
memory space must be detected before the tampered data is sent to the Central 
Processing Unit (CPU) pipeline.  

When dealing with memory integrity, one of the most costly attacks to thwart is 
replay – i.e. temporal permutation of a memory block at a given address. Existing 
techniques allow for easy prevention of replay attacks but are very expensive in terms 
of on-chip memory overhead: some techniques store on-chip a hash value computed 
over each memory block written off-chip, while others store on-chip nonces used in 
MAC (Message Authentication Code) computations or in a block-level AREA 
(Added Redundancy Explicit Authentication [4]) scheme [5, 6]. The well-known 
Merkle Tree technique [7, 8, 9] allows reducing the overhead of the countermeasure 
storing hashes on-chip to a single hash value. However, it comes at the cost of 
performance-killing characteristics for embedded systems – e.g. non-parallelizable 
hash computation on tree updates. PAT (Parallelizable Authentication Tree) [10, 11] 
is another tree technique – based on MACs – reducing the on-chip memory overhead, 
but allowing for parallel tree updates. However, PAT is patented and has not been 
implemented or evaluated in our application domain.  

In this paper, we propose a fully-parallelizable tree on both read and write 
operations: the TEC-Tree (Tamper-Evident Counter Tree).  Our tree has advantages 
over both PAT and Merkle Tree and also introduces new concepts for integrity trees. 
First, the computations involved in this tree scheme are based on block encryption, 
thus providing data confidentiality for free – i.e. at no additional cost (performance, 
hardware, memory overheads) than that already incurred by data integrity 
verification. Second, our TEC-Tree solution can detect splicing – spatial permutation 
of memory blocks – and spoofing – arbitrary corruption of memory blocks – 
immediately after the first level verification of the tree authentication process is 
completed. This allows for splicing- and spoofing-free speculative execution. Finally, 
to reduce the frequency of costly re-encryptions due to the overflow of nonces used to 
provide freshness, we propose using a per-block local counter rather than a global 
counter of the same size. 

The rest of the paper is organized as follows. Section 2 presents our threat model. 
Section 3 describes existing replay attack countermeasures and the related tree 
techniques proposed in the literature. In section 4, we detail the TEC-Tree scheme, 
address SoC implementation issues and provide a security analysis. Section 5 presents 
an implementation example with estimates of area cost and memory overhead. 
Finally, Section 6 summarizes the new properties provided by TEC-Tree and gives an 
overview of our current and future work. 



 TEC-Tree: A Low-Cost, Parallelizable Tree for Efficient Defense 291 

2   Threat Model 

We assume the protected device is exposed to a hostile environment in which physical 
but non-invasive attacks are feasible. The main hypothesis of our threat model is that 
the System-on-Chip (SoC) is resistant to all physical attacks and is thus trusted. Side-
channel and software attacks are not taken into account in this paper; we assume the 
operating system (OS) or at least the OS kernel is trusted. As a consequence, we 
consider that on-chip registers and memories cannot be observed or tampered with by 
an adversary.  

In this work, we focus mainly on board-level attacks involving processor-memory 
(PM) bus probing or memory tampering. Such attacks allow observation of the 
memory contents and injection of arbitrary data on the PM bus or directly into the 
memory chip. We are particularly concerned with “Man-in-the-middle” attacks in 
which an attacker i) first monitors the PM communications to intercept data on the 
bus or directly reads data from memory (passive attack), ii) and then inserts chosen 
data on the processor-memory bus (active attack) and thus challenges data integrity. 
The objective of the attacker could be to take control of the system by injecting 
malicious code or to constrain the search space in a key or message recovery attack. 
There are three classes of active attacks – also feasible when data are encrypted – 
defined with respect to the attacker’s possible ways to choose the inserted data: 

1) Spoofing attacks: the adversary exchanges an existing memory block with an 
arbitrary fake one.  

2) Splicing or relocation attacks: the attacker swaps a memory block at address A 
with a block at address B, where A≠B. Such an attack may be viewed as a spatial 
permutation of memory blocks.  

3) Replay attacks: a memory block located at a given address is recorded and 
inserted at the same address at a later point in time; by doing so, the current block’s 
value is replaced by an older one. Such an attack may be viewed as a temporal 
permutation of a memory block, for a specific memory location. 

3   State of the Art 

3.1   Memory Integrity Checking Techniques 

In this paper, providing memory integrity for the SoC means ensuring the tamper-
evidence of the data it stores in external memory, i.e. making sure we can detect when 
a datum read from memory was spliced, spoofed or replayed. We consider there are 
three distinct strategies for implementing a memory integrity protection mechanism 
on a computing platform: i) regular hashes, ii) Message Authentication Codes 
(MACs) and iii) AREA at the block level [5, 6]. 

Regular Hashes: A naïve solution for detecting all types of active attacks is to store 
on-chip a hash value for each memory block stored off-chip. This way, hashes are 
inaccessible to adversaries and any corruption in the loaded data is detected. Indeed, 
detection can be achieved by comparing the hash computed from the loaded block 
with the on-chip hash. 
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MACs: In the second approach, the SoC computes – for every data block in the 
protected memory space – a MAC instead of a hash. The key used by the SoC for 
MAC computation is securely stored on-chip such that only the SoC itself is able to 
compute valid MACs. As a result, the MACs can be stored in untrusted memory 
because the attacker is unable to compute a valid MAC over a corrupted data block. 
In addition to the data contained by the block, the pre-image of the MAC function 
contains the address of that block and a nonce. This allows protection against splicing 
and replay attacks. The address precludes an attacker from passing a data block at 
address A, along with the associated MAC, as a valid (data block, MAC) pair for 
address B, where A ≠ B. The nonce prevents the replay of a (data block, MAC) pair 
by distinguishing two pairs related to the same address, but written in memory at 
different points in time. To allow for re-computation of MACs during read operations 
and to protect the integrity of the nonces, the nonces can be stored on-chip. 

Block-Level AREA: This principle – introduced with PE-ICE (Parallelized 
Encryption and Integrity Checking Engine) in [5] – leverages the diffusion property 
of block encryption to add the integrity checking capability to this type of encryption 
algorithm. This is achieved by applying the AREA (Added Redundancy Explicit 
Authentication [4]) technique at the block level: redundant data (a nonce) is added to 
each plaintext block before encryption and checked in the decrypted ciphertext block. 
Upon a memory write, the SoC appends an n-bit nonce to the data to be written to 
memory, encrypts the resulting plaintext block and then writes the ciphertext to 
memory. The encryption is performed using a key securely stored on the SoC. The 
SoC decrypts the block it fetches from memory on a read transaction and verifies that 
the last n bits of the resulting plaintext block are equal to the nonce that was inserted 
by the SoC upon encryption. To recover the nonce on a read operation and to protect 
its integrity, [5, 6] propose storing the nonce on-chip.   

3.2   Tree Techniques 

The techniques presented above prevent the active attacks described in our threat 
model. However, they incur an unacceptable on-chip memory overhead by requiring 
storage of references – i.e. hashes or nonces – on-chip to thwart replay attacks. To 
address this issue, several research efforts suggest applying the memory integrity 
protection methods recursively on the references so they can be stored off-chip. By 
doing so, a tree structure is formed and only the root of the tree needs to be stored on 
the SoC, the trusted area. 

Merkle Hash Trees: In [8, 9], cryptographic hashes are computed over each data 
block composing the memory space being protected. We call these hashes Level 1 
hashes. One Level 2 hash is computed for every group of A Level 1 hashes. At this 
stage, Level 1 hashes can be sent off-chip since Level 2 hashes – stored on-chip – 
protect their integrity. This scheme is applied recursively until an A-ary hash tree with 
L levels is obtained, at which point a single Level L hash – called the root hash – is 
kept on-chip. This root hash reflects the current valid state of the external memory. 
The number of hash verifications on a read operation is L: each level of hashes must 
be verified to validate the integrity of the data read from memory. On read operations, 
the hash computations are parallelizable during the integrity checking process. On 
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write operations however, updates to the tree are a sequential – and thus high-latency 
– process: the computation of a new hash value in the tree must be completed before 
the update of the related hash in the upper level can start.  

Parallelizable Authentication Tree (PAT): To reduce the on-chip memory overhead 
of a replay defense mechanism based on MACs, [10] computes a tree of (MAC, 
nonce) pairs and only keeps the root of that tree on-chip. To allow for parallelizable 
updates to the tree, [10] does not directly compute higher level MACs using lower 
level MACs as a pre-image. Instead, the pre-image of each MAC in the tree consists 
of the nonce associated to this MAC and the nonce in the upper level. With this 
approach, the root of the MAC tree is a simple nonce stored on-chip.  

Our Approach: TEC-Tree, the tree scheme proposed in this paper, solves the issue of 
on-chip nonce storage that was problematic in [5, 6]. Similarly to [10], our tree is 
parallelizable on both read and write operations: all computation required for 
checking or updating a tree branch involves data which are generated independently 
from a tree level to another. However, our tree has advantages over [10] and [7]. Our 
parallelizable tree can detect splicing and spoofing attacks as soon as the first check is 
completed. Even if tree computations are parallelizable, memory bus transactions 
remain a sequential process allowing only a certain number of tree levels to be 
checked or updated concurrently. Quick detection of spoofing and splicing is 
important in reducing the risks involved with speculative execution [8, 12] – a 
strategy in which data and instructions are sent to the processor pipeline before tree 
authentication is completed. Moreover, since we rely on block encryption to construct 
our tree, TEC-Tree provides data confidentiality at no extra cost: without any 
additional impact on latencies, using the hardware already in place for integrity 
protection and by sharing the integrity metadata (off-chip memory overhead).  

4   TEC-Tree – Tamper-Evident Counter Tree 

TEC-Tree is a practical and low-cost solution to efficiently prevent active attacks 
challenging memory integrity – including replay attacks – for SoC embedded 
systems. We first describe how TEC-Tree protects the integrity of individual data 
blocks from the memory space using nonces. Then we explain how the protection 
method is applied recursively to those nonces in order to form a hardware-rooted tree.  

4.1   Protecting Data 

As in [5, 6], the protection of data integrity in our TEC-Tree scheme relies on the 
diffusion property identified by Shannon [13] for block ciphers to be considered as 
secure. Theoretically, a block cipher must be indistinguishable – from the point of 
view of an adversary without the key – from a random permutation with equiprobable 
outputs, meaning that the redundancy in the statistics of the plaintext has to be 
dissipated in the statistics of the ciphertext. Once a block encryption is performed, the 
resulting position and value of each bit in a ciphertext block C are a function of all 
bits of the corresponding plaintext block P and of the key. In this paper, the block 
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cipher used for TEC-Tree processes b-bit blocks under a secret key K. EK and DK 
refer respectively to the encryption and decryption functions under key K. 

In TEC-Tree, P is in fact composed of an lp-bit data block D – hereafter called a 
payload – and an n-bit nonce N (P = D||N), also called tag; after encryption with a 
block cipher, it is impossible to identify the ciphered versions of D and N within the 
ciphertext block C = EK(P). Moreover, if a C’ is derived by flipping a single bit in C, 
there is a large probability that the last n bits of the plaintext P’ = DK(C’) will be 
different from N. This probability depends on the nonce size n. The number of 
possible plaintext blocks with the same N resulting from the decryption of a tampered 
C is equal to 2b-n. Hence the probability that N remains the same after decryption is 
1/2n (= 2b-n / 2b). As we explain in the security analysis later in this paper, with a 
reasonable nonce size, this probability becomes sufficiently low to resist spoofing 
attacks. In the rest of this paper, we use the term data chunk (DC) to refer to an 
atomic block loaded from memory for authentication; the size of a DC is b bits, the 
size of blocks processed by the underlying block cipher. We call this authentication 
technique block-level AREA. 

Reading and Writing DCs. Similarly to [5, 6], the previous property of ciphers is 
used as follows in TEC-Tree to add the integrity checking capability to the block 
encryption of data chunks:  

On write operations, the data D provided by the processor – or coming from the 
last level of on-chip cache on a cache line eviction – is concatenated with the n-bit 
nonce N to produce a plaintext block P to be processed by a block cipher in ECB 
(Electronic Code Book) mode. The encryption provides confidentiality since it is 
performed by the SoC using a key it securely stores in an on-chip register. We ensure 
that N is a “Number used ONCE” by making it equal to the address of the block 
concatenated with an r-bit counter. Initially zero, a counter is incremented by one 
every time a block is written by the SoC. Using a counter to generate nonces requires 
changing the encryption key whenever the counter reaches its limit; replacing the 
encryption key requires a re-encryption of the entire memory space. Since such 
massive re-encryption is expensive, and since we want to keep counter width 
reasonably small, we cannot use a single r-bit global counter to generate all nonces – 
i.e. a counter which is incremented on every write to memory. Instead, we use an r-bit 
counter per chunk to ensure the occurrence of counter overflows – and thus the re-
encryption of the memory space – remains a rare event. We characterize such a 
counter as “local” in opposition to “global” because it is dedicated to a specific chunk 
and because it is incremented only when this chunk is updated. By doing so, we 
extend the lifetime of the encryption key with respect to the implementation of an r-
bit global counter1. Note that even when local counters have the same value, the 
address contained in tags ensures that those tags remain nonces. After the generation 
of N, the SoC encrypts this unique (D, N) pair and writes the resulting b-bit ciphertext 
block to memory. A plaintext data chunk is depicted in Figure 1. Note that the entire 
data chunk: data, address and counter, is encrypted as a single block before being 
stored in external memory. 
                                                           
1 Note that this does not apply if the global counter is n-bit i.e. the size of the nonce. However, 

removing the address from the nonce precludes the splicing-free and spoofing-free speculative 
execution property which is highlighted in the security analysis. 
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On read operations, a b-bit ciphered data chunk C is loaded from memory and 
decrypted by the SoC. The last n bits of the resulting plaintext block – which we 
designate by N’ – are compared to N, the nonce initially used by TEC-Tree to compute 
C and which was regenerated on-chip. If N’ does not match N, it means that at least 
one bit of C has been modified during its transmission on the bus or while stored in 
off-chip memory. When this happens, our integrity verification mechanism raises a 
“memory integrity” exception to alert the processor of the memory corruption. 

 

Fig. 1. Layout of a Data Chunk (DC) before encryption 

The challenge lies in regenerating the correct nonces on read operations in order to 
perform the integrity checks. The approach proposed by [5, 6] is to store on-chip – in 
a dedicated memory – the counter part of the nonce values generated on write 
operations. These counter values are tamper-proof since they are stored on the SoC 
and thus within the trust boundary. However, this strategy incurs an unacceptable 
increase in on-chip memory capacity: [6] shows that protecting 1GB of RAM with a 
32-bit counter requires 256MB of on-chip memory. Our approach, which we discuss 
next, reduces this overhead by securely storing counter values off-chip. 

4.2   Storing Counter Values Off-Chip 

To allow for off-chip storage of counter values while ensuring their tamper-evidence, 
we apply the block-level AREA scheme, discussed above, to those values, without 
requiring additional hardware. We concatenate counter values used to authenticate 
contiguous data blocks into a payload PL to which we append a nonce N. We then 
encrypt the plaintext block P = PL||N to obtain the ciphertext C, which we send to 
external memory; we store on-chip the counter part of the nonce (CTR in Figure 2). In 
the rest of this paper, we call such a plaintext block P a Counter Chunk (CC) 2. Figure 
2 shows a counter chunk CC. Note that the entire CC – payload (concatenated DC 
counters), and nonce (address and counter) – is encrypted as a single block before 
being stored in external memory. 

The number A of counter values fitting in a CC payload depends on the payload 
size (lp-bit) and on the counter width r. The formula for A is as follows: 

⎥
⎦

⎥
⎢
⎣

⎢
=

r

l
A p

 Where ⎣ ⎦X denotes X rounding down. (1) 

                                                           
2 It is important to note that there is no need to store the whole nonce of the contiguous DCs in 

the counter chunks (CC) since the address part of the nonce is generated by the processor 
whenever the chunk is accessed. 
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Fig. 2. Layout of a Counter Chunk (CC) before encryption 

Off-chip storage of the counters allows for a reduction of the on-chip memory 
overhead by a factor A. Since this reduction is insufficient in most cases, we 
recursively apply the block-level AREA scheme to the on-chip counter values until 
only one counter value – called the trusted counter value – remains on-chip, thus 
obtaining an A-ary tree of tamper-evident counter values. The main objective of this 
tree we call TEC-Tree is to reduce the on-chip memory overhead to a single counter 
value while providing full memory integrity and faster detection of splicing and 
spoofing attacks. 

4.3   TEC-Tree 

A TEC-Tree is an A-ary tree3 with data chunks (DC) as leaves and counter chunks 
(CC) as intermediate nodes. Each element of the TEC-Tree is b-bit long. The data to 
protect are contained in the DCs, which are the leaves of the tree. Each intermediate 
node or CC in the tree is used to authenticate, using the block-level AREA, the A 
leaves or A nodes below itself – its A children. The root chunk of the tree is 
authenticated using the trusted counter value kept on-chip. Each DC is composed of 
an lp-bit data payload and an n-bit nonce; each CC is composed of A r-bit counter 
values and an n-bit nonce. Figure 3 depicts a 3-level, 4-ary TEC-Tree. Arrows in the 
figure go from a node to the counter part of the nonce which protects that node.  

TEC-Tree at Run-Time. The function ReadAndCheck and WriteAndUpdate 
of Figure 4 describe how TEC-Tree works at run-time when data is read or written 
from memory, respectively.  

On read operations, the data chunk at address addr0 containing the data to be read 
is loaded on-chip and decrypted. The parent chunk is also fetched and decrypted to 
retrieve the counter value required – in addition to addr0 – to reconstitute the DC’s 
nonce. Authentication of the DC is performed by comparing the reconstituted nonce 
to the last n bits of the plaintext resulting from the decryption of the DC. If the two 
values match, the data is forwarded to the processor for speculative execution while 
the rest of the chunks on the branch from the DC to the root chunk are authenticated. 
To do so, the procedure described previously is recursively applied to parent nodes 
until the root of the tree is authenticated. If a nonce mismatch is detected at any point 
during the verification of the branch, an integrity checking exception is raised to warn 
the processor. Once the chunks on the branch from the DC to the root chunk are 
 

                                                           
3 In this section as in the rest of this paper, we consider that all the trees we work with are 

balanced – i.e. each node in the tree has the same number of children. 
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Fig. 3. A 3-level, 4-ary TEC-Tree  

loaded, all decryption operations can be performed in parallel since the chunks are 
deciphered using a block cipher in ECB mode. The number of nonce verifications V 
required to complete the authentication process – and thus the number of chunks to 
load and decrypt during that process – is V = L+1, where L is the number of levels of 
the TEC-Tree. L is easily computed from Nbr – the number of data chunks – and from 
the tree’s arity A: L = logA(Nbr). The unit increment to L is due to the check of the 
TEC-Tree’s root chunk using the on-chip trusted counter value.  

On write operations, the Data Chunk (DC) to be written is loaded, decrypted and 
authenticated using the parent Counter Chunk (CC), loaded immediately after the DC. 
Then, the DC’s payload is updated, concatenated with a new nonce – the chunk’s 
address concatenated to the incremented counter value CTR –, encrypted and written 
off-chip. The payload of the parent CC must then be updated with the new value of 
CTR. This process is done for all parents to update the trusted on-chip value. Note 
that all loaded chunks must be authenticated before being updated. This is done to 
preclude adversaries from injecting a fake chunk before the write, with the aim of 
corrupting parts of the chunk which are not affected by the write. As on read 
operations, the number of chunks to update is equal to V. Assuming that all chunks 
required to update the tree are on-chip, the computations involved in the update 
process are parallelizable: ECB decryptions can be done in parallel and so can the re-
encryptions. 
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Fig. 4. Pseudo-Code for TEC-Tree Checks and Updates  

 

–– addr is the CPU address of the data to read or write 
–– addri is the physical address of a chunk at level i 
–– L is the number of levels in the TEC-Tree. 
We define the following functions: 
–– ParentFromChild(addri) is a function which – given as an input the address addri of 
a chunk X at level i - returns the address addri+1 of X’s parent chunk. If addri is the address 
of the root, the function returns -1.  
–– DC_ADDR(addr) is a function computing a DC address from addr. 
–– REF_NONCE(addr, P) returns addr || CTR, where CTR is retrieved from P. When P = -1, 
the function uses the on-chip counter as CTR. 
–– ADDR(P) returns the address field of plaintext chunk P’s nonce 
–– COUNTER(P) returns the counter field of plaintext chunk P’s nonce 
–– UpdateCCPayload(addr, P) returns P updated with X’s counter incremented, where X is 
P’s child chunk at address addr. 
 
ReadAndCheck(addr)  
     addr0 = DC_ADDR(addr) 

FOR (i = 0, i = L, i++)  
   IF i = 0 –– first level of the tree  leaves 

1. Load C0, the DC at addr0 from memory  
2. Load C1, the parent CC at addr 1 := ParentFromChild(addr0) 
3. Compute P0 := DK(C0) and P1 := DK(C1) 
4. IF addr0 ≠ ADDR(P0) THEN ERROR –– first check against splicing and spoofing 
 ELSE send P0 to CPU  –– speculative execution 
5. IF NONCE(P0) ≠ REF_NONCE(addr0, P1) THEN ERROR 

   ELSE IF i ≠ L ––  authentication of intermediate RC in the tree 
              1. Load Ci+1, the parent CC at addri+1 := ParentFromChild(addri)  
              2. Compute Pi+1 := DK(Ci+1) 

        3. IF addri ≠ ADDR(Pi) THEN ERROR  
              4. IF NONCE(Pi) ≠ REF_NONCE(addri, Pi+1) THEN ERROR  

   ELSE –– i = L: the root of the tree is reached 
        1. IF addri ≠ ADDR(Pi) THEN ERROR  
        2. IF (NONCE(Pi) ≠ REF_NONCE(addri, -1)) THEN ERROR  
 

WriteAndUpdate(addr, new_data)   
ReadAndCheck(addr) –– Load, decrypt and authenticate all chunks 
For (i = 0, i = L, i++) 

   IF i = 0 –– update data in DC 
        1. Compute U0 := EK(new_data || addr0 || COUNTER(P0) + 1) 
 2. Store U0 to memory at addr0 

   ELSE IF i ≠ L ––  update counters in CCs 
        1. Compute Ui := EK(UpdateCCPayload(addri-1, Pi) || addri || COUNTER(Pi) + 1) 
 2. Store Ui to memory at addri 

   ELSE –– i = L: the root of the tree is reached 
 1. On-Chip Counter := COUNTER(Pi) + 1
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Security Analysis. TEC-Tree implements ECB mode to encrypt chunks. The weak 
point of this encryption mode is that a given plaintext block always yields the same 
ciphertext block upon encryption with a given key. This could leak some information 
to an adversary regarding the chunk’s contents. In our scheme however, each 
encrypted chunk contains a nonce, so the same ciphertext block never occurs twice.  

Moreover, our threat model considers an adversary can only access off-chip data. 
Thus, for spoofing attacks the adversary can only modify ciphertext blocks. As 
mentioned in Section 4.1, attacks consisting in the insertion of random ciphertext or 
the tampering with certain ciphertext bits succeed with probability 1/2n, where n is the 
bit width of the nonce. An adversary able to predict – without knowledge of the key – 
the effect of ciphertext bit manipulations on chosen bits in the plaintext (e.g. nonce 
bits) implies the underlying block cipher is broken. 

Splicing attacks are detected as soon as a DC decryption is done by checking the 
address bits included in the nonce: when a chunk is spliced, the address the SoC uses 
to fetch the chunk does not match the bits extracted from the address field in the 
decrypted spliced chunk. Similarly to spoofing attacks, an adversary able to predict – 
without knowledge of the key – the effect of ciphertext bit manipulations on the 
address field of the plaintext implies the underlying block cipher is broken.  

Checking address bits upon decryption of a DC thus allows for detection of 
splicing attacks before the DC’s data payload is forwarded to the CPU pipeline. 
Spoofing attacks are also detected just after a DC decryption by applying the block-
level AREA scheme with the address bits as redundancy. Since our scheme does not 
forward spliced or spoofed data to the pipeline, we say it provides splicing- and 
spoofing-free speculative execution. This way when the pipeline executes 
speculatively over data for which the tree authentication process has not terminated, 
we reduce the risk of such a speculative execution to the occurrence of a replay attack. 
This is not true for a hash tree since an adversary is able to compute intermediate 
nodes for spliced and spoofed data chunks. 

For replay attacks, the intrinsic property of the nonce – i.e. uniqueness during the 
lifetime of an encryption key – ensures that the first non-replayed chunk in the 
authentication branch in the tree allows detection of the attack; if all chunks of this 
branch are replayed; the attack is detected by the last verification, which involves the 
trusted counter value. This value being stored on-chip it cannot be tampered with or 
replayed.  

Memory Cost. The off-chip memory overhead of the TEC-Tree scheme corresponds 
to the amount of memory required to store the counter chunks and the nonces for the 
encryption of data chunks. The overhead incurred by the nonces in the DCs is defined 
by the ratio n/lp, the bit widths of nonces and payloads respectively. The overhead 
incurred by the construction of an A-ary tree over a set of leaves is 1/(A-1) [8]. In our 
case, this overhead is applied to DC leaves. Therefore, the memory overhead OTree of 
TEC-Tree is of: 

OTree = 
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Address of the Parent Chunk. For an efficient implementation of TEC-Tree, the 
address calculation for data chunks and counter chunk parents along the 
authentication branch must be straightforward. Because we protect the physical 
address space, the address computation may not be handled by the CPU core itself. 
The addressing shift due to the nonce bits contained in DCs and the CC parent 
addresses are computed on-the-fly by TEC-Tree hardware logic. For the sake of 
clarity, this paper considers that the entire physical memory space is protected by our 
scheme and that the memory stores the CCs starting at address 0, followed by the DCs 
at address AS. We assume the operating system ensures these addresses from 0 to AS 
are not accessed by software.  

To address data and counter chunks, we adapt the method presented in [8]: all 
elements of a balanced tree are numbered consecutively starting from 0 at the root up 
to the leaves, as depicted in Figure 5 for a 4-ary tree. The position (i.e. number) of a 
parent node can easily be found by subtracting one from the position of one of its 
children, dividing the result by the arity and then rounding down. 

 

 

Fig. 5. Numbering of payloads  

We now introduce the payload tree concept. A payload tree is formed by stripping 
the data and counter chunks of a TEC-Tree from their nonces, while keeping the same 
relationships between the nodes. The white parts of the TEC-Tree nodes in Figure 3 – 
along with the existing arrows – form a payload tree.  

Let ACPU be the address provided by the CPU; the position P0 of a payload leaf in 
the payload tree is: 

pb

CPUS

l

AA
P

)(
0

+=     where lpb is lp expressed in bytes. (3) 

Applying the addressing scheme from [8] to the payload tree, the position of a 
parent payload Pi in the ith level of the payload tree is recursively computed from the 
position of its child Pi-1 or from the position P0 of the payload leaf to authenticate: 
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When Pi becomes negative, this means the TEC-Tree root has been reached and the 
authentication must be done using the trusted counter value.  
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From a position computed with the equation above, the physical address ADDDC of 
a data chunk corresponds to the location of the P0

th block of lpb + nb bytes (chunk 
size) in memory, where nb is the nonce width in bytes. Similarly, the physical address 
ADDCC(i) of a counter chunk corresponds to the location of the Pi

th block of lpb + nb 
bytes in memory. 

( )bpbiiCC nlPADD +×=)(
     and      ( )bpbDC nlPADD +×= 0

 (5) 

Note that lpb, nb and A must be powers of 2 to allow a straightforward hardware 
computation of addresses. 

5   Implementation Example 

The proposed implementation of TEC-Tree uses the Rijndael algorithm [14] 
processing 192-bit blocks. A chunk before encryption is composed of a 128-bit 
payload (lp = 128) and a 64-bit nonce (n = 64). We concatenate a 32-bit address to a 
32-bit counter (r = 32) to produce the nonce. The result is a 4-ary TEC-Tree.  

With a 64-bit nonce, the probability for an adversary to wage a successful spoofing 
attack is only 1/264. The address bits in the tag ensure that the whole physical address 
space is protected against splicing when considering a 32-bit address space. 
Moreover, the use of a nonce in this TEC-Tree scheme prevents replay attacks while 
requiring only 32 bits of secure on-chip storage. 

[6] shows that block-level AREA with the maximum throughput implemented with 
the Rijndael algorithm (192-bit blocks) consumes 80K gates on a platform with a 2:1 
CPU to memory bus frequency ratio. Since the hardware required to implement the 
TEC-Tree scheme is the same as the one required to implement the standalone block-
level AREA technique, a TEC-Tree also consumes 80 Kgates.   

The main overhead of TEC-Tree is the 2x increase in off-chip memory. PAT – 
which also offers parallelizability on write operations – has the same 2x off-chip 
memory overhead but does not provide data confidentiality. 

6   Conclusion 

This paper presents TEC-Tree, a novel technique providing memory integrity with 
insignificant on-chip memory requirements – i.e. a single counter value. As opposed 
to the schemes based on Merkle Trees, TEC-Tree is fully parallelizable on both read 
and write operations. Moreover, a benefit of our approach over existing integrity tree 
techniques is that the TEC-Tree provides data confidentiality at no additional 
hardware, performance and memory costs – and without the information leakage that 
typically results from ECB encryption. Our solution also provides a new security 
property for implementations using speculative execution: the TEC-Tree ensures 
detection of splicing and spoofing attacks before sending read data to the processor 
pipeline. Considering these benefits, implementing TEC-Tree for memory integrity in 
commercial embedded devices is a more viable solution than Merkle Trees or PAT.  

Ongoing work includes the deployment of TEC-Tree to provide memory integrity 
with a secure processor architected with our threat model in mind. 
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