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ABSTRACT

We explore host-based DoS attacks, which exploit the shared
computing resources in a multi-tenant cloud server to com-
promise the server’s resource availability. We first present
a set of attack techniques targeting different types of re-
sources. We show such attacks can significantly affect the
performance of co-located VMs, as well as the cloud provider’s
management services. Then we propose an attack strategy
to compromise the availability of the entire datacenter. We
show how power-aware optimization techniques can help the
attacker achieve his goal faster, with low cost.

We design an effective general-purpose method to defeat
memory, network and disk DoS attacks. We use a statis-
tical method to detect changes in the usage of different re-
sources. Once an attack happens, we use resource throttling
techniques to identify and thwart the malicious VMs. Our
evaluation shows that this defense method can effectively
defeat these DoS attacks with negligible performance over-
head. We alert the computer architecture community to
these catastrophic attacks on the availability of cloud com-
puting resources, to encourage building in better defenses at
both the hardware and software levels.

1. INTRODUCTION
The Infrastructure-as-a-Service (IaaS) cloud model pro-

vides elastic and cheap resources to customers in the form
of virtual machines (VMs). The financial benefits, flexibil-
ity and operational stability greatly motivate enterprises to
move their services and applications to the cloud. However,
malicious customers can also abuse these cheap cloud ser-
vices to conduct attacks. According to a report from Cloud
Security Alliance in 2016 [19], abuse and nefarious use of
cloud services have become top threats in cloud computing.

Adversaries can illegally obtain a large number of VMs in
a cloud system for cybercrime, at low or no cost in various
ways [19]: poorly secured VM deployments or authentication
schemes enable adversaries to easily intrude into customers’
VMs and take full control of them; public cloud vendors usu-
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ally provide free cloud service trials that adversaries can use
to acquire an arbitrary number of free VMs; adversaries can
also procure VM instances using stolen credit cards. Once
the adversaries get enough VMs, they can deploy these VMs
as botnets to attack other customers, organizations or even
the cloud providers. Typical examples of such cloud ser-
vice misuse include Distributed Denial-of-Service (DDoS)
attacks, large-scale email spam and phishing, brute-force
password guessing, port scanning, etc. [15]

Traditional network-based DDoS attacks compromise the
service availability of a victim machine by flooding the ma-
chine with superfluous network requests from remote bot-
nets. While these attacks and defenses have been well stud-
ied, this paper explores the newer and less studied area of
host-based DoS attacks. These attacks leverage a basic fea-
ture in clouds, multi-tenancy, to conduct availability attacks.
Specifically, cloud providers consolidate different VMs on the
same cloud server to maximize resource utilization. Differ-
ent VMs on the same server are logically isolated, but still
share the same underlying hardware resources. So a ma-
licious customer can intentionally craft his VMs to abuse
the shared resources and affect the availability of different
resources of co-located VMs and the host servers.

We focus on how DoS attacks on different resources can
severely reduce availability of the entire server including the
cloud management software, and even of the entire datacen-
ter, rather than impact just an application or a VM. Also,
unlike previous DoS defenses which focus on one specific
resource, we show a general solution that works for DoS at-
tacks on different resources.

We show the severity and effectiveness of such host-based
DoS attacks at the server level and the datacenter level. At
the server level, we show how an attacker can use one VM
instance to degrade the performance of all co-located VMs
and the cloud provider, by abusing the different layers of
shared computing resources, e.g., locking the memory sys-
tem, or saturating the network and I/O devices.

At the datacenter level, the attacker can use just a few
VMs to attack as many cloud servers as possible. To re-
duce attack cost and increase efficiency, the attacker can
shut down redundant attack VMs so that each server has
only one malicious VM. This strategy allows the attacker to
cover more cloud servers using fewer VMs. Our evaluation
also shows that the attacker can compromise a datacenter
at lower cost when the cloud provider employs more power-
efficient scheduling policies.

To defend against these host-based DoS attacks, we pro-
pose a general-purpose method to detect and mitigate these



attacks. We design a set of Testing Programs to monitor
the server’s resource usage. When the server is under a host-
based DoS attack, we use resource throttling techniques to
discover the malicious VMs. Then we can suspend or shut
down the VMs to protect the server’s availability. This can
mitigate the attacks with low performance overhead.

In summary, we make the following contributions:

• Showing DoS attacks on different resources that can cause
availability degradation of entire host servers.

• Demonstration of the severity of these attacks.
• An attack strategy to compromise the availability of the

entire datacenter, and showing that power-aware schedul-
ing policies make the attacks worse.

• A general-purpose method for defeating malicious VMs
using statistical tests and resource throttling.

2. THREAT MODEL AND ASSUMPTIONS
The target of the attacks are the cloud servers and the dat-

acenter. This datacenter deploys IaaS cloud services to the
public where customers lease VMs with desired computing
resources. The cloud provider allocates VMs to cloud servers
in the datacenter. Each server can host multiple VMs from
different customers, logically isolated by the hypervisor.

The adversary in our consideration can be an individual
hacker, a botnet originator, a competing cloud provider or an
organization for committing cybercrime and cyberwarfare.
The adversary can launch VMs in the target datacenter. But
he cannot select the host servers for his VMs. He is able to
take full control of his own VMs, but he does not have root
privileges to control the hypervisors or other VMs.

The adversary can illegally launch and control multiple
VMs in the datacenter without financial costs via free cloud
service trials or credit card fraud. He can also pay to legally
rent the VMs. Then there is a cost related to launch the
attack. However, the severe damage outweighs the cost: the
attacker can just use one tiny VM instance at the cost of
several cents per hour to destroy an entire server which may
host dozens of large VMs. This amplification effect helps the
adversary to launch DoS attacks on the entire datacenter.

3. SERVER-WIDE DOS ATTACKS
We show how an attacker can launch one VM in a cloud

server, and craft this VM to degrade the performance of the
host server. We first describe attack techniques (Sec. 3.1),
then evaluate their impact on co-located VMs and cloud
management on the host server (Sec. 3.2 and Sec. 3.3).

3.1 Attack Techniques
A malicious VM can abuse the underlying resources to

affect the performance of other VMs that also use these re-
sources. We discuss some known attacks on the memory,
network and disk, shared by all the VMs on the server, and
show how they can be used to degrade the availability of the
entire host server, and even the entire datacenter (Sec. 4).

Memory DoS attacks. While there are many ways to
cause a DoS attack on memory availability [23], we describe
one of the worst attacks below. Intel processors provide
locked atomic operations for managing shared data struc-
tures between multi-processors [1]. Before Intel Pentium
(P5) processors, the locked atomic operations always gener-
ate LOCK signals on the internal buses to achieve operation
atomicity. For processor families after P6, the bus lock is

server A Dell R720: one eight-core, 2.90GHz Intel Xeon E5-2690 processor
server B Dell R720: two six-core, 2.90GHz Intel Xeon E5-2667 processors
server C1

Dell R210II: one quad-core, 3.30GHZ Intel Xeon E3-1230v2 processorserver C2

server C3

Host OS Ubuntu 14.04 Linux OS with 3.13 kernel, running KVM hypervisor
Guest OS Ubuntu 14.04 Linux OS with 3.13 kernel

Table 1: Testbed configurations in our experiments

transformed into a cache lock: the cache line is locked in-
stead of the bus and the cache coherency mechanism is used
to ensure operation atomicity. However, when a program
issues locked atomic accesses to unaligned memory blocks,
the processor has to fetch two adjacent cache lines and a
bus LOCK signal is asserted to prevent other processors
from modifying these cache lines. So the adversary VM can
keep issuing this “exotic” memory access to lock down all
the internal memory buses in the host server to degrade the
server’s performance [23].

Network DoS attacks. In a cloud server, the hypervisor
virtualizes the network devices for VMs. When a VM at-
tempts to send a network packet, the device driver inside the
VM passes the packet to the emulated network device in the
hypervisor. Then the hypervisor forwards the packet to the
physical network device. When a network packet attempts
to reach the VM, it will also be routed through the host do-
main and handled by the physical network device, and then
passed to the VM by the hypervisor. The physical device is
shared by the host domain and guest VMs. To compromise
the target server’s network availability, the adversary can
flood his own VM with a large number of network packets
[7], which can cause congestion in the physical device, as
well as deplete the hypervisor’s capability to emulate and
handle network accesses. This can significantly degrade the
host domain and other VM’s network performance.

Disk DoS attacks. Disk storage is another type of I/O
resource that an attacker can exploit to conduct DoS at-
tacks. Different processes/VMs on the server can issue disk
accesses at the same time. To cause disk I/O contention, the
malicious VM can keep generating a large volume of accesses
to its own disk system [22]. This will cause disk scheduling
congestion, thus delaying disk accesses from other VMs.

Another interesting observation is that the disk attack
can also cause network contention. Public clouds usually
adopt Network Attached Storage (NAS) to manage the VM
file system. Cloud providers set up a few separate NAS
servers to store the disk system of VMs from other comput-
ing servers, and these VMs access their disk system via the
network. When the disk attack tries to generate disk con-
tention, it also causes network resource congestion between
the computing server and the network storage server.

3.2 Attacking Guest VMs
We evaluate the attack effects on the co-located guest

VMs. We exploit three servers from Table 1: servers A

and B are deployed as the target cloud servers; server C1 is
configured as the disk server for the network-attached stor-
age configuration. On top of the hardware components, a
KVM hypervisor is operated to support virtualized guest
VMs. The host OS and the guest OS are shown in Table 1.

Memory contention. We launch a malicious VM in the
target server, which keeps generating LOCK signals on the
internal buses by requesting atomic unaligned memory ac-
cesses. On the same server, we launch a set of benign VMs,
each of which randomly runs SPEC2006 or PARSEC bench-



marks. We use Hardware Performance Counters to measure
the overall instructions per second of the entire server as
the performance metric. Figure 1 shows the performance of
the server under different CPU utilization, with and with-
out memory DoS attack. We observe that the memory DoS
attack can reduce the server’s overall IPC by up to 84%.
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Figure 1: Memory DoS attack.
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Figure 2: Network DoS attack.

Network contention. We launch a malicious VM on the
target server. Then we use a client machine outside the
cloud system to keep sending UDP packets to the malicious
VM, thus saturating the host server’s network resource. We
launch a benign VM hosting apache service on the server,
and use the httperf [5] benchmark to test its network perfor-
mance. Figure 2 shows the throughput of the apache server
under different request rates. We observe that the network
DoS attack can reduce the server’s throughout by up to 25%.

Disk contention. We consider two cases: the first one
is the local disk system. The second one is the Network
File System (NFS) [17], where a network storage server is
configured to store the VMs’ disks. For each case, we launch
one malicious VM which keeps flooding its own file system.
We also launch a benign VM on the same server. We use
lmbench [2] to test the disk performance of this benign VM.
We alter the interval between each disk access to change
the disk bandwidth. Figure 3 shows the disk performance
without and with disk DoS attacks. We observe the disk
DoS attack can affect the co-located VM’s disk performance
in both the local and network file system. The effect is more
significant when the server’s disk bandwidth is high: when
the access interval is 0, the victim’s disk bandwidth will be
reduced by up to 60% by the disk DoS attacks.
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Figure 3: Disk DoS attack

3.3 Attacking Cloud Providers
We evaluate the effects of these host-based DoS attacks

on the performance of the cloud provider’s management ser-
vices, using the OpenStack cloud software [3].

The OpenStack system is conprised of three types of servers.
A Controller Node is a centralized server responsible for
managing cloud services and coordinating between customers

and cloud servers. A Compute Node is responsible for host-
ing customers’ VMs. A Storage Node is a server to store
VMs’ disks. We set up the system with one Controller

Node, two Compute Nodes and one Storage Node. We use
server C1 from Table 1 as the Controller Node, servers C2

and C3 as the Compute Nodes, and server B as the Stor-

age Node running the Network File System (NFS) to store
VMs’ disks. We launch a malicious VM on each Compute

Node. They conduct one of the memory, network or disk
DoS attacks. We measure the performance of different tasks
conducted by the Controller Node under the attacks.

VM launch/termination. When launching a VM, the
cloud provider selects the appropriate Compute Node, and
sets up network and block devices for the VM. Then the
Compute Node fetches the OS image from the Storage Node

and boots up the OS. Figure 4a shows the launch perfor-
mance (launch time) of different VM configurations, when
the Compute Node has no DoS attacks (baseline), or has
memory, network, or disk attacks, separately. We see that
the memory DoS attack does not affect the VM launch time
(up to 30% overhead), as the VM launch is a network-bound
workload. The network attack causes up to 8.1× overhead,
as it saturates the network resource of a Compute Node and
delays the hypervisor fetching OS images. The disk attack
can incur up to 18.8× overhead, as it saturates the network
resource of the Compute Node as well as the Storage Node.

When terminating a VM, the Compute Node saves the OS
back to the Storage Node. Figure 4b shows the termination
performance. The network attack increases the completion
time by 3.3× and the disk attack increases the time by 5.1×.

VM migration. The cloud provider migrates the VMs
from one Compute Node to another for the purpose of re-
source optimization and workload balancing. Figure 4c shows
the live migration completion time of VMs without and with
DoS attacks. We observe similar results: the network and
disk attacks have more impact on the performance than the
memory attacks. The network contention can incur up to
2.3× delay and the disk contention can incur 4× delay.

VM snapshot. The cloud provider takes a VM snapshot,
serving as a failover for a VM crash or a new VM image
for other customers. The Compute Node gets the disk image
from the Storage Node, and then uploads it to the Con-

troller Node. Figure 4d shows the performance impact on
VM snapshot due to the DoS attacks. We observe both the
network and disk attacks have significant impact (around
2×): the network attack saturates the Compute Node’s net-
work resource, and affects its operation of fetching images
from the Storage Node and sending them to the Controller
Node. The disk attack saturates the network resources of
both Compute Node and Storage Node, and slows the image
transfer between the Compute Node and Storage Node.
To sum up, the network and disk DoS attacks are effec-

tive in degrading the cloud provider’s performance. This is
because the cloud management services are usually network
or disk intensive. So the network or disk contention causes
more damage than the memory contention. Memory DoS
attacks are more effective when attacking the guest VMs
which run memory intensive applications (Figure 1).

4. DATACENTER-WIDE DOS ATTACKS
We now show how much damage an attacker can inflict

on a datacenter at minimal cost.
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Figure 4: DoS attacks in OpenStack

The attacker’s strategy is to launch VMs on as many cloud
servers as possible. By doing so, each server that hosts the
malicious VMs will suffer from host-based DoS attacks. As-
sume the attacker is allowed to launch at most N VMs in
the cloud within his budget, he can conduct the following
procedures to bring the maximum damage to the datacenter.

First he requests to launch N VMs in the cloud. Then he
runs covert-channel attacks in these VMs which can identify
his VMs that share the same server [21]. If some of his VMs
are placed on the same server, he keeps one VM and reboots
the other VMs, which causes these VMs to be placed on
other servers. The steps of running covert-channel attacks to
discover redundant VMs on the same server, and rebooting
these so that they are launched on other servers, is repeated
until all the N VMs are in different host servers. Then each
VM can run DoS attacks. We illustrate these steps in detail.

4.1 Impact of Power-aware VM Placement Poli-
cies on Launching Attacker VMs

Since customers are not allowed to select host servers for
their VMs, the attacker has to launch a large number of VMs
in the cloud to cover as many servers as possible. The num-
ber of infected servers depends highly on the VM scheduling
policy. Some policies schedule the malicious VMs on the
same servers so fewer servers get infected; while some poli-
cies evenly distribute the malicious VMs on different servers
so that these VMs can spread out across the datacenter.

We consider a set of power-aware VM scheduling policies
from [8]. The cloud provider uses different strategies to op-
timize VM placement for power efficiency: (1) during VM
launching, the cloud provider tries to allocate these VMs on
the smallest number of servers (static policy). (2) During
runtime, the cloud provider dynamically checks if one server
is overloaded or underloaded. There are several approaches
to set such thresholds, e.g., Static Threshold (THR), whose
utilization threshold is a constant, or Interquartile Range
(IQR), whose utilization threshold is dynamically adjusted
as being negatively linearly correlated to the interquartile
range of server utilization in the datacenter. (The cloud
provider collects each server’s utilization and calculates the
interquartile range of all the servers’ utilizations. A higher
interquartile range will lead to a lower utilization threshold).
If a server is overloaded, the cloud provider selects some VMs
and migrates them to other servers. There are different ap-
proaches for the cloud provider to select VMs for migration,
e.g., the Minimum Migration Time (MMT) method selects the
VM with the shortest migration time, and the Minimum Uti-
lization (MU) method selects the VM with the smallest CPU
utilization. If a server is underloaded, the cloud provider
migrates all the VMs from this server to other servers and

shuts down this server to save power.
The cloud provider can combine some of the above meth-

ods to define his VM placement policy. For instance, the
cloud provider can just perform static VM placement opti-
mization during VM launching (denoted as STATIC). It can
also perform dynamic VM migration by using THR to set
utilization threshold and using MMT to select VMs for migra-
tion (denoted as THR-MMT). Other policies (THR-MU, IQR-MMT,
IQR-MU) can be defined in a similar way.

Evaluation. We evaluate the impact on the placement
of attacker VMs, under the above power-aware placement
policies. We use CloudSim [9], a popular large-scale cloud
infrastructure simulator, to evaluate the attack strategy. We
simulate a cloud system comprising 800 homogenous servers.
Each server has 8 physical cores, 32GB memory and 1TB
disk. We use real workload traces from the CoMon project
in PlanetLab [4], which collected data of CPU utilization
from thousands of VMs on servers located at more than 500
places around the world. These workload traces are assigned
to VMs launched in the cloud. The attacker launches one
VM every minute, and each VM has one virtual CPU, 4GB
memory and 25GB storage.

Figure 5 shows the attacker’s coverage when the simulated
system holds different numbers of VMs (800, 1600, 2400,
3200). The coverage is defined as the ratio of the number of
infected servers to the number of active servers. First, we
observe a constat coverage in the STATIC policy when the
number of malicious VMs is large. This is because when the
attacker launches malicious VMs, the cloud provider consol-
idates these VMs on newly bootup servers, and these VMs
do not spread to other servers that host victim VMs. The
number of infected servers are linearly related to the num-
ber of malicious VMs. Second, we observe that the four
dynamic policies are more vulnerable to the attacker VMs’
coverage of the datacenter’s servers than the STATIC policy.
This is because the dynamic policies also perform runtime
optimizations, which migrate and spread the malicious VMs
to more active servers and increase the coverage. Third,
we observe that the attacker needs fewer VMs to cover the
datacenter when the dataceneter has fewer victim VMs, as
there are fewer active host servers for the attacker to cover.

To sum up, the attacker has lower cost when the cloud
provider adopts more advanced power-aware VM placement
policies. This should alert datacenter designers to consider
such DoS attacks when choosing VM scheduling policies.

4.2 Reducing Co-located VMs
After the initial placement of the attacker VMs, there may

be multiple malicious VMs co-locating on the same server.
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Figure 5: Malicious VMs coverage under different placement policies.
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This is not efficient since the attacker only needs one VM
on each server to perform the attacks. He needs to identify
these co-located VMs and keep only one VM on each server.

The attacker can exploit the covert-channel technique [21]
to identify the co-located VMs. Specifically, the attacker se-
lects one VM as a sender, which tries to broadcast a pre-set
message to all co-located VMs. To transmit bit “1”, this
sender conducts DoS attacks for a fixed period. To transmit
bit “0”, this sender stays idle during the period. All of the
other VMs perform regular resource accesses and measure
the access time. If one VM observes that its access time
follows a pattern that matches the pre-set message, then
this VM is receiving the covert-channel message from the
sender on the same server. The attacker traverses all the
VMs by setting each one as the covert-channel sender, until
all co-located VMs are identified and shut down. The fea-
sibility of such covert-channel attacks with high bandwidth
and reduced error rate has been shown in public clouds [21].

Figure 6 shows the results of co-location reduction (under
THR-MU policy). Before checking, the attacker launches 200
VMs in the datacenter, a lot of which are co-located on
the same servers. After terminating unnecessary VMs, the
attacker only needs to keep around 50 VMs to achieve the
same coverage. This can significantly reduce the attack cost.

After a long time, VM allocations in the datacenter may
change: VMs can be shut down, launched, or migrated. So
it is necessary for the attacker to periodically repeat the
launching of attacker VMs and reducing their co-location on
the same servers to maintain high infected server coverage.

5. DEFENSE
Although host-based DoS attacks can cause severe loss of

availability on a cloud server, detecting them is challenging.
First, the malicious VMs behave like normal VMs and never
violate the user agreement policy specified by the cloud ven-
dor. Second, the malicious VMs have different ways to de-
plete the servers’ resources and it is hard to use a general-
purpose method to monitor all layers of resources. Third,
the adversary can use one single tiny VM instance to af-
fect the entire server, and the cloud provider cannot easily

identify the malicious VM among all the VMs hosted on the
server. Past work offer solutions to defeat DDoS attacks
[13, 18]. However, those solutions usually focus on the ap-
plication level, and target specific victim applications. They
cannot be applied to host-based DoS attacks.

We now propose a general-purpose method to defeat these
host-based DoS attacks on a cloud server. The key insight
of our method is that the access characteristics to one com-
puting resource (e.g., memory, disk, network) by a known,
stable software program will follow a certain probability dis-
tribution. If excessive computing resource contention exists
in a host-based DoS attack, then the probability distribution
of the program’s resource usage will change, which can be
observed by the cloud provider. So for each computing re-
source, the cloud provider can launch a program (dubbed
Testing Program) in the host OS of the tested server.
This Testing Program has a known stable probability
distribution of access characteristics to this resource (de-
noted as reference samples). At runtime, the cloud provider
collects the Testing Program’s access characteristics (de-
noted as monitored samples). If the probability distribution
of the monitored samples has a huge divergence from the
probability distribution of the reference samples, the cloud
provider can suspect that at least one guest VM is executing
host-based DoS attacks targeting this computing resource.
Note that benign VMs may also alter the Testing Pro-

gram’s behaviors for a short time due to their short bursts
of high resource consumption. In order to rule out this kind
of false positives, we monitor the Testing Program’s be-
havior constantly and raise the alarm only when we observe
that the Testing Program is affected in multiple consecu-
tive measurement windows. Then the cloud provider selec-
tively restricts some of this guest VMs’ resource usage and
runs the above test to identify the malicious VM(s).

5.1 Methodology
Protecting a server from DoS attacks has three phases:

monitoring, pinpointing and mitigation.

Monitoring. The cloud provider can use a set of Test-

ing Programs to test the resource contention on the server.



It first performs offline training by running these Testing

Programs on a dedicated server with the same hardware
configurations as the monitored server, to get nR reference
samples of its resource accesses ([XR1, XR2, ..., XRnR]).
Then it launches the same Testing Programs on the mon-
itored server and collects nM monitored samples ([XM1,
XM2, ..., XMnM ]) periodically.

The Testing Programs must be carefully designed to
meet the following requirements: (1) they should be sen-
sitive enough to reveal the resource contention caused by
host-based DoS attacks; (2) they should have stable resource
access probability distributions; (3) they should not impact
other VMs’ performance. We set the Testing Programs
for memory, network and disk resources as below:

• Memory : the Testing Program allocates a memory
buffer with the size of Last Level Cache (LLC). It accesses
all the data in this buffer sequentially and measures the
total time as a sample. It repeats this task for a number
of times to form a set of samples.

• Network : the Testing Program establishes a TCP con-
nection to a remote server and measures the connection
time as a sample. It repeats this task for a number of
times to form a set of samples.

• Disk : the Testing Program stores a large file on the
disk. It reads all the data in this file in a sequential order
and measures the completion time as a sample. It repeats
this task for a number of times to form a set of samples.

We use the two-sample Kolmogorov-Smirnov (KS) test [14]
to check if the reference and monitored samples belong to the
same probability distribution. The KS statistic D is defined
in Equation 1 below, where Fn(X) is the empirical distri-
bution function of the samples [X1, X2, ..., Xn], and sup is
the supremum function (i.e., returning the maximum value).
We establish the null hypothesis that monitored samples of
the Testing Programs on the monitored server are drawn
from the same distribution as the reference samples from
offline training. We can reject such a hypothesis with con-
fidence level 1 − α if the KS statistic, DnM, nR, is greater
than predetermined critical values Dα

nM, nR. Then the cloud
provider can conclude that the monitored server is probably
affected by a DoS attack, and trigger the pinpointing phase.

DnM, nR = sup
x

| FnM (XM)− FnR(XR) | (1)

Pinpointing. If the KS test rejects the null hypothesis,
the cloud provider can conclude that one or more VMs on
this server is probably malicious. To identify the malicious
VM(s), the cloud provider selects part of the VMs, and
throttles down these VMs’ execution (i.e., reduce these VMs’
impact) on this resource for a short time, while performing
the KS test on the Testing Program. If throttling down
these VMs can significantly reduce the contention on this
resource, and the null hypothesis becomes accepted, then
the cloud provider can narrow down the malicious VMs to
these selected VMs. Otherwise, the malicious VMs will be
within the rest of the VMs. The cloud provider can quickly
pinpoint the malicious VM(s) using this method combined
with binary search. The time complexity is O(log n), where
n is the number of VMs on the monitored server.

We can throttle down VM execution on different layers of
resources with the following methods.

• Memory : We can use the duty cycle modulation [1] to
regulate CPU execution speed. To achieve this, we can

modify the register IA32_CLOCK_MODULATION to limit one
VM’s CPU execution to the slowest speed (i.e., 1/16,
execute only 1 out of 16 cycles). Then very little memory
contention is induced to the server by this VM.

• Network : We can set up firewalls to temporarily limit
the VM’s network connections, releasing its impact on
the network resource contention. This can be done by
configuring the network settings in the host OS and the
physical network routers in the cloud system.

• Disk : We can reduce one VM’s disk bandwidth to elim-
inate its impact on disk contention. We can configure
the OS filesystem to temporarily set the upper disk limit
for one VM (e.g., 1MB). Then this VM has no ability to
deplete the disk resource.

Mitigation. There are multiple ways to thwart the mali-
cious VMs discovered in the pinpointing phase. The cloud
provider can keep throttling down these VMs’ resource usage
and send warnings to the customers. It restores these VMs’
executions when they stop the host-based DoS attacks. The
cloud provider can also directly suspend or terminate these
VMs and block the customers’ account.

5.2 Evaluation
We implemented the defense system on the OpenStack

platform. Our testbed comprised two cloud servers from
Table 1. Server C1 was configured as the Controller Node.
Server A was configured as a Compute Node to host VMs.

Detection scheme validation. We show how the KS test
is used to reveal malicious contention in the monitoring and
pinpointing stages. We consider three scenarios: (1) The
Testing Program runs alone, which produces the refer-
ence samples as baseline. (2) The Testing Program runs
along with 8 benign VMs, running SPEC2006, PARSEC or
apache applications. This produces the monitored samples
in a benign environment. (3) The Testing Program runs
along with 7 benign VMs and 1 attacker VM, running the
DoS attacks. This generates the monitored samples in an
adversarial environment. Figures 7, 8 and 9 show sample
probability and cumulative probability of these three cases,
under memory, network and disk contention separately. We
observe that the distributions of reference samples and mon-
itored samples in the benign case are similar. So the benign
VMs have little effect on the Testing Programs. How-
ever, the monitored samples in the adversarial case have a
huge deviation from the baseline, as the attacker VM has
significant impact on the Testing Program. So the KS
values (the largest vertical distances between the cumula-
tive distribution lines of reference and monitored samples)
can distinguish the benign case and adversarial case.

In another experiment, we launch eight VMs on the server:
one malicious VM conducts a DoS attack, while the remain-
ing benign VMs run SPEC2006, PARSEC or apache pro-
grams. Figures 10, 11 and 12 show the KS values of the
Testing Programs in four stages. In the monitoring stage
(I), the monitored server periodically (every 20s) runs the
Testing Programs and conducts the KS tests. The at-
tacker does nothing so the monitored samples of the Test-

ing Programs follow the same probability distribution as
the reference samples. In stage II, the attacker begins the
attack and the cloud provider immediately detects a high
KS value. It repeats the KS test for five times and keeps
observing abnormal KS values, thus confirming the attacks.
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Figure 7: Probability distribution and cumulative distribution
of the Testing Program for memory contention.
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Figure 8: Probability distribution and cumulative distribution
of the Testing Program for network contention.
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Figure 9: Probability distribution and cumulative distribution
of the Testing Program for disk contention.

Then it triggers the pinpointing stage (III): the server se-
lectively throttles down a set of VMs and performs the KS
test. In Figures 10, 11 and 12, the server first throttles
down VMs 5, 6, 7, 8, and the KS test shows a low value.
The server knows that the attack comes from VMs 5, 6, 7,
8. Then it can throttle down VMs 7 and 8, and the KS
value is high, indicating the attack comes from VMs 5 and
6. Then it can throttle down VM 6, and now the KS value
is still high. Then it is able to pinpoint the attacker as VM
5. In the mitigation stage IV, the cloud provider shuts down
this malicious VM, and the KS value goes back to normal.

Performance. Wemeasure the performance overhead when
using the Testing Programs to monitor the server. Fig-
ures 13, 14 and 15 show the server’s performance with and
without the monitoring service. We observe the monitoring
activity does not incur performance overhead to the server.
This is because the Testing Programs are designed to be
lightweight and they do not affect the server’s performance.

Throttling down VMs at the pinpointing stage can delay
the VMs’ execution. However, this only happens when the
server is identified as being attacked, which is relatively rare.
Besides, the pinpointing stage can be finished in a very short
time: each round only needs less than 1 second, and there
are O(log n) rounds to pinpoint the attacker. So this stage’s
impact to the system’s performance can be ignored.

6. RELATED WORK

Memory Resource Contention. Grunwald and Ghi-
asi [11] studied the effect of trace cache evictions on the

victim’s execution with Hyper-Threading enabled in an In-
tel Pentium 4 Xeon processor. Woo and Lee [20] explored
frequently flushing shared L2 caches on multicore platforms
to slow down a victim program. They studied saturation
and locking of buses that connect L1/L2 caches and the main
memory [20]. Moscibroda and Mutlu [16] studied contention
attacks on the schedulers of memory controllers. Zhang et
al. [23] explored the feasibility of memory DoS attacks on
different memory layers in modern cloud servers, and eval-
uated the attack effects in real cloud settings.

Network Resource Contention. Bedi et al. [7] proposed
an attack which causes contention in the Network Interface
Controller to degrade the victim’s performance. Huang and
Lee [12] proposed cascading performance attacks, in which
an attacker VM exhausts the I/O processing capabilities of
the Xen Dom0, thus degrading the guest victim VM’s per-
formance. Similarly, Alarifi and Wolthusen [6] exploited VM
migration to degrade Dom0 performance.

Disk Resource Contention. Yang et al. [22] proposed
an approach to reverse-engineer the I/O scheduling in the
virtualization platform, with which they can design denial of
service attacks on the disk I/O resources. Chiang et al. [10]
designed a more efficient adaptive attack, which identifies
the I/O usage pattern of the victim, and synchronizes the
attack phase with the victim.

The above work aim to compromise the service availability
of a specific victim machine. Different from these work, our
attacks attempt to affect an entire cloud server, including all
the guest VMs as well as the cloud management tasks. We
also consider datacenter-level DoS attacks: we propose new
techniques (e.g., launching and reducing co-located VMs) to
show how to economically attack the whole datacenter.

7. CONCLUSIONS
We show host-based DoS attacks on cloud datacenters,

and evaluate their damage at two levels. At the server level,
we study how a malicious VM can generate malicious con-
tention on different types of resources, i.e., memory, network
and disk. We show the malicious VM can also affect the
performance of co-located VMs and cloud providers in man-
aging cloud services. At the datacenter level, we conduct
large-scale simulation to show how the attacker can use a
smaller number of VMs to compromise the availability of
more cloud servers, or even the entire datacenter. We show
that power-efficient VM scheduling algorithms can in fact
make it easier for the attacker! Our results indicate such
DoS attacks pose serious availability threats to datacenters.

We then propose a general method to detect different
types of host-based DoS attacks. We use a set of Test-

ing Programs to monitor the resource usage on the cloud
server using statistical methods. Once we detect that a cer-
tain type of resource is being depleted by a likely DoS attack,
we use our resource throttling technique to quickly pinpoint
the attacker VMs, and mitigate the damage. Our evalu-
ation results show this method can effectively protect the
cloud servers’ availability with little performance overhead.
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Figure 10: Detecting Memory attacks
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Figure 11: Detecting Network attacks

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

IVIIIIII  

K
S

 v
a

lu
e

time (s)
Figure 12: Detecting Disk attacks
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Figure 13: Performance overhead for
monitoring memory attacks
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Figure 14: Performance overhead for
monitoring network attacks
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monitoring disk attacks
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