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Abstract 

 
Confidentiality and integrity of bitstreams and 
authenticated update of FPGA configurations are 
fundamental to trusted computing on reconfigurable 
technology. In this paper, we propose to provide these 
security services for digital content broadcast to 
FPGA-based devices. To that end, we introduce a new 
property we call forward security, which ensures that 
broadcast content can only be accessed by FPGA chips 
configured with the latest bitstream version. We 
describe the hardware architecture and 
communication protocols supporting this security 
property, and we evaluate the associated cost.   
 
1. Introduction 
 

Field-Programmable Gate Array (FPGA) 
technology enables updates to computing hardware, to 
extend functionality or to fix design flaws such as 
security vulnerabilities. New hardware configurations 
are sent to platforms in the form of a configuration 
bitstream, often via a communication channel 
established with a remote server.  

In addition to bitstream updates, certain FPGA-
based devices we call receivers also receive digital 
content to be processed by the reconfigurable 
hardware. This content can consist of multimedia data 
(e.g., an audio-video stream for a PayTV decoder, 
video disc files for a DVD player) or of updates to 
software running on the reconfigurable hardware (e.g. 
code update for a car’s Electronic Control Unit, ECU).  

A desirable security goal in this setting is to ensure 
that content only be accessible to devices with the 
latest hardware configuration. This property we call 
forward security1 guarantees that a hardware 
vulnerability allowing a violation of the system’s 
security policy (e.g. leakage of session keys or 
confidential content) becomes benign as soon as the 

                                                           
1 Usage of the term forward security in past work 
differs; our definition follows the suggestions in [3]. 

server sends out a bitstream update patching the 
vulnerability. This prevents devices that do not apply 
an earlier security patch from still being able to view 
content sent later. In addition, forward security 
precludes obsolete hardware from processing new 
digital content. 

Achieving forward security requires the 
authentication and encryption of both the bitstream and 
the digital content. Existing techniques providing 
confidentiality and integrity for bitstream updates or 
content transmissions assign each device a private key 
from an asymmetric key pair or a symmetric key 
shared with the server [7, 9, 1, 4, 6, 14]. However, 
these techniques do not scale up to systems comprising 
millions of FPGAs since they require one secure 
communication channel per device. Moreover, they 
cannot provide forward security in such systems: the 
server either is unable to determine the version of a 
device’s bitstream or it obtains version information by 
requesting an acknowledgment from each receiver, an 
approach that is inapplicable to a broadcast setup. 

Broadcast Encryption (BE) is a cryptographic 
technique allowing a server to send confidential 
messages to a large number of devices—the broadcast 
group—over a single broadcast channel by assigning 
each device a small number of keys [8]. BE has been 
applied to receiver devices such as DVD players, 
PayTV systems and car ECUs, but the implementations 
did not account for the specificity of FPGA-based 
receivers—namely, their dynamic upgradeability. 

For a given broadcast group, the secret key 
protecting data remains the same across transmissions. 
As a result, devices that do not apply a given bitstream 
update can still decrypt content that is broadcast after 
the update is sent—i.e. existing implementations of BE 
for receiver devices do not provide forward security. 

Moreover, the static logic of several types of 
FPGAs has very limited non-volatile memory 
resources, typically a single register storing a secret 
key. Although BE uses only a few keys per device, it 
may still require more keys than can be stored at an 
acceptable cost in the static logic portion of these 
FPGA chips.  
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In this paper, we present an architecture enabling 
forward-secure broadcast distribution of digital 
contents to FPGA-based receiver devices. We do so by 
introducing a transmission key in BE protocols in order 
to cryptographically bind broadcast content to the 
identity of the latest hardware configuration. We also 
extend FPGA hardware and adapt the BE protocols to 
ensure confidentiality and integrity of bitstream 
updates over a broadcast channel. Our solution is 
scalable and can be applied to most FPGAs since it 
maintains a small, constant non-volatile memory 
footprint by providing secure off-chip storage for BE 
keys. 

Section 2 presents an overview of broadcast 
encryption as well as past work in FPGA security. 
Section 3 presents our threat model, while Section 4 
introduces the architecture we propose to provide 
forward-secure content distribution to FPGA devices. 
Section 5 analyzes the security and implementation 
cost of our approach. Section 6 concludes. 
 
2. Related Work 
 
2.1. Broadcast Encryption 

 
Introduced in [8], Broadcast Encryption (BE) is a 

cryptographic technique allowing a server we call the 
Broadcaster to send, over a broadcast channel, 
confidential messages to an arbitrary subset of 
privileged users PS, chosen from the set U containing 
all users. From one transmission to the next, the 
Broadcaster may change the composition of PS. For 
example, users may be removed from PS if they stop 
paying for their subscription to the broadcast service. 

During an initialization phase, the Broadcaster 
assigns user devices a certain amount of secret key 
material—the BE keys—to be used in protecting the 
confidentiality of later broadcasts. There are many 
ways to generate the BE keys and use them during 
broadcasts, yielding a large solution space [8, 10].  

In this paper, we use the Complete Subtree Method 
presented in [8], wherein the Broadcaster generates a 
balanced binary tree T of BE keys with each of its n 
leaf keys corresponding to a specific user in U 
(assuming n = |U| is a power of 2). In general, each key 
ki in T corresponds to the subset of users (leaves) 
spanned by the balanced subtree with root ki. During 
initialization, a user device is assigned the log2(n)+1 
keys that correspond to the subsets it is a member of, 
i.e. the keys on the path from the user’s leaf to the root 
(e.g. see assignment of keys to u3 in Fig. 1).  

To transmit a confidential message M to the users in 
PS, the Broadcaster first encrypts M with a randomly 
generated session key SK. Let R be the set of revoked 
users (R = U\PS) and T’ be the graph formed by 

removing from T the keys assigned to users in R. T’ is 
a collection of m subtrees of T; let kx1 to kxm be the keys 
in T that are the roots of the subtrees in T’ (k3, k4 and 
k11 in Fig. 1, where |R| = 1). By construction, each 
device in PS owns at least one of the kxi’s, whereas 
none of the devices in R own any of the kxi’s. 

 
Fig. 1: Example BE key tree for users u1 to u8, keys k1 to k15 

The Broadcaster then broadcasts x1 || x2 || ... || xm || b1 
|| b2 || ... || bm || C, where xi is an index referring to kxi, C 
= ESK(M) and bi is SK encrypted under kxi. || denotes 
concatenation and EK encryption under K. A user 
receiving the broadcast can decrypt M only if it is in 
PS, i.e. if it owns a key in kx1 to kxm. It then uses the 
key kxj it owns to decrypt the corresponding bj, thus 
obtaining the session key SK used to decrypt C. 
 
2.2. Applications of Broadcast Encryption 

 
The latest High-Definition Digital Video Disc 

formats, HD-DVD and Blu-Ray protect the 
confidentiality of media content with the Advanced 
Access Content System standard [11], which is based 
on the Subset Difference Tree BE scheme presented in 
[13]. Various PayTV schemes [15, 12] have been 
designed to leverage the properties of BE in order to 
broadcast media streams to the privileged set of paying 
subscribers. BE was also applied in the automotive 
industry to remotely update software on the multiple 
ECUs populating a car’s computing system [2].  

In all cases, however, the proposed implementations 
of broadcast encryption do not provide the forward 
security property we are trying to achieve in this paper. 
Indeed, these schemes do not allow binding content to 
the latest hardware version of an upgradeable receiver. 

 
2.3. FPGA Security 
 

FPGA security is an active field of research and 
many efforts are aimed at providing a trustworthy 
configuration process through bitstream authentication 
and encryption [1, 4, 6]. In all cases, each device is 
initialized with its own set of secure communication 
keys, so broadcasting an update is inefficient: it 
requires sending over the broadcast channel one 
encrypted bitstream and MAC per device since the 
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encryption and MAC keys are different for each 
device.  

[4] has a versioning mechanism, but requires 
individual acknowledgments from each device to 
confirm a given update was successfully applied. Since 
two-way communication is not possible in a typical 
broadcast setting, this scheme cannot ensure that 
broadcast content is only accessed by updated devices.  

This requirement for two-way communication is 
also found in approaches to FPGA security based on 
the Trusted Platform Module (TPM) [14, 7] and device 
authentication through public key cryptography [9], 
making those schemes inapplicable to forward-secure 
content distribution. 
 
3. Threat Model  

 
In this paper, the hardware and software on the 

Broadcaster’s side are considered as trusted and so are 
the FPGA chips within the user devices. Side channel 
attacks are considered out-of-scope for this paper.  

We consider users as potential adversaries that may 
attempt to extract secret keys handled by their devices, 
making it possible to produce clones. This key 
extraction can occur either through software or 
physical attacks against the receiver. In a physical 
attack, the user may, for example, replace a flash 
memory chip with a malicious one or enter in direct 
contact with the platform’s external buses (i.e. buses 
outside the FPGA chip) in order to observe or tamper 
with bus data and control signals. This paper does not, 
however, consider invasive attacks—e.g. chip 
peeling—on the FPGA.  

 
4. Architecture and Broadcast Protocols 

  
This section details the approach we propose to 

provide forward-secure content distribution to FPGA-
based receivers. We first give an overview of the 
proposed scheme, present the receiver’s hardware and 
describe initialization procedures. We then present our 
secure bitstream loading procedure and the protocols at 
the core of our approach—i.e. the configuration update 
and content transmission protocols.  

 
4.1. Overview 
 

Our approach consists in modifying the Complete 
Subtree protocol for content transmission such that 
only devices with the latest hardware configuration can 
access contents being broadcast. The protocols 
proposed also guarantee that for bitstream updates, any 
device in the privileged set, regardless of its current 
configuration, can decrypt and apply a hardware 
update. At all times, we restrict access to BE keys to 

the (trusted) static FPGA logic to ensure configurations 
with security vulnerabilities cannot leak the keys 
before they are overwritten by an update. 

For content transmissions, the Broadcaster encrypts 
the session key with new transmission keys, derived 
from a BE key and a Configuration IDentifier (CID) 
identifying the hardware configuration for which the 
content is intended. The static logic of privileged 
receivers uses BE keys and the CID of the current 
configuration to re-generate a transmission key, which 
it then makes available to the user logic. Hence, the 
user logic only has access to the correct transmission 
key (i.e. can decrypt content) when configured with the 
latest bitstream. Table 1 summarizes the usage of keys.  

 
Table 1: Security Function of Keys 

 
 

4.2. FPGA Hardware 
 

Figure 2 presents our architecture: a flash memory 
chip, its controller and an FPGA chip. The three main 
new components are a register file containing the extra 
registers needed, control logic to run the protocols and 
a new User-to-Static-Logic (USL) interface allowing 
communications between the static logic and 
reconfigurable hardware. We assume the crypto engine 
contains hardware for encryption and MAC 
computation; it is already present in chips providing 
bitstream encryption and authentication (e.g. [1]). 

Fig. 2 – Architecture: The FPGA chip and external memory 

Key Derivation. The protocols we present below 
derive cryptographic keys from a common master key. 
This derivation is done with a secure Key Derivation 
Function KDF based on the crypto engine. KDF could 
for example use the HMAC construction as in the 
Transport Layer Security (TLS) protocol [5]. In any 
case, it takes two arguments as its inputs, a public 
value and a secret master key, and outputs a key whose 
secrecy is based on the master key’s entropy. Table 2 
shows the constants and keys used in our protocols. 
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MACK denotes the function computing Message 
Authentication Codes, keyed with key K. 

Table 2: Symbols used in our BE protocols 

Configuration identifierCID
Encryption key derivation constantCE

MAC key derivation constantCM

A BE key from the BE key treeBK
Session keySK
Transmission keyTK
Encryption keyKE

MAC keyKM

unique to each bitstream
fixed pre-determined value
fixed pre-determined value
generated by broadcaster during init
generated on-the-fly by broadcaster
TK = KDF(CID, BK)
KE = KDF(CE, SK)
KM = KDF(CM, SK)

SemanticsSymbol Value

Secure storage encryption keyKSE

Secure storage MAC keyKSM

generated by broadcaster during init
generated by broadcaster during init

Bitstream update message headerMSG_BIT_
UPDATE fixed pre-determined value

Content transmission headerMSG_
CONTENT fixed pre-determined value

 
FPGA-Rooted Secure Storage. With only two non-
volatile registers (reg_ksm and reg_kse) 
containing an encryption key KSE and a MAC key KSM, 
the FPGA can protect the confidentiality and integrity 
of a large number of BE keys. Each of these keys is 
encrypted and MACed individually and both the 
ciphertext and the MAC are sent to the off-chip secure 
storage area (see Fig. 2). For clarity, our protocols only 
mention reading a BE key from flash; they do not 
describe its decryption and integrity checking. Note 
that the BE keys are stored once and never modified, 
hence they do not need to be protected against replay. 

  
4.3. Initialization Phase 
Broadcaster Initialization. Before it deploys devices 
in the field, the Broadcaster first generates the tree of 
2N–1 BE keys necessary to run a broadcast encryption 
scheme with its N devices. It then creates N sets of BE 
keys according to the method in Section 2.1. It also 
creates a revocation list RL—initially empty—which is 
to contain the list of devices excluded from the set PS 
of privileged users. It generates a session key SK which 
it encrypts with the root KR of the BE key tree to 
produce ciphertext CSK. The Broadcaster then encrypts 
and MACs the first valid bitstream (B0, with 
configuration ID CID0) with keys KE and KM derived 
from SK as in Table 2. Encryption yields ciphertext 
C0=EKE(B0) and MAC M0 equals MACKM(C0, CID0). 
Device Initialization. To initialize a device, the 
Broadcaster injects it with CID0, its secure storage keys 
and the set of BE keys corresponding to the device. We 
assume this one-time procedure is carried out in a 
trusted location. The Broadcaster first feeds the static 
logic of the FPGA KSE and KSM which the FPGA stores 
in reg_kse and reg_ksm. As the device is fed the 
broadcast keys, its static logic encrypts (with KSE) and 
MACs (with KSM) each of these keys individually and 
stores the keys and MACs in flash memory for future 
use. The Broadcaster then sends CID0 which the device 
writes in reg_cid. Finally, the Broadcaster uploads 
CID0, C0, M0 and CSK in the device’s flash, along with 

the list of keys owned by the device and the index of 
KR (BE-key index list and BE-key index in Fig. 2). The 
FPGA determines which keys it owns by looking up 
the BE-key index list, while BE-key index indicates the 
specific key to use for decryption of CSK. From this 
point on, the device can only boot up using bitstreams 
encrypted and MACed by the Broadcaster. 

  
4.4. Broadcast Encryption Protocols 

In this section, protocol steps are annotated with 
letters specifying the entity executing the step (B for 
Broadcaster, DS for Device’s Static logic and DU for 
Device’s User logic) and a sequence number. 
Configuration Update Protocol. The Broadcaster 
initiates this protocol to send out a new version of the 
receiver hardware. The objective may be to patch 
security vulnerabilities in the previous version, modify 
the algorithms used for processing the broadcast data 
or simply to enhance receiver hardware with more 
features. In all cases, contents broadcast after the 
update must be accessible only to updated devices. 
Otherwise, the contents could be misinterpreted by 
legacy hardware or confidential information it contains 
could be leaked by vulnerable devices. 

The Broadcaster proceeds as follows (where the 
new bitstream has configuration ID CIDX): 

B1- From RL, determine the set PS of users 
that are to receive the update

B2- Create list L of n indices referring to 
the n BE keys BK1,BK2,...,BKn covering PS

B3- Generate a session key SK
B4- From SK, compute an encryption key KE 

and a MAC key KM (see Table 2) 
B5- Encrypt the plaintext PX of the CIDX 

bitstream to obtain ciphertext CX=EKE(PX)
B6- Compute MAC MX=MACKM(CX,CIDX) binding the 

ciphertext to its CID
B7- Encrypt SK to obtain ciphertexts C1 to Cn, 

where Ci=EBKi(SK)
B8- Send message M over broadcast channel: 

M=MSG_BIT_UPDATE || L || CIDX || C1 || ... || Cn || CX || MX  
Upon detecting an update message M, the user logic 

of a device carries out the following protocol steps: 

DU1- Check if it owns a BE key in L by looking up 
 BE key index list in flash. If yes, go 
 to DU2; if no, ignore M.

DU2- Store in device flash CIDX, CX, MX, the index 
 ind of the BE key owned by the device and Cind, 
 the corresponding SK ciphertext

DU3- Request reboot via USL to invoke bitstream 
 loading procedure described next in order to 
 authenticate & decrypt updated bitstream.  

Bitstream Loading Procedure. Upon power-up, the 
static logic of the FPGA performs the following steps: 
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DS1- Read CIDX in reg_cid and ind in reg_ind
DS2- Read the BE key BKind in TR1
DS3- Read Cind into temporary register TR2
DS4- Decrypt Cind to TR2 using BKind to get SK
DS5- Compute into TR3 the encryption key 

 KE’=KDF(CE, [TR2]), where [TRX] means 
 contents of TRX

DS6- Compute into TR1 KM’=KDF(CM, [TR2])
DS7- Read in CX and MX and check the integrity 

 of CX by re-computing a MAC MX’ over CX 
 using KM’ and [reg_cid]  

DS8- If MX’=MX, go to DS9; otherwise, raise an 
 error and apply pre-determined policy

DS9- Decrypt CX using [TR3] to obtain PX and 
 configure the user logic with PX  

Content Transmission Protocol. At the beginning of 
each transmission of plaintext content V, assuming the 
currently valid hardware has configuration ID CIDX, 
the Broadcaster performs following steps: 

 
Upon detecting a content message, the user logic i) 

checks that the platforms owns a BE-key in L by 
looking up its BE-key index list ii) requests a 
transmission key by feeding the static logic, via 
reg_ind, the index ind referencing the BE key 
owned by the device. The static logic then computes 
the new transmission key as follows: 
DS10-Read into temporary register TR1 the BE key 

BKind corresponding to index [reg_ind] 
DS11-Compute KDF([reg_cid], [TR1]) and store the 

resulting transmission key KT in reg_kt
DS12-Notify user logic via USL interface

that new transmission key is available  
With KT, the user logic can decrypt the session key 

and from it, derive the keys enabling decryption and 
authentication of the content message: 
DU4- Decrypt CTind with [reg_kt] to get SK
DU5- Compute KE’=KDF(CE,SK) and KM’=KDF(CM,SK)
DU6- Check the integrity of CX by recomputing 

 a MAC MX’ over CX using KM’ and CIDX
DU7- If MX’=MX, go to DU8; otherwise, ignore M
DU8- Decrypt CX using KE’ to obtain the PX content  

Note that the DU8 decryption yields unintelligible 
data when the device bitstream is outdated. 

 
5. Evaluation  

 

5.1. Cost Evaluation 
Area. SRAM FPGAs providing bitstream 
confidentiality and integrity already have crypto 
engines in the static logic [16, 17, 18]. Hence, our 
architecture only requires extra control logic (including 
the new USL interface) and six new registers (two of 

them non-volatile) to support forward secure-content 
distribution. The area of these additions is likely to be 
small in comparison to that of the existing static logic. 
Performance. Latencies related to encryption and 
authentication of bitstreams and content transmissions 
already apply to existing secure FPGA designs. The 
only performance hit incurred by our architecture 
consists in access latencies to the secure storage and 
computation of transmission keys by the static logic. 
Both operations are performed only once per broadcast 
so their relative performance cost should be acceptable 
when compared to the latencies associated with 
cryptographic processing of the broadcast content. 

  
5.2. Security Evaluation 
Resistance to Key Extraction. An important security 
objective for the FPGA-based receivers we propose is 
to prevent extraction of key material that could lead to 
cloning of devices. We have four types of secret keys. 

The Secure Storage Keys (KSE and KSM) are unique 
to each FPGA; they are generated and stored on-chip 
by the Broadcaster during the initialization procedure. 
They are only used by the control logic to encrypt and 
decrypt BE keys and compute MACs: they never leave 
the static part of the chip. Since this static logic is 
within the trusted FPGA chip, an attacker cannot spy 
on or corrupt its operations in order to reveal the secure 
storage keys, i.e. KSE and KSM cannot be extracted. 

The security of the BE keys depends on the security 
of KSE and KSM, as the former are encrypted and 
MACed by the latter when stored off-chip. Since KSE 
and KSM themselves cannot be extracted, the only way 
to obtain BE key bits is to infer information about a BE 
key by observing the value of a transmission key (e.g. 
if a vulnerable configuration leaks a transmission key). 
This is computationally infeasible, as we assume KDF, 
used to derive a transmission key from a BE key, is 
cryptographically secure—i.e. an attacker cannot 
obtain information about KDF’s pre-image by looking 
at its output. As a result, the BE keys are protected 
from key extraction attacks. 

The leaking of a Transmission Key by vulnerable 
user logic can only lead to benign cloning of devices. 
Indeed, the value of all transmission keys changes as 
soon as bitstream update is sent out to fix the 
vulnerability. Any clone made prior to the update and 
containing solely a transmission key becomes obsolete 
as soon as the update is sent: without BE keys, it is 
unable to derive a new transmission key allowing 
decoding of post-update content transmissions.  

 The Broadcaster generates a new Session Key on 
every transmission. A clone created with a leaked 
session key is thus incapacitated as soon as that 
transmission is over.  
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USL Interface. The insertion of this interface between 
the user and static logic does not represent a new attack 
vector. It only allows the user logic to read a 
transmission key or request a bitstream update from the 
static logic. Leaking the key leads to benign device 
clones in the worst case, while a spurious bitstream 
update is detected when the static logic authenticates it. 
Forward Security Property. In order to provide 
forward security, our architecture must ensure that 
contents broadcast at time t can only be decrypted by 
devices with the latest hardware configuration at time t. 
For this property to hold, the following two conditions 
must be respected: 1) the FPGA should only make the 
latest transmission key available to the latest hardware; 
2) the BE keys, used to derive transmission keys, 
should be inaccessible to attackers at all times. 

As we have just shown above, the second condition 
holds since the BE keys are protected by the FPGA-
rooted secure storage. To fulfill the first condition, we 
introduced the concept of a Configuration IDentifier 
(CID) used by the static logic as an input to KDF in 
deriving the transmission keys.  

By design, the trusted static logic uses the CID of 
the last successfully applied hardware configuration 
update (authenticated by the static logic). Thus, the 
transmission key made available to the user logic can 
only decrypt current broadcasts if the reconfigurable 
hardware was configured with the latest bitstream. As a 
result, an attacker configuring an FPGA with an older 
bitstream can only achieve denial of service since 
doing so prevents decryption of new digital content. 

   
6. Conclusion  
 

 Confidentiality and integrity of an FPGA chip’s 
hardware configuration are fundamental to trusted 
computing on reconfigurable technology. We showed 
the forward security property defined in this paper is 
also essential for the secure broadcast of digital content 
to FPGA-based devices. To provide this novel security 
property in reconfigurable technology, we presented 
new protocols with supporting FPGA hardware. Our 
architecture allows for broadcast update of FPGA 
configurations and cryptographic binding of broadcast 
digital content to the latest bitstream version. Our 
solution is low-cost and scalable, as it only require a 
small and constant amount of non-volatile memory in 
the static logic. 
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