

Forward-Secure Content Distribution to Reconfigurable Hardware

David Champagne1, Reouven Elbaz1,2, Catherine Gebotys2, Lionel Torres3 and Ruby B. Lee1
1Princeton University USA, {dav, relbaz, rblee}@princeton.edu

 2University of Waterloo, Canada, {reouven, cgebotys}@uwaterloo.ca
3LIRMM University of Montpellier 2/CNRS, France, lionel.torres@lirmm.fr

Abstract

Confidentiality and integrity of bitstreams and
authenticated update of FPGA configurations are
fundamental to trusted computing on reconfigurable
technology. In this paper, we propose to provide these
security services for digital content broadcast to
FPGA-based devices. To that end, we introduce a new
property we call forward security, which ensures that
broadcast content can only be accessed by FPGA chips
configured with the latest bitstream version. We
describe the hardware architecture and
communication protocols supporting this security
property, and we evaluate the associated cost.

1. Introduction

Field-Programmable Gate Array (FPGA)
technology enables updates to computing hardware, to
extend functionality or to fix design flaws such as
security vulnerabilities. New hardware configurations
are sent to platforms in the form of a configuration
bitstream, often via a communication channel
established with a remote server.

In addition to bitstream updates, certain FPGA-
based devices we call receivers also receive digital
content to be processed by the reconfigurable
hardware. This content can consist of multimedia data
(e.g., an audio-video stream for a PayTV decoder,
video disc files for a DVD player) or of updates to
software running on the reconfigurable hardware (e.g.
code update for a car’s Electronic Control Unit, ECU).

A desirable security goal in this setting is to ensure
that content only be accessible to devices with the
latest hardware configuration. This property we call
forward security1 guarantees that a hardware
vulnerability allowing a violation of the system’s
security policy (e.g. leakage of session keys or
confidential content) becomes benign as soon as the

1 Usage of the term forward security in past work
differs; our definition follows the suggestions in [3].

server sends out a bitstream update patching the
vulnerability. This prevents devices that do not apply
an earlier security patch from still being able to view
content sent later. In addition, forward security
precludes obsolete hardware from processing new
digital content.

Achieving forward security requires the
authentication and encryption of both the bitstream and
the digital content. Existing techniques providing
confidentiality and integrity for bitstream updates or
content transmissions assign each device a private key
from an asymmetric key pair or a symmetric key
shared with the server [7, 9, 1, 4, 6, 14]. However,
these techniques do not scale up to systems comprising
millions of FPGAs since they require one secure
communication channel per device. Moreover, they
cannot provide forward security in such systems: the
server either is unable to determine the version of a
device’s bitstream or it obtains version information by
requesting an acknowledgment from each receiver, an
approach that is inapplicable to a broadcast setup.

Broadcast Encryption (BE) is a cryptographic
technique allowing a server to send confidential
messages to a large number of devices—the broadcast
group—over a single broadcast channel by assigning
each device a small number of keys [8]. BE has been
applied to receiver devices such as DVD players,
PayTV systems and car ECUs, but the implementations
did not account for the specificity of FPGA-based
receivers—namely, their dynamic upgradeability.

For a given broadcast group, the secret key
protecting data remains the same across transmissions.
As a result, devices that do not apply a given bitstream
update can still decrypt content that is broadcast after
the update is sent—i.e. existing implementations of BE
for receiver devices do not provide forward security.

Moreover, the static logic of several types of
FPGAs has very limited non-volatile memory
resources, typically a single register storing a secret
key. Although BE uses only a few keys per device, it
may still require more keys than can be stored at an
acceptable cost in the static logic portion of these
FPGA chips.

2008 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3474-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ReConFig.2008.51

450

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

In this paper, we present an architecture enabling
forward-secure broadcast distribution of digital
contents to FPGA-based receiver devices. We do so by
introducing a transmission key in BE protocols in order
to cryptographically bind broadcast content to the
identity of the latest hardware configuration. We also
extend FPGA hardware and adapt the BE protocols to
ensure confidentiality and integrity of bitstream
updates over a broadcast channel. Our solution is
scalable and can be applied to most FPGAs since it
maintains a small, constant non-volatile memory
footprint by providing secure off-chip storage for BE
keys.

Section 2 presents an overview of broadcast
encryption as well as past work in FPGA security.
Section 3 presents our threat model, while Section 4
introduces the architecture we propose to provide
forward-secure content distribution to FPGA devices.
Section 5 analyzes the security and implementation
cost of our approach. Section 6 concludes.

2. Related Work

2.1. Broadcast Encryption

Introduced in [8], Broadcast Encryption (BE) is a

cryptographic technique allowing a server we call the
Broadcaster to send, over a broadcast channel,
confidential messages to an arbitrary subset of
privileged users PS, chosen from the set U containing
all users. From one transmission to the next, the
Broadcaster may change the composition of PS. For
example, users may be removed from PS if they stop
paying for their subscription to the broadcast service.

During an initialization phase, the Broadcaster
assigns user devices a certain amount of secret key
material—the BE keys—to be used in protecting the
confidentiality of later broadcasts. There are many
ways to generate the BE keys and use them during
broadcasts, yielding a large solution space [8, 10].

In this paper, we use the Complete Subtree Method
presented in [8], wherein the Broadcaster generates a
balanced binary tree T of BE keys with each of its n
leaf keys corresponding to a specific user in U
(assuming n = |U| is a power of 2). In general, each key
ki in T corresponds to the subset of users (leaves)
spanned by the balanced subtree with root ki. During
initialization, a user device is assigned the log2(n)+1
keys that correspond to the subsets it is a member of,
i.e. the keys on the path from the user’s leaf to the root
(e.g. see assignment of keys to u3 in Fig. 1).

To transmit a confidential message M to the users in
PS, the Broadcaster first encrypts M with a randomly
generated session key SK. Let R be the set of revoked
users (R = U\PS) and T’ be the graph formed by

removing from T the keys assigned to users in R. T’ is
a collection of m subtrees of T; let kx1 to kxm be the keys
in T that are the roots of the subtrees in T’ (k3, k4 and
k11 in Fig. 1, where |R| = 1). By construction, each
device in PS owns at least one of the kxi’s, whereas
none of the devices in R own any of the kxi’s.

Fig. 1: Example BE key tree for users u1 to u8, keys k1 to k15

The Broadcaster then broadcasts x1 || x2 || ... || xm || b1
|| b2 || ... || bm || C, where xi is an index referring to kxi, C
= ESK(M) and bi is SK encrypted under kxi. || denotes
concatenation and EK encryption under K. A user
receiving the broadcast can decrypt M only if it is in
PS, i.e. if it owns a key in kx1 to kxm. It then uses the
key kxj it owns to decrypt the corresponding bj, thus
obtaining the session key SK used to decrypt C.

2.2. Applications of Broadcast Encryption

The latest High-Definition Digital Video Disc

formats, HD-DVD and Blu-Ray protect the
confidentiality of media content with the Advanced
Access Content System standard [11], which is based
on the Subset Difference Tree BE scheme presented in
[13]. Various PayTV schemes [15, 12] have been
designed to leverage the properties of BE in order to
broadcast media streams to the privileged set of paying
subscribers. BE was also applied in the automotive
industry to remotely update software on the multiple
ECUs populating a car’s computing system [2].

In all cases, however, the proposed implementations
of broadcast encryption do not provide the forward
security property we are trying to achieve in this paper.
Indeed, these schemes do not allow binding content to
the latest hardware version of an upgradeable receiver.

2.3. FPGA Security

FPGA security is an active field of research and
many efforts are aimed at providing a trustworthy
configuration process through bitstream authentication
and encryption [1, 4, 6]. In all cases, each device is
initialized with its own set of secure communication
keys, so broadcasting an update is inefficient: it
requires sending over the broadcast channel one
encrypted bitstream and MAC per device since the

451

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

encryption and MAC keys are different for each
device.

[4] has a versioning mechanism, but requires
individual acknowledgments from each device to
confirm a given update was successfully applied. Since
two-way communication is not possible in a typical
broadcast setting, this scheme cannot ensure that
broadcast content is only accessed by updated devices.

This requirement for two-way communication is
also found in approaches to FPGA security based on
the Trusted Platform Module (TPM) [14, 7] and device
authentication through public key cryptography [9],
making those schemes inapplicable to forward-secure
content distribution.

3. Threat Model

In this paper, the hardware and software on the

Broadcaster’s side are considered as trusted and so are
the FPGA chips within the user devices. Side channel
attacks are considered out-of-scope for this paper.

We consider users as potential adversaries that may
attempt to extract secret keys handled by their devices,
making it possible to produce clones. This key
extraction can occur either through software or
physical attacks against the receiver. In a physical
attack, the user may, for example, replace a flash
memory chip with a malicious one or enter in direct
contact with the platform’s external buses (i.e. buses
outside the FPGA chip) in order to observe or tamper
with bus data and control signals. This paper does not,
however, consider invasive attacks—e.g. chip
peeling—on the FPGA.

4. Architecture and Broadcast Protocols

This section details the approach we propose to

provide forward-secure content distribution to FPGA-
based receivers. We first give an overview of the
proposed scheme, present the receiver’s hardware and
describe initialization procedures. We then present our
secure bitstream loading procedure and the protocols at
the core of our approach—i.e. the configuration update
and content transmission protocols.

4.1. Overview

Our approach consists in modifying the Complete
Subtree protocol for content transmission such that
only devices with the latest hardware configuration can
access contents being broadcast. The protocols
proposed also guarantee that for bitstream updates, any
device in the privileged set, regardless of its current
configuration, can decrypt and apply a hardware
update. At all times, we restrict access to BE keys to

the (trusted) static FPGA logic to ensure configurations
with security vulnerabilities cannot leak the keys
before they are overwritten by an update.

For content transmissions, the Broadcaster encrypts
the session key with new transmission keys, derived
from a BE key and a Configuration IDentifier (CID)
identifying the hardware configuration for which the
content is intended. The static logic of privileged
receivers uses BE keys and the CID of the current
configuration to re-generate a transmission key, which
it then makes available to the user logic. Hence, the
user logic only has access to the correct transmission
key (i.e. can decrypt content) when configured with the
latest bitstream. Table 1 summarizes the usage of keys.

Table 1: Security Function of Keys

4.2. FPGA Hardware

Figure 2 presents our architecture: a flash memory
chip, its controller and an FPGA chip. The three main
new components are a register file containing the extra
registers needed, control logic to run the protocols and
a new User-to-Static-Logic (USL) interface allowing
communications between the static logic and
reconfigurable hardware. We assume the crypto engine
contains hardware for encryption and MAC
computation; it is already present in chips providing
bitstream encryption and authentication (e.g. [1]).

Fig. 2 – Architecture: The FPGA chip and external memory

Key Derivation. The protocols we present below
derive cryptographic keys from a common master key.
This derivation is done with a secure Key Derivation
Function KDF based on the crypto engine. KDF could
for example use the HMAC construction as in the
Transport Layer Security (TLS) protocol [5]. In any
case, it takes two arguments as its inputs, a public
value and a secret master key, and outputs a key whose
secrecy is based on the master key’s entropy. Table 2
shows the constants and keys used in our protocols.

452

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

MACK denotes the function computing Message
Authentication Codes, keyed with key K.

Table 2: Symbols used in our BE protocols

Configuration identifierCID
Encryption key derivation constantCE

MAC key derivation constantCM

A BE key from the BE key treeBK
Session keySK
Transmission keyTK
Encryption keyKE

MAC keyKM

unique to each bitstream
fixed pre-determined value
fixed pre-determined value
generated by broadcaster during init
generated on-the-fly by broadcaster
TK = KDF(CID, BK)
KE = KDF(CE, SK)
KM = KDF(CM, SK)

SemanticsSymbol Value

Secure storage encryption keyKSE

Secure storage MAC keyKSM

generated by broadcaster during init
generated by broadcaster during init

Bitstream update message headerMSG_BIT_
UPDATE fixed pre-determined value

Content transmission headerMSG_
CONTENT fixed pre-determined value

FPGA-Rooted Secure Storage. With only two non-
volatile registers (reg_ksm and reg_kse)
containing an encryption key KSE and a MAC key KSM,
the FPGA can protect the confidentiality and integrity
of a large number of BE keys. Each of these keys is
encrypted and MACed individually and both the
ciphertext and the MAC are sent to the off-chip secure
storage area (see Fig. 2). For clarity, our protocols only
mention reading a BE key from flash; they do not
describe its decryption and integrity checking. Note
that the BE keys are stored once and never modified,
hence they do not need to be protected against replay.

4.3. Initialization Phase
Broadcaster Initialization. Before it deploys devices
in the field, the Broadcaster first generates the tree of
2N–1 BE keys necessary to run a broadcast encryption
scheme with its N devices. It then creates N sets of BE
keys according to the method in Section 2.1. It also
creates a revocation list RL—initially empty—which is
to contain the list of devices excluded from the set PS
of privileged users. It generates a session key SK which
it encrypts with the root KR of the BE key tree to
produce ciphertext CSK. The Broadcaster then encrypts
and MACs the first valid bitstream (B0, with
configuration ID CID0) with keys KE and KM derived
from SK as in Table 2. Encryption yields ciphertext
C0=EKE(B0) and MAC M0 equals MACKM(C0, CID0).
Device Initialization. To initialize a device, the
Broadcaster injects it with CID0, its secure storage keys
and the set of BE keys corresponding to the device. We
assume this one-time procedure is carried out in a
trusted location. The Broadcaster first feeds the static
logic of the FPGA KSE and KSM which the FPGA stores
in reg_kse and reg_ksm. As the device is fed the
broadcast keys, its static logic encrypts (with KSE) and
MACs (with KSM) each of these keys individually and
stores the keys and MACs in flash memory for future
use. The Broadcaster then sends CID0 which the device
writes in reg_cid. Finally, the Broadcaster uploads
CID0, C0, M0 and CSK in the device’s flash, along with

the list of keys owned by the device and the index of
KR (BE-key index list and BE-key index in Fig. 2). The
FPGA determines which keys it owns by looking up
the BE-key index list, while BE-key index indicates the
specific key to use for decryption of CSK. From this
point on, the device can only boot up using bitstreams
encrypted and MACed by the Broadcaster.

4.4. Broadcast Encryption Protocols

In this section, protocol steps are annotated with
letters specifying the entity executing the step (B for
Broadcaster, DS for Device’s Static logic and DU for
Device’s User logic) and a sequence number.
Configuration Update Protocol. The Broadcaster
initiates this protocol to send out a new version of the
receiver hardware. The objective may be to patch
security vulnerabilities in the previous version, modify
the algorithms used for processing the broadcast data
or simply to enhance receiver hardware with more
features. In all cases, contents broadcast after the
update must be accessible only to updated devices.
Otherwise, the contents could be misinterpreted by
legacy hardware or confidential information it contains
could be leaked by vulnerable devices.

The Broadcaster proceeds as follows (where the
new bitstream has configuration ID CIDX):

B1- From RL, determine the set PS of users
that are to receive the update

B2- Create list L of n indices referring to
the n BE keys BK1,BK2,...,BKn covering PS

B3- Generate a session key SK
B4- From SK, compute an encryption key KE

and a MAC key KM (see Table 2)
B5- Encrypt the plaintext PX of the CIDX

bitstream to obtain ciphertext CX=EKE(PX)
B6- Compute MAC MX=MACKM(CX,CIDX) binding the

ciphertext to its CID
B7- Encrypt SK to obtain ciphertexts C1 to Cn,

where Ci=EBKi(SK)
B8- Send message M over broadcast channel:

M=MSG_BIT_UPDATE || L || CIDX || C1 || ... || Cn || CX || MX
Upon detecting an update message M, the user logic

of a device carries out the following protocol steps:

DU1- Check if it owns a BE key in L by looking up
 BE key index list in flash. If yes, go
 to DU2; if no, ignore M.

DU2- Store in device flash CIDX, CX, MX, the index
 ind of the BE key owned by the device and Cind,
 the corresponding SK ciphertext

DU3- Request reboot via USL to invoke bitstream
 loading procedure described next in order to
 authenticate & decrypt updated bitstream.

Bitstream Loading Procedure. Upon power-up, the
static logic of the FPGA performs the following steps:

453

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

DS1- Read CIDX in reg_cid and ind in reg_ind
DS2- Read the BE key BKind in TR1
DS3- Read Cind into temporary register TR2
DS4- Decrypt Cind to TR2 using BKind to get SK
DS5- Compute into TR3 the encryption key

 KE’=KDF(CE, [TR2]), where [TRX] means
 contents of TRX

DS6- Compute into TR1 KM’=KDF(CM, [TR2])
DS7- Read in CX and MX and check the integrity

 of CX by re-computing a MAC MX’ over CX
 using KM’ and [reg_cid]

DS8- If MX’=MX, go to DS9; otherwise, raise an
 error and apply pre-determined policy

DS9- Decrypt CX using [TR3] to obtain PX and
 configure the user logic with PX

Content Transmission Protocol. At the beginning of
each transmission of plaintext content V, assuming the
currently valid hardware has configuration ID CIDX,
the Broadcaster performs following steps:

Upon detecting a content message, the user logic i)

checks that the platforms owns a BE-key in L by
looking up its BE-key index list ii) requests a
transmission key by feeding the static logic, via
reg_ind, the index ind referencing the BE key
owned by the device. The static logic then computes
the new transmission key as follows:
DS10-Read into temporary register TR1 the BE key

BKind corresponding to index [reg_ind]
DS11-Compute KDF([reg_cid], [TR1]) and store the

resulting transmission key KT in reg_kt
DS12-Notify user logic via USL interface

that new transmission key is available
With KT, the user logic can decrypt the session key

and from it, derive the keys enabling decryption and
authentication of the content message:
DU4- Decrypt CTind with [reg_kt] to get SK
DU5- Compute KE’=KDF(CE,SK) and KM’=KDF(CM,SK)
DU6- Check the integrity of CX by recomputing

 a MAC MX’ over CX using KM’ and CIDX
DU7- If MX’=MX, go to DU8; otherwise, ignore M
DU8- Decrypt CX using KE’ to obtain the PX content

Note that the DU8 decryption yields unintelligible
data when the device bitstream is outdated.

5. Evaluation

5.1. Cost Evaluation
Area. SRAM FPGAs providing bitstream
confidentiality and integrity already have crypto
engines in the static logic [16, 17, 18]. Hence, our
architecture only requires extra control logic (including
the new USL interface) and six new registers (two of

them non-volatile) to support forward secure-content
distribution. The area of these additions is likely to be
small in comparison to that of the existing static logic.
Performance. Latencies related to encryption and
authentication of bitstreams and content transmissions
already apply to existing secure FPGA designs. The
only performance hit incurred by our architecture
consists in access latencies to the secure storage and
computation of transmission keys by the static logic.
Both operations are performed only once per broadcast
so their relative performance cost should be acceptable
when compared to the latencies associated with
cryptographic processing of the broadcast content.

5.2. Security Evaluation
Resistance to Key Extraction. An important security
objective for the FPGA-based receivers we propose is
to prevent extraction of key material that could lead to
cloning of devices. We have four types of secret keys.

The Secure Storage Keys (KSE and KSM) are unique
to each FPGA; they are generated and stored on-chip
by the Broadcaster during the initialization procedure.
They are only used by the control logic to encrypt and
decrypt BE keys and compute MACs: they never leave
the static part of the chip. Since this static logic is
within the trusted FPGA chip, an attacker cannot spy
on or corrupt its operations in order to reveal the secure
storage keys, i.e. KSE and KSM cannot be extracted.

The security of the BE keys depends on the security
of KSE and KSM, as the former are encrypted and
MACed by the latter when stored off-chip. Since KSE
and KSM themselves cannot be extracted, the only way
to obtain BE key bits is to infer information about a BE
key by observing the value of a transmission key (e.g.
if a vulnerable configuration leaks a transmission key).
This is computationally infeasible, as we assume KDF,
used to derive a transmission key from a BE key, is
cryptographically secure—i.e. an attacker cannot
obtain information about KDF’s pre-image by looking
at its output. As a result, the BE keys are protected
from key extraction attacks.

The leaking of a Transmission Key by vulnerable
user logic can only lead to benign cloning of devices.
Indeed, the value of all transmission keys changes as
soon as bitstream update is sent out to fix the
vulnerability. Any clone made prior to the update and
containing solely a transmission key becomes obsolete
as soon as the update is sent: without BE keys, it is
unable to derive a new transmission key allowing
decoding of post-update content transmissions.

 The Broadcaster generates a new Session Key on
every transmission. A clone created with a leaked
session key is thus incapacitated as soon as that
transmission is over.

454

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

USL Interface. The insertion of this interface between
the user and static logic does not represent a new attack
vector. It only allows the user logic to read a
transmission key or request a bitstream update from the
static logic. Leaking the key leads to benign device
clones in the worst case, while a spurious bitstream
update is detected when the static logic authenticates it.
Forward Security Property. In order to provide
forward security, our architecture must ensure that
contents broadcast at time t can only be decrypted by
devices with the latest hardware configuration at time t.
For this property to hold, the following two conditions
must be respected: 1) the FPGA should only make the
latest transmission key available to the latest hardware;
2) the BE keys, used to derive transmission keys,
should be inaccessible to attackers at all times.

As we have just shown above, the second condition
holds since the BE keys are protected by the FPGA-
rooted secure storage. To fulfill the first condition, we
introduced the concept of a Configuration IDentifier
(CID) used by the static logic as an input to KDF in
deriving the transmission keys.

By design, the trusted static logic uses the CID of
the last successfully applied hardware configuration
update (authenticated by the static logic). Thus, the
transmission key made available to the user logic can
only decrypt current broadcasts if the reconfigurable
hardware was configured with the latest bitstream. As a
result, an attacker configuring an FPGA with an older
bitstream can only achieve denial of service since
doing so prevents decryption of new digital content.

6. Conclusion

 Confidentiality and integrity of an FPGA chip’s
hardware configuration are fundamental to trusted
computing on reconfigurable technology. We showed
the forward security property defined in this paper is
also essential for the secure broadcast of digital content
to FPGA-based devices. To provide this novel security
property in reconfigurable technology, we presented
new protocols with supporting FPGA hardware. Our
architecture allows for broadcast update of FPGA
configurations and cryptographic binding of broadcast
digital content to the latest bitstream version. Our
solution is low-cost and scalable, as it only require a
small and constant amount of non-volatile memory in
the static logic.

Acknowledgments

The authors wish to thank Benoît Badrignans and
Cédric Lauradoux for their valuable comments on the
technical aspects of this paper.

References

[1] Actel, 2008, ProASIC®3 Handbook, available at:
http://www.actel.com/documents/PA3_HB.pdf
[2] A.H. Adelsbach and A-R.U. Sadeghi, “Secure Software
Delivery and Installation in Embedded Systems,” in Proc. of
Information Security Practice and Experience, LNCS 3439,
pp. 255–267, 2005.
[3] R. Anderson, “Two Remarks on Public-Key Cryptology,”
Manuscript, 2000, and Invited Lecture at the Computer and
Communications Security Conference, April 1997.
[4] B. Badrignans, R. Elbaz and L. Torres, “Secure FPGA
configuration technique preventing system downgrade”, In
Proc. of the 18th IEEE International Conference on Field
Programmable Logic and Applications (FPL), 2008
[5] T. Dierks, E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.1.”, April 2006.
[6] S. Drimer, 2008, Volatile FPGA design security – a
survey, Computer Laboratory, University of Cambridge,
available at: www.cl.cam.ac.uk/~sd410/papers
[7] T. Eisenbarth, T. Güneysu, C. Paar, A. Sadeghi, D.
Schellekens and M. Wolf, “Reconfigurable trusted
computing in hardware,” In Proc. of the ACM Workshop on
Scalable Trusted Computing (STC’07), pp. 15-20, 2007.
[8] A. Fiat and M. Naor, “Broadcast encryption,” in
Advances in Cryptology, LNCS 773, pp. 480–491, 1994.
[9] T. Guneysu, B. Moller and C. Paar, “Dynamic Intellectual
Property Protection for Reconfigurable Devices”, In Proc. of
the Int’l Conf. on Field-Programmable Technology
(ICFPT’07), pp. 169-176, 2007.
[10] Jeremy Horwitz, “A Survey of Broadcast Encryption”,
http://math.scu.edu/~jhorwitz/pubs, 2003.
[11] Intel et al., “Advanced Access Content System (AACS)
Specification,” 2006, http://www.AACSla.com
[12] Y. Mu and V. Varadharajan, “Robust and secure
broadcasting,” In Proc. INDOCRYPT 2001, LNCS 2247,
Springer Verlag, pp. 223-231, 2001.
[13] D. Naor., M. Naor, J. Lotspiech, Revocation and Tracing
Schemes for Stateless Receivers. February, 2001.
[14] D. Schellekens, T. Tuyls and B. Preneel, “Embedded
Trusted Computing with Authenticated Non-Volatile
Memory”, In Proc. of TRUST 2008, LNCS 4968, Springer-
Verlag, 2008.
[15] A. Wool, “Key management for encrypted broadcast,”
ACM Trans. Inform. Syst. Security, vol. 3, no. 2, pp. 107–
134, 2000.
[16] A. Lesea, IP security in FPGA, white paper Virtex-4 and
Virtex-5 Devices, 2007, available at:
http://www.xilinx.com/support/documentation/white_papers/
wp261.pdf

[17] Design Security in Stratix III Devices, white paper
ALTERA, 2006, available at:
www.altera.com/literature/wp/wp-01010.pdf.
[18] LatticeECP2/M Family Data Sheet, 2008, available at:
http://www.latticesemi.com/documents/DS1006.pdf

455

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 19:10 from IEEE Xplore. Restrictions apply.

