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ABSTRACT
We propose a software-hardware architecture, DataSafe, that
realizes the concept of self-protecting data: data that is pro-
tected by a given policy whenever it is accessed by any ap-
plication – including unvetted third-party applications. Our
architecture provides dynamic instantiations of secure data
compartments (SDCs), with hardware monitoring of the in-
formation flows from the compartment using hardware pol-
icy tags associated with the data at runtime. Unbypassable
hardware output control prevents confidential information
from being leaked out. Unlike previous hardware informa-
tion flow tracking systems, DataSafe software architecture
bridges the semantic gap by supporting flexible, high-level
software policies for the data, seamlessly translating these
policies to efficient hardware tags at runtime. Applications
need not be modified to interface to these software-hardware
mechanisms. DataSafe architecture is designed to prevent
illegitimate secondary dissemination of protected plaintext
data by authorized recipients, to track and protect data de-
rived from sensitive data, and to provide lifetime enforce-
ment of the confidentiality policies associated with the sen-
sitive data.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: Hardware/soft-
ware interfaces; D.2.8 [Operating Systems]: Security and
Protection—access controls , information flow controls

General Terms
Security, Design

Keywords
information flow tracking, self-protecting data, architecture

1. INTRODUCTION
This paper deals with the processing of sensitive data by

unvetted applications. We frequently download applications
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from unknown sources and have to trust that the appli-
cations do not do anything harmful. In cloud computing,
we frequently use third-party applications, like analytics or
management programs, to process our proprietary or high-
value data. If we allow these applications to process our
confidential or sensitive data, we have to trust that they do
not intentionally or inadvertently leak our data.

Allowing third-party applications to process our sensitive
data poses several challenges. First, we do not have source
code and cannot modify the application program. We only
know its advertised functions, but have no idea what the
program actually does. We can only execute the program
binaries. Second, for a user who is authorized to access the
sensitive data using the application in question, how can we
ensure that he does not then transmit the data, perhaps
transformed or obfuscated, to unauthorized parties? Third,
while we do not expect that the applications are outright
malicious, we must assume that complex software will very
likely have some bugs or security vulnerabilities. How do we
increase the confidence that it does what we allow it to do
with our sensitive data, and does not leak this out?

We propose a new software-hardware architecture called
DataSafe for protecting the confidentiality of data when pro-
cessed by unvetted applications, e.g., programs of unknown
provenance. It is based on the following key insights in re-
sponse to the challenges identified above. First, the data
owner (not the application writer) is the one most moti-
vated to protect the data, and hence will be motivated to
make some changes. Hence, in our proposed solution, the
data owner must identify the data to be protected and must
specify the data protection policy. The application program
is unchanged and continues to deal with data only, and is un-
aware of any policies associated with the data. This gives the
added advantage of our solution working with legacy code.
The behavior of the application program must be monitored,
to track the protected data as the application executes, and
to ensure that its protection policy is enforced at all times.

Second, we observe that while an authorized user is al-
lowed to access the data in the context of the application
and the current machine (or virtual machine), data confi-
dentiality (beyond this session) is protected as long as any
output from the current machine is controlled according to
the data’s protection policy. Output includes the display,
printing, storing to a disk, sending email or sending to the
network. Furthermore, any data derived from sensitive data
must also be protected. Hence, our DataSafe solution pro-
poses continuous tracking and propagation of tags to identify
sensitive data and enforce unbypassable output control.
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DataSafe architecture realizes the concept of self-protecting
data, data that is protected by its own associated policy, no
matter which program, trusted or untrusted, uses that data.
The data must be protected throughout its lifetime, includ-
ing when it is at-rest (i.e., in storage), in-transit, and during
execution. The data protection must apply across machines
in a distributed computing environment, when used with
legacy applications or new unvetted programs, across appli-
cations and across the user and operating system transitions.
A self-protecting data architecture must ensure that: (1)
only authorized users and programs get access to this data
(which we call primary authorization), (2) authorized users
are not allowed to send this data to unauthorized recipients
(which we call secondary dissemination by authorized recipi-
ents), (3) data derived from sensitive data is also controlled
by the data’s confidentiality policy, and (4) confidentiality
policies are enforced throughout the lifetime of the data.

We assume that the first problem of primary authoriza-
tion can be solved by well-known access control and cryp-
tographic techniques, and will not discuss this further in
this paper. Rather, this paper tackles problems (2), (3) and
(4). Problem (2), the secondary dissemination by autho-
rized recipients is especially difficult and dangerous, since
an authorized recipient of protected information (passing
the primary authorization checks) can essentially do any-
thing he/she wants with it in commodity systems.

Secondary dissemination of protected information can be
by an authorized user or by an application, and can be either
malicious or inadvertent. A malicious user example could
be a confidentiality breach by an insider, such as a nurse
in a hospital trying to sell the personal information of some
celebrity admitted to the hospital whose medical records he
or she is authorized to access. An example of inadvertent
secondary dissemination of confidential data could be a doc-
tor trying to send his/her family a vacation plan as an at-
tachment, but accidentally attaching some patient’s psychi-
atry record instead. When programs are the culprits rather
than users, a malicious, privacy-stealing malware, installed
on an authorized user’s machine through social-engineering,
could send out sensitive information, or a benign application
may contain bugs that could be exploited to leak sensitive
information. In DataSafe, we enforce unbypassable output
control to prevent such breaches by authorized users.

Data derived from sensitive data must also be tracked and
protected. An unvetted application program can be designed
to leak sensitive information. It could transform or obfus-
cate the sensitive data. For example, a credit card number
could be transformed and obfuscated into several paragraphs
of text, before being output from the application, so that no
sequence of numbers resembling a credit card number can
be identified. This requires somehow tracking the informa-
tion flows from protected data to other variables, registers
or memory locations, across applications and system calls,
and across combinations of data such as in mashups. In
DataSafe, we argue that such continuous tracking of sensi-
tive data, through any number of transformations, requires
some form of dynamic information flow tracking.

For confidentiality policies to be enforced throughout the
lifetime of the protected data, DataSafe uses encrypted pack-
ages to transmit data between DataSafe and non-DataSafe
machines in a distributed environment, as illustrated by Fig-
ure 1. A data owner wants the sensitive data to be accessed
and used by authorized users according to the data’s as-
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Figure 1: DataSafe architecture protects data con-
fidentiality across machines (new and legacy) and
users (authorized and not authorized).
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Figure 2: Software-hardware monitoring of Pro-
tected Data (PD) in DataSafe architecture. Unpro-
tected Data (UD) is unchanged. Since the hardware
tags of the Protected Data are tracked and propa-
gated at the physical memory level by the hardware,
this allows seamless tracking across applications and
across application-OS boundaries, as illustrated by
the top row of boxes. (Gray indicates DataSafe ad-
ditions).

sociated security policy. However, authorized users or ap-
plications can maliciously or inadvertently compromise the
confidentiality of the protected data by distributing (or leak-
ing) the plaintext of the sensitive data to unauthorized users.
DataSafe addresses this problem by: (1) controlling the use
of data and preventing leakage on a DataSafe machine while
data is used by authorized users (Case A), (2) ensuring se-
cure data transfer to both DataSafe and non-DataSafe ma-
chines, and in particular that no protected data is ever sent
in plaintext outside the machine (Case B), (3) enabling only
authorized users to use protected data on DataSafe machines
(Case C, D), and (4) preventing any user from accessing pro-
tected data (in plaintext) on a non-DataSafe machine (Case
E, F). This last case is restrictive, in terms of availability,
but provides fail-safe confidentiality protection within the
current ecosystem. (With built-in processor security, the
idea is that eventually, all future ubiquitous computers will
include DataSafe features.)
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Figure 2 illustrates the key ideas on how DataSafe enables
self-protecting data. To protect data-at-rest and data-in-
transit, DataSafe uses strong encryption to protect the data,
while ensuring that only legitimate users get access to the
decryption key. For data-during-execution, DataSafe creates
a Secure Data Compartment (SDC) where untrusted appli-
cations can access the data, as they normally would. When
data (e.g., a protected file) is first accessed by an applica-
tion, DataSafe software (Policy/Domain Handler) does a pri-
mary authorization check, before translating the data’s high-
level policy to concise hardware “activity-restricting” tags.
The DataSafe hypervisor then creates Secure Data Com-
partments (SDC), within which sensitive data is decrypted
for active use by the application. Each word of the pro-
tected data in the SDC is tagged with a hardware activity-
restricting tag. From then on, DataSafe hardware automati-
cally tracks the data that initially comes from SDCs, propa-
gating the hardware tags on every processor instruction and
memory access. By restricting output activities based on the
hardware tags, DataSafe prevents illegitimate secondary dis-
semination of protected data by authorized recipients, even
when the data has been transformed or obfuscated. The
hardware tag propagation and output control is done with-
out the knowledge of the applications software, and applies
across applications and across application and operating sys-
tem transitions. We prototype our software-hardware ar-
chitecture and show that it indeed prevents confidentiality
breaches, enforcing the data’s confidentiality policy, without
requiring any modifications to the third-party applications.

The primary contributions of this paper are:
• A new software-hardware architecture, DataSafe, to

realize the concept of Self-Protecting Data. This ar-
chitecture allows unvetted application programs to use
sensitive data while enforcing the data’s associated
confidentiality policy. In particular, DataSafe prevents
secondary dissemination by authorized recipients of
sensitive data, protects data derived from sensitive
data, and protects sensitive data at-rest, in-transit and
during-execution.
• DataSafe architecture is the first that bridges the se-

mantic gap by automatically translating high-level poli-
cies expressed in software into hardware tags at run-
time, without requiring modification of the application
program.
• DataSafe provides efficient, fine-grained runtime hard-

ware enforcement of confidentiality policies, perform-
ing derivative data tracking and unbypassable output
control for sensitive data, using enhanced dynamic in-
formation flow tracking mechanisms.

The rest of the paper is organized as follows. Section 2
compares DataSafe with prior work. Section 3 defines the
threat model addressed by the DataSafe architecture. Sec-
tion 4 describes the software and hardware components of
DataSafe architecture. Section 5 presents our prototype im-
plementation. Section 6 provides our test applications and
performance analysis, followed by conclusions in Section 7.

2. RELATED WORK
We first consider past work on analyzing unvetted applica-

tions. We then illustrate the vast past work on both software
and hardware information flow tracking proposals. Finally,
we describe past work in hardware-enforced security.

First, any software techniques that require access to source

code, re-writing the source code or re-compiling the source
code, do not apply to our scenarios, since we assume that the
user does not have access to the source code of third-party
applications. Software methods that analyze binaries or do
dynamic binary translations are possible for our scenarios.
The BitBlaze project [25] combines static and dynamic anal-
ysis for application binaries for various purposes, e.g., spy-
ware analysis [11, 32] and vulnerability discovery [2, 5]. For
example, their recent hybrid approach to dynamic informa-
tion flow tracking [15] can complement what DataSafe does,
to provide an even better overall protection system.

Language-based techniques [23] can prevent leaking of in-
formation by static type-checking of programs written in
languages that can express information flow directly. Pro-
grammers can specify the legitimate information flows and
policies in the program such that no illegal information flow
would be allowed when compiling the program. This static
method can be formally verified to be secure. However, un-
like DataSafe, it requires access to the source code and re-
writing or re-compiling the applications. Also, the program-
mer is responsible for specifying the data-protection policy,
unlike in DataSafe where the data owner specifies the pro-
tection policy for his data.

Software solutions involving new operating system designs
like HiStar [33] and Asbestos [9, 10, 30] proposed labeling
of system objects to control information flow. A process
(thread) that has accessed protected data is not allowed to
send any data to the network, even if the data sent has no
relation at all to the protected data. This coarse-grained in-
formation flow protection requires the application to be par-
titioned into components with different levels of privileges.
In contrast, DataSafe’s hardware-enforced information flow
tracking solution provides fine-grained protection of data at
the word level, preventing overly conservative restrictions.

Other software solutions use binary translation [22], or
compiler-assisted binary re-writing [29] to change the pro-
gram, for example, to turn implicit information flows into
explicit information flows. We rule out compiler-assisted
techniques since we do not have access to source code, but
we allow pre-processing of the program binary to instru-
ment the program [15]. However, such software-only in-
formation flow tracking approaches may be impractical due
to prohibitive performance overhead [22]. For example, to
deal with tag assignments and bookkeeping, a single data
movement instruction becomes eight instructions after bi-
nary translation. A single arithmetic/logic or control flow
instruction is replaced by 20 instructions after binary trans-
lation. Even with parallel execution of the binary transla-
tion [20], the performance overhead is around 1.5X. This is
great motivation for DataSafe using hardware information-
flow tracking for minimal performance overhead.

We argue that to track transformed protected data effi-
ciently without access to the application’s source code, some
form of hardware information flow tracking is needed. How-
ever, previous hardware solutions are not flexible enough for
our purpose. Hardware dynamic information flow tracking
solutions include Raksha [7], which can detect both high-
level and low-level software vulnerabilities, by programming
(i.e., configuring) the Raksha hardware with a small set of
four security policies at a time. Thus, only these four vul-
nerabilities can be detected. In contrast, a novel aspect of
our solution is that it allows arbitrary software security poli-
cies to be automatically translated by our DataSafe software
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Table 1: Comparison of DataSafe to prior work
in (1) expressive high-level policy, (2) automatic
translation of software policy to hardware tags, (3)
unmodified third-party applications, (4) continuous
runtime data tracking, (5) unbypassable output con-
trol, and (6) new hardware required.

Exp.
High-
Level
Pol-
icy

Auto.
Trans.

of
SW
Pol-
icy

Unmod.
App.

Runtime
Data
Track-
ing

Output
Ctrl.

New
HW

Language-
based [23]

X

HiStar [33] X X

LIFT [22] X X

RIFLE [29] X X X

Raksha [7] X(limited) X X X

GLIFT [27] X X X

Bastion [3] X X

DataSafe X X X X X X

components to runtime hardware tags, which the DataSafe
hardware uses for information tracking and output control.

GLIFT [27] is another hardware DIFT solution that tracks
information flow at a much lower hardware level – the gate
level. It uses a predicated architecture (implying re-writing
or re-compiling applications) which executes all paths of a
program to track both explicit and implicit information flow,
but at a much higher cost. While a very interesting and
potentially promising approach, all the hardware has to be
re-designed from the gates up, requiring unproven new hard-
ware design methodologies and tools. Furthermore, unlike
DataSafe, the GLIFT protection cannot support chip and
machine crossings in a distributed computing environment.

These hardware DIFT solutions either support only a few
fixed policies for detecting specific vulnerabilities [7], or re-
quire modifying the software [27, 29]. Whenever hardware
is used for policy enforcement, there is a semantic gap be-
tween the flexibility of policy specification required at the
user and domain level, and the restricted actions that can
be supported by hardware. We believe we have a solution
that bridges this semantic gap. We believe our solution is
the first that supports automatic mapping of flexible software
confidentiality policies, associated with the data not the ap-
plication, to hardware tags suitable for enforcing the data
confidentiality policy. The hardware tags are used for effi-
cient hardware information flow tracking during runtime and
for enforcing unbypassable output control. Furthermore, our
solution fits in the current software ecosystem, and does not
require any changes to the application program.

Other hardware-enabled approaches, which do not imple-
ment DIFT techniques, protect sensitive data by requiring
access to it via a trusted software component that ensures
data confidentiality [3, 4, 8, 16, 17, 18, 19, 24]. These solu-
tions rely on certain trusted components in the application
or the underlying operating system to provide data protec-
tion. Applications have to be re-written to include a trusted
component to access protected data, which is not possible
in our scenarios where we do not have access to source code.

In contrast, we allow untrusted applications to access our
self-protecting data.

The Trusted Platform Module (TPM) [28] is the industry
standard for protecting the integrity of a system’s software
stack, and is also used to protect the encryption/decryp-
tion keys which in turn protect the confidentiality of data.
However, the TPM, while being able to perform a level of
primary authorization by checking the integrity of the soft-
ware stack, has no control over the decrypted data once the
access to the keys has been granted. Our solution prevents
this problem of the secondary dissemination of confidential
decrypted data. Furthermore, while TPMs can protect soft-
ware that then protects the data, this approach ties the data
with the protected software, whereas our solution provides
application-independent data protection.

Table 1 illustrates some of the past work and compares
them to DataSafe.

DataSafe’s self-protecting data has similarities to digital
rights management (DRM). Numerous policy models exist
for expressing and interpreting usage and DRM policies such
as UCON, XrM, ODRL, etc. [13, 21, 31], however these mod-
els cannot be used successfully unless they have a trusted
computing base to enforce their policies. A key advantage of
DataSafe software is that it is policy language agnostic, and
can therefore incorporate these policy models when used in
different information domains. Furthermore, DataSafe will
also enable the use of different applications along with these
policy models while utilizing the policy enforcement trusted
computing base provided by the DataSafe architecture.

3. THREAT MODEL AND ASSUMPTIONS
We assume an attack model in which the main goal of

attackers is to steal or leak out sensitive information that
an authorized recipient is allowed to access. Attackers can
exploit the vulnerabilities within third party applications
or the operating system to leak sensitive data. The third
party applications are untrusted and may or may not have
gone through a vetting process but still may contain bugs
or vulnerabilities that can explicitly or inadvertently leak
information. We consider malicious software applications
that may leak information through transformation of the
data. However, covert channels (including implicit informa-
tion flow which we address in a separate paper) and side
channels are out of scope for this paper.

We assume that the hardware computing device is trusted
and does not contain any hardware Trojans. Also, DataSafe
software components, i.e., the policy handlers and the hy-
pervisor, are trusted and correctly implemented to carry out
their functionalities. Secure launch or secure boot technol-
ogy is employed to launch the hypervisor to ensure boot-time
integrity (e.g., Bastion [3], TrustVisor [18] or TPM [28]).
The guest operating system running on the hypervisor and
the applications running within the guest operating system
can be controlled by an attacker.

Our security model does not protect all data that exist on
a device. A piece of data can be converted into DataSafe
protected data by our architecture, and hence will not be
accessible, in plaintext, without the support of DataSafe.
All other unprotected data remains unchanged and accessi-
ble as usual. We also assume that authorized entities within
a domain are authenticated using standard authentication
mechanisms such as passphrases, private key tokens or bio-
metrics. We assume that the entities within a domain have

Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. A Software-Hardware Architecture for Self-Protecting Data. 
In Proceedings of the 19th ACM Conference on Computer and Communications Security, October 2012.



7

Hypervisor

Processor

Memory

DataSafe 
Hardware

Data
SDC Tracking 

& Output 
Control

I/O 
Devices

1

Unmodified 
3rd Party 

Application

Policy/Domain Handler

generate sdc return (handle)

DataSafe 
Software

2

3

Data
Owner Data User Start file

interaction
Session

authentication

6

8

Operating System

File
Access

Library

0Protected
Data 

+
Policy

File Management

5

get HW tags 4

file
calls

Runtime

HVSecure
Storage

HDD

Figure 3: The software and hardware components
of DataSafe. The gray parts are new and trusted
DataSafe components, while the striped file access
library is modified but untrusted. All other software
entities including the unmodified third-party appli-
cations and the operating system are assumed to be
untrusted.

access to machines enabled with our hardware and software
support if needed. Without proper support, anyone within
or outside the domain can only access the encrypted data.

The following threats are out of scope for this paper: (1)
denial of service attacks, (2) attacks such as taking a photo
of the screen, or human memory, (3) hardware attacks (e.g.,
memory remanence attack [12]), (4) covert- and side-channel
attacks, and (5) data inference mechanisms.

4. ARCHITECTURE
We first give an overview of the DataSafe architecture,

describing the overall operation of enforcing data confiden-
tiality. We next describe how the DataSafe software compo-
nents achieve the automatic translation of high-level security
policies without having to modify the third-party applica-
tions, and then we show how the DataSafe hardware compo-
nents achieve continuous runtime data tracking with output
control.

4.1 Overview
DataSafe architecture consists of software and hardware

components, as shown in Figure 3. The DataSafe software
has the following responsibilities: (1) to translate protected
data’s high-level security policy into hardware enforceable
tags (focusing only on data confidentiality in this paper), (2)
to create a secure data compartment (SDC) by associating
the tags with the plaintext data in the memory, and (3)
to achieve application independence by enabling third party
applications to use the data without having to modify them.

The key challenge in the tag generation process is that the
hardware tags must accurately reflect the permissions and
prohibitions required by the data’s security policy. Tags for
a given policy are not fixed, but rather they change depend-
ing on the context within which the policy is interpreted.

In DataSafe software, a policy/domain handler is respon-
sible for translating policies to tags, and the hypervisor is
responsible to associate hardware tags with data to create
an SDC.

Both the hypervisor and the policy/domain handlers are
assumed to be trusted code. The hypervisor maintains its
own secure storage (protected by hardware) to store keys
and other data structures. The hypervisor is protected by
the most-privileged level in the processor and directly pro-
tected by the hardware (e.g., as in Bastion [3]). The policy/-
domain handler is run in a trusted virtual machine protected
by the trusted hypervisor.

4.1.1 DataSafe Operation
DataSafe operates in four stages – Data Initialization,

Setup, Use, Cleanup and Writeback, as explained below.
Data Initialization. During the Data Initialization stage,

represented by Step 0 in Figure 3, a DataSafe package con-
taining the (encrypted) data to be protected, along with its
associated policy, is brought into a DataSafe enabled ma-
chine. The details of creation and unpacking of DataSafe
packages are explained in Section 5.1.

Setup. In the Setup stage, a secure data compartment
(SDC) is dynamically created for the data file. An SDC
consists of hardware enforceable tags defined over a mem-
ory region that contains decrypted data. Hardware tags are
generated from the policy associated with the data. Once
an SDC is created for a file, users can subsequently use the
data file via potentially untrusted applications, while the
hardware ensures that the data is used in accordance with
the associated policy.

The Setup stage takes place during Steps 1-6, as shown in
Figure 3. In Step 1, a user starts a new session by providing
his/her credentials, and is authenticated by the policy/do-
main handler. A session with an authenticated user, data
properties and other system or environment properties sets
up the context within which the data item is to be used.
During the session, the user requests file interaction using a
third-party application, as shown in Step 2. The third-party
application’s request is forwarded to the file management
module in Step 3 by the modified file access library of the
runtime. In step 4, the file management module requests
the policy/domain handler to provide the hardware tags to
be set for the file. The policy/domain handler validates the
policy associated with the data file taking into considera-
tion the current context (i.e. the user/session properties,
data properties and system/environment properties), and
generates appropriate hardware tags for the data file.

In Step 5, the file management module requests the hy-
pervisor to create an SDC for the data file with the corre-
sponding hardware tags. In Step 6, the hypervisor decrypts
the data file, and creates an SDC for the data file associ-
ating the appropriate tags with each word in the SDC. In
Step 7, the file handle of the SDC is returned back to the
policy/domain handler and the execution is returned back
to the application.

Use. In the Use stage, the DataSafe hardware tags each
word of the protected data in each SDC and persistently
tracks and propagates these tags, as shown by Step 8. Once
an SDC is set up for a data file, in accordance with the
session properties, any third-party application can operate
on the protected data as it would on any regular machine.
The DataSafe hardware will ensure that only those actions
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that are in conformance with the data-specific policy are
allowed.

Cleanup and Writeback. After the application finishes
processing the data, the DataSafe hypervisor re-packages the
protected data and the policy if the data was modified or
appended to, re-encrypts the protected data, removes the
associated tags within the SDC, then deletes the SDC.

4.2 Runtime Translation of Expressive Soft-
ware Policy to Hardware Tags

The two DataSafe software components, the policy/do-
main handlers and the hypervisor take a high-level policy
specified in a policy model, translate the policy into the
hardware enforceable tags and create an SDC for the pro-
tected data.

Figure 4 shows the two step process employed by DataSafe:
(1) a security policy is interpreted to determine what high-
level actions are permitted (policy interpreter), and 2) de-
pending on the high-level actions permitted, the appropriate
hardware tags are chosen (tag generator).

DataSafe is designed to be generic, supporting multiple
policies languages and policies such as BLP, Chinese Wall,
etc. Therefore, policy rules from different policies are first
represented in a common policy representation model1.

A policy is expressed and interpreted in terms of a context,
which typically includes information about user properties,
data properties and system properties necessary to interpret
the policy appropriately, in a given domain context. For ex-
ample, a BLP policy will require the user’s security clearance
and the data’s security classification, whereas a RBAC pol-
icy will require the user’s role. The context information is
collected and stored in the form of {variable, value} pair.
The policy and the context information are then fed to the
policy interpreter, which determines what high-level actions
are permitted by the policy, on the data, under the current
context values. If no high-level action is permitted, then
access is denied at this point. If this set is non-empty, it
means that the user has authorized access to the data, but
is expected to use the data only in the manner defined by
the permitted action set. The permitted action set is then
used to calculate the hardware tags, and to generate an SDC
for the data.

Policy Model. Our policy model consists of a set of re-

1While this is not absolutely essential, we use the common
form to preclude the need for a separate policy interpretation
engine for every policy.

Table 2: The correspondence between policy-
prohibited activities and the hardware tags that re-
strict that activity.
Actions Category Restriction Tag

Edit Access No Write to SDC 0x08

Append Access No extensible SDC 0x10

Read Access No read from SDC 0x20

View Transient
output

No copy to display 0x01

Send
Plain-
text

Persistent
output

No copy to network 0x02

Save
Plain-
text

Persistent
output

No copy to disk 0x04

stricted actions {ra1, ra2, ra3, ..., ran}, where each restricted
action includes an action associated with a constraint, rep-
resented by rai = {actioni, constrainti}. The action, is
a high-level action such as “read, “play”, “view”, etc. The
constraint, is a first-order predicate formula defined in terms
of context variables. A context is defined by a set of variables
{v1, v2, ..., vn}, that represents user, data and system prop-
erties. A given constraint evaluates to either true or false
based on the values of the context variables. For a given re-
stricted action, rai = {actioni, constrainti}, if constrainti
evaluates to true, then actioni is permitted, otherwise it is
not permitted.

Permitted Policy-level Actions to HW tags. For ev-
ery policy, the semantics of its high-level actions, described
within the policy, have a specific interpretation in terms of
hardware-level actions. Based on this interpretation, ev-
ery high-level action maps to a set of hardware tags. At
present, the DataSafe prototype supports six hardware tag
values, as shown in Column 4 of Table 2, but the architec-
ture can support more tag values. Hardware restriction tags
are expressed in the form of a bit vector, where each bit,
when set to 1, corresponds to a type of restriction. The
hardware tags are restrictive, which means that if a partic-
ular tag bit is set, that particular hardware-level action is
prohibited. For example, if the tag bit 0x01 is set for an
SDC, the DataSafe Hardware will prevent any application
and the OS from copying that SDC’s data to the display
output. On the other hand, if the policy permits the action
“view”, then tag 0x01 should not be set. Hence, for a given
policy interpretation, the set of tags corresponding to the
permitted actions are not set, and the rest of the tags are.
The tag generation process is independent of whether a pol-
icy is attached to a particular datum, or it applies system
wide to all data items. Hence, DataSafe can support both
mandatory and discretionary access control policies.

DataSafe hardware tags are divided into three categories:
(1) Access, (2) Transient Output, and (3) Persistent Out-
put tags. Tags in the Access category, which include write,
append and read, prevent in-line modification, appending or
reading of an SDC. The tags in the Transient Output cat-
egory refer to the output devices where the lifetime of the
data ends after the data is consumed by the device, e.g., the
display or the speaker. The Persistent Output category deals
with the output devices where data remain live after being
copied to those devices, e.g., network or disk drives. If an
application or a user, after gaining authorized access to pro-
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Table 3: BLP policies

Context Variables:
sec clear ∈ {Top Secret, Secret, Confidential, Unclassified}
sec class ∈ {Top Secret, Secret, Confidential, Unclassified}
Action to Tags Map:
read⇒ {No copy to display, No read}
write⇒ {No write to SDC, No append to SDC}
leak data (implicit) ⇒ {No copy to disk, No copy to net-
work}
BLP Policy:
ra1 := {action := read, constraint := sec class ≤
sec clear},
ra2 = {action := write, constraint := sec class ≥
sec clear}
Use Case1: sec clear := Secret, sec class := Confidential
Actions permitted: {read}
Actions prohibited: {write, leak data}
Tags set: {No write to SDC, No append to SDC, No copy
to disk, No copy to network}
Use Case2: sec clear := Secret, sec class := Top Secret
Actions permitted: {write}
Actions prohibited: {read, leak data}
Tags set: {No read, No copy to display, No copy to disk,
No copy to network}

Action to Tags Map (Extended BLP):
read⇒ {No read}
view ⇒ {No copy to display}
write⇒ {No write to SDC, No append to SDC}
prevent leakage⇒ {No copy to disk, No copy to network}

tected plaintext data, saves the data in plaintext form on a
disk drive, or sends the plaintext over the network, the data’s
confidentiality is permanently lost. Most policies don’t ex-
plicitly mention the requirement to prevent such activities,
but rather assume that the authorized user is trusted not
to illegally leak the data out. In order to enforce this criti-
cal and implicit assumption, in DataSafe systems, these two
tags are always set, for all confidentially protected data, for
all policies, except for policies that have explicit declassifi-
cation rules.

4.2.1 Bell-LaPadula Policy Example
To give a concrete example of how the policy transla-

tion works, we consider a Bell-LaPadula (BLP) policy de-
fined over a multi-level security (MLS) environment. In this
system, each user has a Security Clearance and each data
item has a Security Classification. Both properties range
over the ordered set {Top Secret > Secret > Confidential >
Unclassified}. The BLP policy states: “A user at a security
clearance x can only read data items with security classifi-
cation y such that y ≤ x, and can write only to data items
with security classification z such that z ≥ x”. The represen-
tation of this policy in our standard policy model is shown
in Table 3.

The context variables sec clear represents Security Clear-
ance and sec class represents Security Classification. BLP
has read and write as high-level actions, while leak data is
an implicit action. Each action corresponds to the hardware
tags as shown. The BLP policy is the set of restricted actions
{ra1, ra2}, where the constraints are expressed as first or-
der formulas over context variables sec clear and sec class.
In Use Case 1, action read is permitted according to the

Table 4: Example entries of the sdc_list software
structure.

ID Virtual addr Machine addr Size Tag

id1 vaddr1 maddr1 size1 0x08
id2 vaddr2 maddr2 size2 0x1C

BLP policy, and hence read tags are reset, while write and
data leakage tags are set. In Use Case 2, write tags are
reset, while read and data leakage tags are set.

Traditional BLP policy has only two actions read and
write. It does not distinguish between reading some data
from the memory and viewing data on the display screen.
Now consider a situation where the users are not humans but
applications, and certain applications are allowed to read
the data, but not allowed to display. For example, an appli-
cation may be allowed to read and process passwords, but
it is not allowed to display the plaintext password on the
screen. For such applications, read and view are two sepa-
rate high-level actions. In DataSafe such an extended BLP
can be supported by introducing a new high-level action and
changing the action-tag map as shown in Table 3.

4.3 Unmodified Applications
In DataSafe, the confidentiality-protection policy is de-

fined for the data and packaged with the data (see Sec-
tion 5.1), not defined by a particular application or its pro-
grammer. In other words, the data’s policy is enforced no
matter which application is accessing the data; therefore, ap-
plications are agnostic of DataSafe’s operation and do not
have to be modified to work with DataSafe. Only the file
access library in the runtime or the interpreter has to be
modified to redirect file calls of the application to the file
management module of the DataSafe Software. Further-
more, DataSafe-protected data are protected with the SDCs,
where the SDCs are defined at the hardware level, the layer
below any software entity.

This is one of the key design features of DataSafe – to de-
fine the SDC over the physical machine memory, instead of
the virtual memory. This enables us to achieve application
independence and cross boundary data protection. Appli-
cations access their data through virtual memory. Once an
SDC is created in the physical memory, an application can
access the data within the SDC by mapping its virtual mem-
ory to the SDC in the physical memory. This data can be
passed among multiple applications or the OS components.

Once the hardware restriction tags are determined for a
given data file, DataSafe associates those tags with the mem-
ory region allocated to the file, without having to change how
the application accesses the protected data. Such an associ-
ation is achieved by a secure data compartment (SDC). The
DataSafe hypervisor is responsible for the creation, mainte-
nance and deletion of SDCs, and maintains an SDC list as
shown in Table 4. An SDC is a logical construct defined over
a memory region that needs to be protected, independent of
the application. Every SDC has a start memory address, a
size, and a tag combination specifying its activity-restricting
rules with which the data within the SDC are protected.

SDCs can be defined at different granularities. DataSafe
can define different types of SDCs over different parts of the
data object. For example, different sections of a document,
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Figure 5: The DataSafe hardware components
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different tables in a database, or different parts of a medical
record need different types of confidentiality protection.

For applications to access the DataSafe-protected data in
an SDC, we modify the application file access library to redi-
rect the access requests from the applications to the policy/-
domain handler(s), as shown previously in Figure 3. The
modified file access library does not have to be trusted. In
case the access request is not redirected by a malicious li-
brary for protected data, only encrypted data will be avail-
able to the application, which is a data availability issue
instead of a confidentiality breach. We describe in more
detail about our modified file access library in Section 5.2.2.

4.4 Continuous Runtime Data Tracking
In order to provide continuous runtime protection for the

protected data (now in plaintext) within an SDC while the
application is executing, we use hardware mechanisms to
track each word of the protected data throughout the exe-
cution of the untrusted application. DataSafe extends each
64-bit data word storage location with a k-bit SDC ID and
a j-bit tag. The shadow memory shown in Figure 5 is a por-
tion of the main memory set aside for storing the tags. It is
a part of the hypervisor secure storage, which the DataSafe
hardware protects and only allows the hypervisor to access.
The hardware tag is set by the hypervisor when an SDC is
requested to be set up by the policy handler. Note that only
the hypervisor has read/write access to the shadow memory
for adding and deleting the tags for the SDCs.

To track and monitor where the protected data resides in
the system, we propagate the tags along with the data from
within the SDC as it goes outside the SDC to other parts
of memory. There are two levels of propagation for the tag
bits of an SDC. First, the hardware tag bits are propagated
from the shadow memory to the last level on-chip cache,
when a cache line is brought from the main memory due
to a cache miss. The same tag bits are copied throughout
the cache hierarchy, i.e., up to the level-1 data cache. The
general purpose registers in the processor are also extended
with the ability to propagate the tag bits. On memory load
instructions, the tag bits are copied from the level-1 data
cache to the destination register.

Each instruction executed in the processor performs tag
propagation operations along with its arithmetic or other op-
erations. This way the hardware restriction tags can track
sensitive data even if the data has been transformed or en-
coded by the application. We use the principles of existing

information flow tracking techniques2 [6], where the source
tag bits are propagated to the destination register as long as
the source register has a nonzero tag bit. In the case where
both of the source registers have nonzero tag bits, we take
the union of the two tag bits to give the destination regis-
ter a more stringent policy. For load instructions, the union
of the tag of the source address register and the tag of the
source memory data is propagated to the tag of the desti-
nation register. For store instructions, the union of the tag
of the source data register and the tag of the source address
register is propagated to the tag of the destination memory
address. Thus, the tag propagations for load and store in-
structions account for the index tag for table lookups. For
integer arithmetic and multiply and divide instructions, the
tag is a combination of the tag of the first source register,
the tag of the second source register, the tag of the condition
code register and the tag of other registers if necessary, e.g.,
the y register3 for the SPARC architecture. The tag of the
condition code register is also updated if the instruction has
these side-effects.

If both of the source registers are tagged with the same
SDC ID, the destination register is also tagged with this
SDC ID. If they are not from the same SDC, we assign a
reserved ID tag of 2k − 1. Since the resultant data does not
belong to either of the two source SDCs, the SDC IDs are
not combined; rather a special tag is substituted to indicate
that this is an intermediate result.

The tag propagation rules described above handle explicit
information flow from the data within an SDC, where the
destination operands receive direct information from the
source operands. There are also cases where the destination
operand receives information from the source operand(s)
through a third medium, e.g., the integer condition code or
branch instructions. This kind of information flow is implicit
but can be exploited to leak information. A vanilla dynamic
information flow tracking system without considering such
information flow would lead to false-negatives since informa-
tion could be leaked without being tagged. However, a naive
approach that tags any instruction that is dependent on the
branch condition’s tag may lead to an impractically large
amount of false-positives [1, 15]. Such implicit information
flows (e.g., where the condition is tagged with restrictions)
are a type of software covert channel and covert channels are
not in the scope of this paper as stated in our threat model,
due to lack of space. (However, we do present our full solu-
tions for implicit information flow in a separate paper.)

4.5 Hardware Output Control
DataSafe hardware checks to see whether copying the data

to another memory location or output device is allowed,
or whether writing to memory locations within the SDC
is allowed, according to the hardware tags. In particular,
hardware checks if a memory location to be written to is a
memory-mapped output device, and enforces output control
according to the tag of the word being written.

We introduce a new hardware structure inside the proces-
sor: the output memory map, mem_map. The mem_map is

2Special cases such as zeroing a register (e.g., “xor %eax,
%eax” on x86) are treated differently. For example, the des-
tination tag is cleared in this example.
3The y register is used for storing the upper 32-bit result
in multiplication and the remainder in division in SPARC
architectures.
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Table 5: Example entries of the output memory map
mem_map hardware structure.

Start addr End addr Mask

addr1 addr2 Display
addr3 addr4 Disk

only accessible to the trusted hypervisor. It stores memory-
mapped I/O regions and I/O ports to enable the hardware to
know if a memory store instruction is attempting to perform
output. It is checked on the destination address of memory
store instructions, or any other instructions that write to an
output device (e.g., in and out instructions in x86 archi-
tecture), to see if there is a violation of the output policy
specified in the tag associated with the data to be written.

Table 5 shows example entries in the mem_map hardware
structure. The device mask is a bit mask which indicates its
functionality e.g., display, speaker, USB storage, NIC, etc.
Two devices having the same functionality would have the
same mask value. In our DataSafe prototype, the mask is
designed to match the activity-restricting bits in the hard-
ware tags, so that it can be easily used by the hardware
check logic to determine whether data with a specific tag
value can be written to the I/O device.

4.6 System Issues
DataSafe’s tag propagation is performed by the hardware

logic on the physical memory; therefore the propagation
mechanism is not changed when the protected data is passed
between applications, OS components or device drivers.

Direct Memory Access (DMA) data transfers do not need
to include the hardware activity-restricting tags, which are
runtime tags only and are not stored in persistent storage or
transmitted on a network. DataSafe treats DMA regions as
output device regions and performs output control to pre-
vent protected data (based on their hardware tags) from
being written to these DMA regions. The DataSafe hyper-
visor also prevents SDCs from being created over allocated
DMA regions (and vice versa) so that data in SDCs cannot
be over-written by DMA input transfers.

5. IMPLEMENTATION

5.1 Encrypted Data and Key Management
Creation and Packaging. A piece of data can be turned

into a piece of DataSafe-protected data on any computing
device within the domain that is enabled with DataSafe sup-
port. The data owner specifies the confidentiality policy for
the data. We describe one implementation of key manage-
ment for a domain, e.g., a hospital; many other implemen-
tations are possible. The format of a piece of DataSafe-
protected data is shown in Figure 6. To create DataSafe-
protected data that binds the owner-specified policy to the
data, the hypervisor first generates a new symmetric key
KFE , called the file encryption key4, and uses KFE to en-
crypt the data. KFE is then encrypted by the domain man-
ager’s5 public encryption key, KDM . The trusted DataSafe

4Each protected data file has its own random file encryption
key.
5A domain manager is the administrator or authority that
manages the computing devices within a domain and it could
be installed on any DataSafe machine.

m︷ ︸︸ ︷
m′︷ ︸︸ ︷ OriginatorSignature︷ ︸︸ ︷

{KFE}DM EKFE (Data) Policy [hash(m′)]HVPri

A→ B : m,CertA
B → DM : {KFE}DM

DM → B : {KFE}HV B

Figure 6: Encrypted DataSafe package for storage
and for transmission between machines: the origi-
nator (A), the receiver (B) and the domain manager
(DM), with respective DataSafe hypervisors on A
and B denoted as HV A and HV B. [x]HV denotes
a private key signature or decryption operation by
HV , while {x} denotes a public-key verification or
encryption operation. CertA denotes the public key
certificate of A that is signed by the domain man-
ager.

hypervisor then calculates a cryptographic hash over the en-
crypted KFE , the encrypted data and the owner-specified
policy and signs the hash using the its private signing key,
HVPri, as the Originator Signature.

Transfer. Once a DataSafe self-protecting data package
is created, it can be moved to any DataSafe enabled com-
puting device within the domain for use. In a non DataSafe-
enabled machine, only encrypted data can be accessed.

Unpacking. When an authorized recipient receives a
piece of DataSafe-protected data and accesses it with an ap-
plication, the policy/domain handler validates the data and
the policy, and retrieves the file encryption key KFE . Vali-
dation of the data and the policy is done by verifying that
the originator signature was signed by a trusted hypervisor
within the domain. A hash is re-calculated and compared
with the decrypted hash in the signature, to ensure that the
data, the policy and the encrypted file encryption key have
not been tampered with.

Since the file encryption key KFE is encrypted with the
domain manager’s public encryption key, the policy/domain
handler follows a secure protocol to retrieve the file encryp-
tion key. The domain manager ensures that the requesting
hypervisor is not on the revocation list; otherwise the request
is denied. In DataSafe, public-key crypto is used for system
identification and non-repudiation to protect smaller-size
items such as the KFE , and efficient symmetric-key crypto is
used for protecting the larger data content. Since the KFE

is encrypted, it is stored on the user’s machine in the normal
unsecured storage, whereas the hypervisor’s private signing
key, HVSign, and the domain manager’s secret decryption
key are stored in their respective DataSafe machine’s hyper-
visor secure storage (See Figure 3). Note that since the KFE

is encrypted using the domain manager’s public encryption
key, no key exchange between different DataSafe systems is
required. Only individual communication with the domain
manager is needed (Figure 6). To prevent the domain man-
ager from becoming a bottleneck or a single point of failure,
multiple or backup key management servers can be installed
on other DataSafe machines to provide enhanced data avail-
ability.

Redistribution and Declassification. An authorized
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Table 6: The policy/domain handler API.
API Call Description

open_file Open an existing DataSafe protected file.

close_file Close an open DataSafe protected file.

read_file Read from an open DataSafe protected
file.

write_file Write to an open DataSafe protected file.

user can access the DataSafe protected material in plaintext,
and also pass on the original DataSafe encrypted package
(signed by the originator) to another machine. If he trans-
forms the protected data and wants to pass this modified
data to another machine, he has to re-package it (as de-
scribed for packaging above) and sign with his own trusted
hypervisor’s private key.

Some data items may get declassified to be used on non-
DataSafe devices. Declassification is done by the Domain/Pol-
icy Handler while the data is not in use (not loaded into
memory) by any application, and thus precludes the need to
un-tag the data. This allows for authorized declassification
by trusted software components – by decrypting the data,
and dissociating any policy associated with it. Once declas-
sified, such data can be treated as data that can be used on
any device.

5.2 DataSafe Software

5.2.1 Policy Handler
The policy/domain handler is primarily responsible for

hardware tag generation from the high-level policy. It is also
responsible for setting up the context, which includes main-
taining the values for user properties, data properties, and
system/environment properties. Since both these responsi-
bilities are specific to a particular information domain, we
have a separate policy/domain handler for each domain. At
present, we have implemented a policy/domain handler for
Multi-level Security systems that supports BLP and Biba
policies, a policy handler for the Chinese Wall policy, one
for Clark-Wilson, and one for medical information systems.
In all policy/domain handlers, policies are represented in the
standard policy model using the XML format. New policies
can be specified in XML and interpreted directly by the
policy interpreter. Each policy/domain handler maintains a
separate database for storing user and data properties. All
policy handlers share a common policy interpreter, which is
possible since all policies are represented in a standard form.

5.2.2 File Management Module
For the prototype implementation, DataSafe software has

a separate file management module that provides a file man-
agement API for accessing DataSafe-protected files and pro-
vides file handling functions, as shown in Table 6. The file
management module loads the encrypted file into the mem-
ory, and forwards the file access request to the policy/do-
main handler, which translates the policy associated with
the file into hardware tags, and requests the hypervisor to
set up SDCs for the file.

Currently, the file management module supports file han-
dling functions for Ruby-based applications. We have mod-
ified the Ruby Interpreter to redirect file handling calls to
the file management module. This file management mod-

Table 7: The new hypercalls.
Semantic Description

sdc_add(
addr, size)

Adds a new SDC protecting policy-
encoded data starting at virtual ad-
dress addr with size size

sdc_del(sdcid) Deletes an existing SDC with ID =
sdcid

sdc_extend(
sdcid, size)

Extends an existing SDC with ID =
sdcid, with contents of size size

ule provides a file handle to the Ruby Interpreter, which
it subsequently uses for file operations. If a file attempts
to obtain untagged data by bypassing the redirection of file
calls, it only ends up getting encrypted content. Similar file
management modules for non-interpreted languages such as
C is under development with a modified C-library (libc)
for redirected protected file access.

5.2.3 Hypervisor
The hypervisor is responsible for the instantiations of SDCs,

the management of domain-specific secret keys and the pro-
vision of environment properties for context generation.To
manage the SDCs, the hypervisor keeps a software struc-
ture, called the active SDC list, sdc_list, which stores a
list of active SDCs for all policy handlers.

Table 7 shows the new hypercalls introduced to support
the SDCs: sdc_add, sdc_del and sdc_extend. Hyper-
calls for context generations and others are omitted. The
sdc_add hypercall is called when the policy/domain han-
dler requests a new SDC. The sdc_del is called later to
delete an SDC. The sdc_extend is used when the high-level
policy allows for appending to the protected data, where the
size of a SDC is adjusted to include appended data.

5.3 DataSafe Prototype
Our prototype implementation builds upon the open source

processor and cache hardware and the hypervisor in the
OpenSPARC platform. The current prototype is imple-
mented in the Legion simulator of the OpenSPARC plat-
form. This simulates an industrial-grade OpenSPARC T1
Niagara processor with 256 MB of memory, running the Ul-
traSPARC Hypervisor with Ubuntu 7.10. We utilize the
load from/store to alternate address space (ldxa and stxa)
instructions in the SPARC architecture to access our new
hardware structure, mem_map, at the same time limiting
the access to only hyperprivileged software.

The open source hypervisor in the OpenSPARC platform
is modified and extended with the functionality to support
secure data compartments (SDCs). Our new hypercall rou-
tines are implemented in SPARC assembly and the SDC-
specific functions are implemented using the C language.
The policy/domain handler is implemented in the Ruby lan-
guage and the policies are expressed in XML format.

6. ANALYSIS
This section evaluates the security, performance and cost

of the DataSafe architecture.

6.1 Security Tests
We tested our prototype with several experiments.
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Table 8: A summary of experimental results.
# Test Case Attacks Res.

SW to HW Tags

1 BLP read, write, output ctrl. 3

2 Chinese Wall read, write, output ctrl. 3

3 Hospital Policy Nurse Attack 3

Doctor Attack 3

Application Independence

4 Editor (Ruco) read, write, output ctrl.,
transformation

3

5 Search (Grepper) read, write, output
ctrl., transformation,
fine-grained control

3

6 Text Transformation
(HikiDoc)

password leak (allow
read but no display)

3

6.1.1 Support for high-level policies
We first test the support for high-level policies, automat-

ically mapped into hardware tag generation at runtime. We
tested three different types of policies: a multi-level security
policy using the BLP policy (explained in Section 4.2.1), a
multi-lateral security policy using the Chinese Wall policy,
and our own concocted hospital policy.

All these policies were first expressed in the DataSafe pol-
icy model in an XML format. The policies were then inter-
preted using the DataSafe policy interpreter and hardware
tags were generated under different contexts. For each pol-
icy, we tested the read/display, write and output control.
With the hospital policy we tested the scenarios of a ma-
licious nurse leaking out private information, and the acci-
dental leak of psychiatric data through email by a doctor
(discussed in the Introduction).

6.1.2 Application Independence
Next, we tested DataSafe’s capability to support unmodi-

fied third party applications, using three applications, Ruco,
Grepper and HikiDoc, downloaded from RubyForge. All
three are Ruby-based applications. Ruco is a lightweight
text editor, Grepper provides the same functions as the
“grep” command-line utility for searching plain-text data
sets for lines matching a regular expression, and HikiDoc
reads text files and converts them to HTML documents.
We were able to run all the three applications on DataSafe,
unmodified.

The experiments with the Ruco editor include basic read-
/display and write control. In addition we modified Ruco
to test illegal saving of plaintext on the disk, either with or
without data transformation. A similar set of experiments
were carried out with the Grepper application. In addition,
with Grepper we tested fine-grained tracking by creating
SDCs with different tags and sizes over different parts of a
file – DataSafe could successfully track the data and enforce
fine-grained output control of sensitive data.

With HikiDoc we tested a scenario for authorized read
but prohibited display. In this scenario, simulating ”pass-
word leak” attacks, the HikiDoc application takes two files
as input: 1) text file (to be converted to HTML), and 2) a file
containing passwords for user authentication. The program
is supposed to read the password file for authentication, but

not leak the password out. We inserted a malicious piece of
code in the application which transforms the password into
a code, and then distributes the code at predefined locations
in the HTML file. The attacker can then retrieve the code
parts from the HTML file, assemble the code, and reverse
the transformations to get the original password. DataSafe
could track the transformed pieces of a password and pre-
vent their display.

In all these applications, the data read from the file is
passed through different Ruby libraries, the Ruby Inter-
preter, and the operating system, before being displayed.
In addition, the data is processed in different formats before
being output in a presentable form. Tests on these appli-
cations show that DataSafe is application independent, can
continuously track protected data after multiple transforma-
tions and can do this across multiple applications in the user
space, and across the user-OS divide.

6.1.3 Continuous Data Tracking and Output Control
Apart from testing policy support and application inde-

pendence, the experiments above also test the capability of
DataSafe to enforce SDCs and hardware activity restricting
tags. This includes the capability to track protected data in
a fine grained manner across applications and OS, and to en-
force output control only on that data which is tagged with
such a restriction. The insight we derived from the above
tests is that a more comprehensive, yet quick, coverage can
perhaps be achieved by just a small set of synthetic test
cases which represent different classes of attacks that can
leak protected data, as shown in Table 9. In each test case,
programs were run on the DataSafe machine (DS column),
and on an existing non-DataSafe machine (nDS column).
For each test case, the sensitive data files were protected by
a policy to prohibit the test case scenario.

Test cases 1-5 of Table 9 test the output control capa-
bilities of DataSafe based on output port types. In these
cases, SDCs were created to prevent edit, append, save, send
over the network, and display. Test cases 6-8 represent data
transformation attacks by a single program. In these cases, a
test program reads and transforms the data multiple times,
and then tries to send the data out on one of the output
ports (i.e. disk, network and display). Test cases 9-11 rep-
resent cross program attacks, where data is read by Program
1 (P1) and passed on to Program 2 (P2) which carries out
the attack. Test cases 12-14 represent transformation and
cross program combined attacks. In these test cases, data is
read by Program 1(P1) and transformed multiple times, and
then the transformed data is sent to Program 2 (P2), which
carries out the attack. In test case 15, different parts of a
file were protected by SDCs with different protection tags.
DataSafe was able to prevent different attacks targeting each
of these protected segments. In all the test cases, the attack
succeeded in the existing machine (nDS), but DataSafe (DS)
was successful in defeating the attack.

6.2 Performance and Cost
Since DataSafe is a software-hardware architectural solu-

tion, its advantages come at the cost of changes in both hard-
ware and software. These costs are in two distinct phases: 1)
the Setup (and Termination), carried out by DataSafe soft-
ware, incurs performance costs in the redirection of file calls
and setting up of SDCs, and 2) the Operation phase, carried
out by DataSafe hardware, incurs performance costs due to
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Table 9: Test cases for illegal secondary dissemina-
tion and transformation tested for DataSafe (DS)
and non-DataSafe (nDS) machines. “F” represents
a file, and “P” represents a program. “7” means at-
tack failed (good), and “3” means attack succeeded
(bad).

No.Test Case DS nDS

Output Control

1 edit [F1, P1] 7 3

2 append[F1, P1] 7 3

3 read[F1, P1] ; save[F1, P1] 7 3

4 read[F1, P1] ; send[F1, P1] 7 3

5 read[F1, P1] ; display[F1, P1] 7 3

Transformations

6 read[F1, P1] ; transform[F1, P1] ; save[F1, P1] 7 3

7 read[F1, P1] ; transform[F1, P1] ; send[F1, P1] 7 3

8 read[F1, P1] ; transform[F1, P1] ; display[F1, P1] 7 3

Cross-Program

9 read[F1, P1] | save[F2, P2] 7 3

10 read[F1, P1] | send[F2, P2] 7 3

11 read[F1, P1] | display[F2, P2] 7 3

Transformations and Cross Program

12 read[F1, P1] ; transform[F1, P1] | save[F2, P2] 7 3

13 read[F1, P1] ; transform[F1, P1] | send[F2, P2] 7 3

14 read[F1, P1] ; transform[F1, P1] | display[F2, P2] 7 3

15 Fine-grained Transformation and Tracking 7 3

information flow tracking and output control. We analyze
the cost of these changes separately, and then discuss the
end-to-end cost of running third party applications.

6.2.1 Software Performance
Table 10 shows the costs incurred for file operations open,

add sdc read, write, delete sdc and close. The overhead of
open is due to file access redirection and the setting up
of memory mapped regions which does not take place in
non-DataSafe machines. The cost of adding and deleting
SDCs on DataSafe is small compared to the other opera-
tions. These performance costs are the same for any file
size.

In contrast, we actually achieve better performance dur-
ing the Operation phase for read and write operations in
DataSafe because of the use of memory mapped file opera-
tions. These performance gains are directly proportional to
the file size (shown for reading or writing a 2.5MB file in
Table 10). Hence, as the file size increases, the performance
costs of open and close get amortized leading to better re-
sults. This is verified by the total application execution
times of different file sizes, shown in Table 11. As the file
size increases, the relative performance cost of DataSafe de-
creases. For a reasonable file size of 2.5MB, the performance
cost of DataSafe is only about 5%.

6.2.2 Hardware Performance
We now evaluate the hardware performance overhead dur-

ing the Operation phase. The hardware tags can be added
to the existing processor datapaths by extending the widths
of the registers, buses and caches (as shown in Figure 5).
Alternately, as shown in Figure 7, they can be a separate

Table 10: Performance costs of DataSafe software
operations vs. non-DataSafe (in cycles on the Legion
simulator).

Operation non-DataSafe DataSafe

open 117521.4 341109.8

add sdc N/A 10177

read 9016594 2847026

write 2847026 1659347

delete sdc N/A 3976

close 22076.4 278525

Table 11: Performance cost (in seconds) of running
Hikidoc application on increasing file sizes.

App 0.5 MB 2.5 MB

non-DS DS non-DS DS

Hikidoc 0.53 0.67 (26.42%) 3.49 3.68 (5.44%)

and parallel “tag datapath”. This clearly shows that the tag
propagation logic is done in parallel with the instruction ex-
ecution, hence the hardware tag propagation does not incur
runtime overhead, as also found in [7].

Since all tag propagation operations can be done in par-
allel, the only source of hardware runtime overhead involves
the output checking of memory store instructions. How-
ever, memory stores are not on the critical path, as opposed
to memory loads, and normally stores are delayed waiting
in the store buffer queue for an unused cache access cy-
cle. Hence, the output checking can be performed while the
memory store instruction sits in the store buffer or the mem-
ory write buffer. Output control involves checking against
the mem_map structure, similar to the operation of a victim
buffer [14] or a small fully associative cache, with a differ-
ent comparator design. The comparator for a victim buffer
is testing for equality, whereas we test for inequality. Our
hardware FPGA implementation of inequality versus equal-
ity comparators showed that they had comparable latency.
Therefore, the net effect of performing output checking on
store instructions is equivalent to adding a one cycle de-
lay for store instructions waiting in the store buffer queue.
Hence, the output checking has no discernible impact on
the overall processor bandwidth (in Instructions executed
Per Cycle, IPC).

6.2.3 Storage Overhead and Complexity
The software complexity of DataSafe amounts to a total

of 50% increase in the hypervisor code base, about half of
which was for a suite of encryption/decryption routines for
both asymmetric and symmetric crypto and cryptographic
hashing algorithms (Table 12). Each sdc_list entry takes
up about 26 bytes of memory space, considering a full 64-
bit address space. The total storage overhead incurred by
the sdc_list varies according to the number of entries in
the sdc_list. In our prototype implementation 20 entries
are typically used, amounting to around half a kilobyte of
storage overhead.

For the DataSafe hardware, the main cost comes from the
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Figure 7: One possible implementation of the
DataSafe information flow tracking processor archi-
tecture. White boxes are existing components while
grey boxes are new.

Table 12: The complexity of DataSafe’s software and
hardware modules in terms of source lines of code
(SLOC).

Ruby C

Policy/Domain handler 1197 207

Software SPARC Assembly C

Base hypervisor 37874 35066

DataSafe hypervisor 41657 51959

Crypto 0 16045

Hardware SPARC Assembly C

Base OpenSPARC 1050 51395

DataSafe hardware 0 3317

cache and memory overhead for storing the tags. For a 10-
bit tag per 64-bit word used in our prototype, the storage
overhead is 15.6% for the shadow memory, on-chip caches
and the register file. Existing techniques for more efficient
tag management [26] can be applied to reduce storage over-
head. The tag storage includes 4 of the 6 new (grey) CPU
components in Figure 7. The remaining 2 components (Tag
Operation and Output Control) discussed above, are low
complexity components.

7. CONCLUSION
We presented the DataSafe architecture for realizing the

concept of self-protecting data. DataSafe enables owners of
sensitive data to define a security policy for their encrypted
data, then allow authorized users and third-party applica-
tions to decrypt and use this data, with the assurance that
the data’s confidentiality policy will be enforced and plain-
text data will be prevented from leaking out of these au-
thorized use sessions. Data is protected even if transformed
and obfuscated, across applications and user-system transi-
tions. Data is also protected when at-rest or in-transit by
encrypted, policy-attached, DataSafe packages.

DataSafe hardware uses our enhanced dynamic informa-
tion flow tracking (DIFT) mechanisms to persistently track
and propagate data in-use, and to perform unbypassable
output control to prevent leaking of confidential data. Be-
cause this is done in hardware, performance overhead is min-

imal. However, unlike previous hardware DIFT solutions,
DataSafe’s key novelty is in seamlessly supporting flexible
security policies expressed in software, bridging the seman-
tic gap between software flexibility and efficient hardware-
enforced policies. DataSafe is also application independent,
thus supporting both legacy and new but unvetted applica-
tions. This is often a practical necessity, since users have
no means to modify third-party program executables. But
more importantly, it provides the separation of data protec-
tion from applications, which we feel is the right architec-
tural abstraction.

Self-protecting data, with unmodified legacy applications,
may seem an unreachable goal, but we hope to have shown
that it may be possible if we are willing to consider new
hardware enhancements with a small trusted software base.
We hope that DataSafe provides the architectural founda-
tion over which multi-domain, multi-policy, end-to-end self-
protecting data solutions can be further researched for dis-
tributed systems.
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