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Abstract— Secure communications in wireless ad hoc networks
are protected by setting up end-to-end secret keys for commu-
nicating node pairs. Secret keys can be provided by pre-loading
shared secrets (e.g. a set of potential keys or keying informa-
tion) into nodes prior to deployment. However, due to physical
limitations of nodes and network scalability requirements, this
key pre-distribution approach is not able to achieve full key-
connectivity for all communicating pairs. Therefore, on-demand
key establishment, in which pairwise secret keys are derived
by exchanging multiple keying messages among wireless nodes,
becomes necessary.

In this paper, we develop a theoretical framework for the on-
demand key establishment approach. Our contributions include
a novel security metric, which we call a Byzantine resilience
vector, to quantify the resilience of any key establishment
scheme against Byzantine (arbitrary) attacks. Our analysis shows
that previous key establishment schemes are vulnerable under
Byzantine attacks. We prove a universal bound on achievable
Byzantine resilience vectors for any on-demand key establishment
scheme. We show that this bound, which characterizes the
optimal security analytically, is tight, by proposing a Byzantine-
resilient key establishment scheme which achieves any vector
within this bound. In addition, we also propose a class of low
complexity key establishment schemes which achieves nearly-
optimal Byzantine attack resilience. The security and complexity
of the proposed schemes are analyzed.

I. I NTRODUCTION

In wireless ad hoc networks such as wireless sensor net-
works, symmetric key cryptography is attractive due to its
efficiency under extreme node resource constraints (e.g. com-
putation, memory and power). Currently, there exist three
different approaches for providing pairwise secret keys: key
assignment using trusted third parties, key pre-distribution
before initial node deployment, and key establishment by
exchanging keying messages. In particular, the key assignment
schemes rely on trusted servers for key agreement among
nodes [1], [2]. These schemes may not be practical for ad-
hoc networks or large-scale sensor networks, which do not
have the infrastructure of trusted servers or base-stations.
The second approach, key pre-distribution, has attracted a lot
of attention recently due to its efficiency in small or local
networks. In key pre-distribution schemes, a large amount
of secret keys or keying information can be preloaded into
nodes prior to deployment. Neighboring nodes then discover
shared keys after deployment to achieve a certain level of
key-connectivity probability. The pioneering work on key pre-
distribution was by Eschenauer and Gligor in [3]. The work
has since been generalized by [4] to a q-composite scheme

utilizing the existence of multiple shared keys and by [5] to
a random matrix based scheme to improve resilience against
node captures. In a separate work, a location-aware key pre-
distribution scheme was proposed in [6], [7], [8]. This scheme
puts strong requirements on deployment location knowledge,
but achieves better scalability and local key-connectivity com-
pared to basic key pre-distribution schemes. Later, a general
framework for key pre-distribution was presented in [9].

As pointed out in [10], [11], [12], key pre-distribution
schemes have to struggle with the conflicts among node
resource constraints, desired key-connectivity probability, scal-
ability in network size, and resilience against malicious at-
tacks. Due to the limitation of node memory and computation
ability, key pre-distribution schemes scale poorly to very large
networks and the resulting pairwise key-connectivity proba-
bility is relatively low. In addition, most key pre-distribution
schemes are designated to protect only the confidentiality of
secret keys, while two other security components, integrity
and availability, are not accounted for. Key pre-distribution
schemes are vulnerable when various attacks occur simultane-
ously.

To address these issues, a key establishment approach that
employs pre-distributed keys as local link keys has been
proposed in [4], [13], [14], [15]. In this approach, to set
up an end-to-end secret key between two nodes, the source
node generates a set of keying messages, from which a secret
key can be derived. Each keying message is sent through a
separate communication path from the source node to the
destination node which then computes the secret key locally.
The transmission is protected by existing link keys at each hop.
Since it is difficult to attack a large fraction of keying messages
simultaneously in an ad hoc network, the key establishment
approach using multi-path is able to guard against various
attacks efficiently. In particular, an XOR-based key establish-
ment scheme was proposed in [4], [13], where a secret key
is derived by the XOR of all keying messages. This scheme
prevents malicious attackers from deriving the secret key if
not all keying messages are revealed. In [14], Shamir showed
that there exists a scheme to divide a secret key intom keying
messages in such a way that the key is easily reconstructable
from anyv +1 pieces, but even complete knowledge ofv− 1
pieces reveals no information about the key. This technique
enables the construction of a key establishment scheme that
can guard both revealing and erasure of keying messages. In
a separate work [15], Huang et al proposed a Reed-Solomon



code based scheme that allows node pairs to derive secret keys
when both erasure and modification of keying messages occur.

However, all of these previous key establishment schemes
only deal with a subset of the following three attacks and thus,
are vulnerable to a Byzantine attack model, in which malicious
nodes (i.e. compromised or attacker-fabricated nodes) can (a)
reveal the keying messages passing through them to make
secret keys computable to the attackers; (b) erase and stop
forwarding keying messages to prevent other nodes from es-
tablishing secret keys; or (c) cheat the receivers by modifying
the forwarded keying messages to prevent other nodes from
deriving the correct secret keys. The main contributions of this
paper are summarized as follows:
• We define a novel security metric, called a Byzantine

resilience vector, to quantify the resilience of any key
establishment scheme against Byzantine attacks. The se-
curity of previous key establishment schemes [4], [13],
[14], [15] is evaluated with respect to the proposed
security metric. Our analysis and simulation show that
previous key establishment schemes are vulnerable under
Byzantine attacks.

• We develop a unifying theoretical framework, which
includes all previous key establishment schemes as spe-
cial cases. The entire set of Byzantine resilience vectors
achievable by any key establishment scheme is charac-
terized by proving a security performance bound in a
closed-form expression. The bound is tight, since we
propose an optimal key establishment algorithm that is
able to achieve any Byzantine resilience vector within
the bound. This proposed algorithm is the first that can
simultaneously guard against all three attacks defined in
the Byzantine attack model.

• The 3-dimensional region consisting of all feasible
Byzantine resilience vectors (as plotted in Fig.2 in Section
III), not only provides a quantitative measurement for the
optimal security of the key establishment approach but
also gives a benchmark for the design and analysis of key
establishment protocols given statistical attack patterns.
In particular, it is proven that a secret key can always
be established securely if less than one third of keying
messages are attacked.

• In addition, we propose a class of low complexity key
establishment algorithms with nearly-optimal Byzantine
attack resilience. The algorithms only require XOR of
keying messages and simple table lookups. Complexity
and security performance analysis of the proposed al-
gorithms is presented in detail. We also implement the
two proposed algorithms with the Zone Routing Protocol
[16] in a wireless ad hoc network and compare their
performance with previous key establishment schemes.
A significant security improvement is observed in simu-
lations.

II. A N EW SECURITY METRIC FORBYZANTINE ATTACKS

We consider a wireless ad hoc network consisting ofN
nodes without using any infrastructure such as access points
or base stations. Secret and reliable communications in the

network are protected by pairwise secret keys. In our threat
model, nodes are not tamper resistant. Compromised or fab-
ricated nodes reveal all their forwarding keying messages to
attackers and also try to disrupt normal key establishment in
the network.
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Fig. 1. This figure illustrates how to set up an end-to-end secret by sending
m messages from the source nodeS to the destination nodeD, in the key
establishment approach.

In the key establishment approach, multiple keying mes-
sages and communication paths between two nodes are used
to set up an end-to-end secret key. Suppose that two nodes
S and D in Fig 1 want to set up a pairwise key. The
source nodeS generatesm keying messages, denoted by
M1, . . . , Mm, and sends each of the keying messages via a
separate communication path toward the destination nodeD.
To secure keying messages during transmission, encryptions
by existing link keys are performed at each intermediate node
before forwarding keying messages, and nodes at next hop
decrypt the messages by the same link keys. In this approach,
the link keys are provided by key pre-distribution schemes.
If S → R → D is a communication path used for sending
messageMi, the following steps are performed:

S − EKSR(Mi) → R and R− EKRD (Mi) → D,

whereKSR and KRD are existing link keys shared by node
pairs S-R and R-D, respectively. Upon receiving the keying
messages, nodeD employs a given functionf(·) to derive
an end-to-end secret keyKSD = f(M1, . . . , Mm) used to
secure future communication with nodeS. Since end-to-
end secret keys can be set up based on demand, the key
establishment approach allows rekeying or key refreshing to
be easily implemented in wireless ad hoc networks.

Existing key establishment schemes [4], [13], [14], [15]
are limited to dealing with a subset of possible attacks and
become vulnerable under Byzantine attacks. Our Byzantine
attack model consists of a combination of the following three
independent attacks, each targeted at a security component:
• Revealing attacks on keying message confidentiality:

Compromised or fabricated nodes reveal to attackers the
content of keying messages traveling through them. To
quantify the resilience against this attack, we define a
threshold valuev ≥ 0, such that if no more thanv
messages are revealed to attackers, the end-to-end secret
key remainsunconditionally secreteven if all attackers
collude, i.e. when keying messages are random, we have

Prob
{
f(M1, . . . , Mm) = KSD

∣∣Mi1 , . . . , Miv

}

= Prob {f(M1, . . . , Mm) = KSD} =
1
2k

. (1)



for any i1, . . . , iv ∈ Zm and any k-bit key,KSD. This
implies that knowing any set of no more thanv keying
messages reveals zero information to attackers.

• Erasure attacks on keying message availability: In an
attempt to prevent the end-to-end secret key from be-
ing established, compromised or fabricated nodes make
keying messages unavailable to the destination, by stop-
forwarding keying messages or jamming forwarding link.
We definee ≥ 0 to be a threshold such that the secret
key can be recovered at the destination node if no more
thane messages are erased.

• Modification attacks on keying message integrity: Since
complicated authentication methods (e.g. digital signature
using public-key-based cryptography) are impractical in
ad hoc networks, keying messages are subject to modifi-
cation attacks, in which compromised or fabricated nodes
forward modified keying messages to cause confusion. A
threshold valued ≥ 0 is chosen to denote the maximum
number of modified messages that can be corrected by a
key establishment scheme.

Although erasure and modification attacks can also be re-
garded as transmission erasures and errors from a classical
error control coding perspective, where much research has
been done on how to correct transmission erasures and errors
efficiently, our Byzantine attack model in this paper is dif-
ferent, because providing confidentiality (which is irrelevant
to error control coding applications) is a must for establishing
end-to-end secret keys in wireless ad hoc networks. In the fol-
lowing, we will provide a unifying framework and analysis for
resilience of any key establishment schemes under Byzantine
attacks.

Byzantine attack is defined as any arbitrary combination of
the revealing, erasure, and modification attacks. Given thatm
keying messages are used for establishing a secret key in a
key establishment scheme, we quantify its Byzantine attack
resilience by a three tuple(v, e, d)m, denoted as a Byzantine
resilience vector. The vector(v, e, d)m is a new metric that
measures the security performance of any key establishment
scheme under Byzantine attacks. More precisely, we say that
a key establishment scheme achieves a Byzantine resilience
(v, e, d)m, if an end-to-end secret key can be successfully
established under no more thane erasure attacks andd modifi-
cation attacks, while attackers have absolutely no information
about the key even if they obtain the content ofv keying
messages and collude. For a key establishment scheme using
m keying messages, the set of achievable Byzantine resilience
vectors lies in a 3-dimensional region, which illustrates secu-
rity of the particular scheme along three axis, confidentiality,
availability, and integrity (see Figure 2).

We can analyze the security of previous key establishment
schemes within our new unifying framework. In [4], [13],
secret keys of lengthk are derived at destination nodes by
the bitwise XOR of all keying messages, each being exactly
k bits, i.e. KSD = M1 ⊕ . . . ⊕ Mm. It can be verified that
the end-to-end secret key remains confidential if not all keying
messages are revealed to attacks. Thus, this scheme achieves

Byzantine resilience(v = m− 1, e = 0, d = 0)m. In [14], the
author proposed another key establishment scheme, in which
a secret key is regarded as an integer coefficient of a degree
t random polynomial inGF2k , such that it can be recovered
from any t + 1 evaluations of the polynomial and remains
undetermined if onlyt evaluations are known. By varying the
degreet and assigningv = t, this scheme is able to achieve
(v+e = m−1, d = 0)m. The last scheme [15] employs Reed-
Solomon codes (a special class of error control codes) to deal
with keying message erasure and modification. Considering
the secret key as an input, keying messages are constructed
by dividing the output codeword intom pieces, such that the
key can be recovered if no more thane andd keying messages
are erased and modified respectively, given2d + e ≤ m − 1.
Extending this scheme to general error control codes achieves
a Byzantine resilience of(v = 0, e + 2d = m − 1)m, since
any revealed keying message can be used as a constraint to
reduce the search space of the secret key and thus violates
unconditional secrecy. Table I summarizes the security analysis
of previous key establishment schemes, whose vulnerabilities
under Byzantine attacks (i.e. entries with zero resilience) are
marked by∗ in the table.

Previous Schemes Resilience vector(v, e, d)m

v e d
XOR [4], [13] v = m− 1 e = 0∗ d = 0∗

Polynomial [14] v + e = m− 1 d = 0∗

RS code [15] v = 0∗ 2d + e = m− 1

TABLE I

THE SECURITY ANALYSIS IN THIS TABLE SHOWS THAT PREVIOUS KEY

ESTABLISHMENT SCHEMES ARE VULNERABLE UNDERBYZANTINE

ATTACKS, SINCE THEY ARE DESIGNED TO DEAL WITH ONLY A SUBSET OF

POSSIBLE ATTACKS.

III. PROVING THE OPTIMAL BYZANTINE RESILIENCE

In this section, we prove a universal bound on achievable
Byzantine resilience vectors for key establishment. This bound
is shown to be tight, as we propose an optimal key estab-
lishment scheme which can achieve any vector within this
bound. To our knowledge, our proposed algorithm is the first
that provides a solution against all three attacks defined in the
Byzantine attack model simultaneously.

Theorem 1:With the use ofm keying messages, each ofk
bits, a Byzantine resilience vector(v, e, d)m can be achieved
if and only if v + e + 2d ≤ m− 1.

Proof: The theorem states that the boundv + e +
2d = m − 1 is both optimal and tight. In the following, we
start by showing the optimality and then propose a new key
establishment scheme to prove the achievability.

To showv + e + 2d = m − 1 is optimal. If e = d = 0,
then we havev ≤ m − 1, since the secret key becomes
deterministic given allm keying messages. The upper bound
of v+e+2d = m−1 in this case is trivial. Fore+d > 0, we
denote[M1, . . . , Mm] as afeasible message vector, in which
M1, . . . , Mm are a set of allowable keying messages that can



be used to establish a secret keyKSD = f(M1, . . . , Mm).
Now, without loss of generality, we assume that the firstv
keying messagesM1, . . . , Mv are revealed to attackers who
are able to collude. Then, with this information, the attackers
can rule out any feasible message vector whose firstv keying
messages are not equal toM1, . . . , Mv. To guarantee uncon-
ditional secrecy of the secret key, all possible keys must be
feasible. It is necessary that the number of remaining feasible
message vectors with the firstv messages in common must be
no less than2k, i.e. the number of all possible secret keys of
lengthk. Formally, if H(·) denotes the entropy function and
feasible message vectors are random, we derive

H([M1, . . . , Mm]|M1, . . . , Mv)
≥ H(f(M1, . . . ,Mm)|M1, . . . ,Mv)
= H(KSD|M1, . . . ,Mv)
= H(KSD)
= k (2)

where KSD is the secret key. The second step is from the
information processing inequality and the fourth step holds
because all keys are equally likely due to the definition of
unconditional secrecy (1). Equation (2) implies that with the
first v messages fixed, there exists at least2k feasible message
vectors. These2k feasible message vectors are different only in
the lastm−v messages, each of lengthk. Thus, the minimum
Hamming distance of these feasible message vectors (i.e. the
minimum number of different messages in any two feasible
message vectors) can be no more thanm − v. According to
error control coding theory, givene erasures andd modifica-
tions, two feasible message vectors with a Hamming distance
of m− v remain distinct and separable only if

2d + e + 1 ≤ m− v ⇔ v + e + 2d ≤ m− 1 (3)

This gives the optimality of boundv + e + 2d ≤ m− 1.
For achievability of the bound, we propose a new key

establishment scheme that achieves any Byzantine resilience
vector(v, e, d)m satisfying the upper boundv+e+2d+1 = m.
The proposed algorithm for generatingm keying messages is
similar to the polynomial evaluation used in [14]. However,
we employ a different decoding strategy and show that the
algorithm can deal with revealing, erasure, and modification
attacks at the same time. Letp > 2k be a prime number. Thus
the desired secret key can be regarded as an integer in the field
GFp, i.e. KSD ∈ [0, 2k − 1]. We generate a random degreev
polynomial inGFp as follows:

q(z) = KSD + A1z + . . . + Avzv (4)

where Ai ∈ GFp for i = 1, . . . , v are randomly chosen
integers. Thenm keying messages are computed at the source
node by evaluatingq(x) at m distinct points forz = 1, . . . , m,
i.e.

[M1,M2, . . . , Mm] = [q(1), q(2), . . . , q(m)] (5)

Since the polynomial has degreev, it has been shown in [14]
that revealing no more thanv keying messages would leave

the secret keyKSD completely unknown. So we only need to
show that the destination node can recover keyKSD with e
erasures andd errors, given that2d+e = m−v−1. Toward this
end, we re-write equation (5) using a matrix representation:



M1

M2

...
Mm


 =




1 11 12 . . . 1v

1 21 22 . . . 2v

...
...

...
...

...
1 m1 m2 . . . mv


 ·




KSD

A1

...
Av




It is easy to verify that them × (v + 1) coefficient matrix
(denoted byG) on the right hand side is a Vandermonde
matrix, whose anyv + 1 rows are full rank because

∣∣∣∣∣∣∣∣∣

1 i11 i21 . . . iv1
1 i12 i22 . . . iv2
...

...
...

...
...

1 i1v+1 i2v+1 . . . ivv+1

∣∣∣∣∣∣∣∣∣
=

∏

j 6=l

(ij − il) 6= 0

wherei1, . . . , iv +1 are the index of anyv +1 rows of matrix
G. Thus, any non-zero vector~x in GF

(v+1)
p of size1×(v+1)

can be orthogonal to at mostv rows of matrixG. We have

∀~x 6= ~0, Hamming(G~x,~0) ≥ m− v (6)

where~0 is a zero vector andHamming(·) is the Hamming
distance function. This implies that matrixG is a gener-
ating matrix for a (m, v + 1, s) linear error control code
in GFp with a minimum Hamming distance of at least
m − v. According to error control coding theory, given that
2d + e + 1 ≤ m − v, any d modifications ande erasures
of the keying messages can be corrected at the destination
node using a sphere decoding algorithm which finds the
closest feasible message vector to the received one [17]. We
summarize the optimal key establishment algorithm as follows:

Algorithm 1 : Optimal Key Establishment Algorithm

1) Source node generates a random keyKSD andv random
integersA1, . . . , Av.

2) Initialize i = 1.

3) Source node generatesMi = KSD + A1i + . . . + Aviv

and sends it to destination node.

4) If i < m, let i = i + 1 and go to step 3.

5) Destination node employs sphere decoding to derive
KSD upon receiving the keying messages.

This complete the proof of Theorem 1.

Remark 1:When the length of keying messages is less than
that of the secret key (i.e. length(Mi) < k), it can be proven
that a Byzantine resilience(v, e, d)m can be achieved if and
only if v + e+2d ≤ m−d k

length(Mi)
e. This is a more general

result than Theorem 1 that applies to all key establishment
algorithms. Its proof is omitted due to space limitation.

Theorem 1 shows that for a givenm > 1, the set of
achievable Byzantine resilience vectors(v, e, d)m form a 3-
dimensional tetrahedron2d+e+v ≤ m−1 as shown in Fig 2,
while previous key establishment schemes only achieve certain



2-dimensional sub-planes in the tetrahedron: the polynomial
based approach in [14] achieves{v + e + 1 ≤ m, d = 0}, the
Reed-Solomon code based approach in [15] achieves{v =
0, e + 2d + 1 ≤ m}, and the XOR based approach in [4]
only achieves a single line{v ≤ m − 1, e = 0, d = 0}. Our
framework for key establishment includes all previous results
as lower-dimensional special cases.
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Fig. 2. Form = 30, this figure plots the 3-D optimal Byzantine resilience
region (i.e. the tetrahedron defined by2d+e+v ≤ m−1) and 2-D sub-planes
achieved by previous schemes.

IV. A PPLICATIONS IN WIRELESSAD HOC NETWORKS

The Byzantine resilience vector and its optimal bound
proved in Theorem 1 provide a fundamental benchmark, from
which many important security performance metrics can be
derived directly, for given statistical attack patterns. In this
section, we show two examples to illustrate how to apply our
results to the design and analysis of key establishment schemes
in wireless ad hoc networks. The first example focuses on
maximizing the resilience to malicious paths, while the second
example optimizes the secure key establishment probability.

A. Maximum Malicious Path Resilience

In ad hoc networks, a message forwarding path is malicious
if it contains at least one compromised or fabricated node.
As the simplest case, if there is exactly one attack on each
malicious path and the number of each type of attack is
equal (i.e.v = e = d), then from2d + e + v ≤ m − 1, it
is easy to verify that an end-to-end key can be established
securely if less than three quarters of paths are malicious (i.e.
v + e + d ≤ b 3(m−1)

4 c). However, the assumption of equal
numbers of attacks is impractical, because malicious nodes can
collude to perform multiple attacks on a single path and cause
maximum damage to the secret key establishment. For such
smart Byzantine attacks, we derive the maximum malicious
path resilience as follows.

Corollary 1: Under smart Byzantine attacks, an end-to-end
secret key can be established securely if and only if less than
one third of paths (i.e.bm−1

3 c) are malicious.

Proof: Suppose thatx out of m paths are malicious. We
need to find the maximum allowablex such that a secret key
can be established under smart Byzantine attacks. Since each
malicious path contains at least one attack, we obtainx ≤
v + e + d. Clearly, a erasure attack and a modification attack
can not exist on a single path, while each of them can co-
exist with a revealing attack. This implies two more feasibility
constraintsx ≥ v and x ≥ d + e. Thus, we can formulate a
max-min optimization problem, where a network operator tries
to maximize path resiliencex under the feasibility constraints
and colluding malicious nodes minimize path resiliencex over
all possible Byzantine attacks, given that the vector(v, e, d)
satisfies2d + v + e = m− 1. Formally, we have

max
x

min
v,e,d

x (7)

subject to x ≥ e + d

x ≥ v

x ≤ v + e + d

v + 2d + e = m− 1
x, v, e, d ≥ 0

Solving this linear optimization problem, we derivexopt =
bm−1

3 c, which completes the proof.

B. Maximum Secure Key Establishment Probability

For known attack statistics, we compute the secure key
establishment probability for any given scheme and then
maximize the probability over the set of achievable Byzantine
resilience vectors. In practice, when keying messages are
forwarded on non-deterministic or random communication
paths, the average probability that a keying message has
been successfully attacked during transmission can be derived
from historical statistics of Byzantine attacks. Assume that the
probability is i.i.d. for each keying message and is given byPv,
Pe, andPd for the revealing, erasure, and modification attacks
respectively. Thus, a keying message remains attack-free with
probability P0 = 1 − Pv − Pe − Pd. For a key establishment
scheme usingm keying messages, the probability that exactly
v revealing attacks,e erasure attacks, andd modification
attacks have been successful is

Pm(v, e, d)

=
(

n
v

)(
n− v

e

)(
n− v − e

d

)
P v

v P e
e P d

d Pn−v−e−d
0

=
(n!)P v

v P e
e P d

d Pn−v−e−d
0

(v!)(e!)(d!)(n− v − e− d)!
(8)

According to Theorem 1, a secret key can be established
securely if and only if2d + e + v ≤ m − 1. For given
Byzantine attack statistics, we can derive the maximum secure
key establishment probability as the solution to the following
optimization problem over the set of achievable Byzantine
resilience vectors:

max
v,e,d

∑

i≤v,j≤e,l≤d

Pm(i, j, l) (9)

s.t. 2d + e + v ≤ m− 1
v, d, e ≥ 0 (10)



The optimizer of problem (9) defines the optimal key estab-
lishment scheme with the best security performance.

In general, problem (9) can be solved by an exhaustive
search over all Pareto optimal vectors satisfying the bound
2d + e + v = m − 1. However, if Pv, Pe, Pd ≤ P0

m holds
(i.e. attack probabilities are small), then we can prove that
Pm(v, e, d) is a monotonically decreasing function overv, e,
andd, respectively. In this case, the optimization problem (9)
can be easily solved by a greedy algorithm that incrementally
improvesv, e , andd by a unit step-size according to a discrete
gradient[Pm(v+1, e, d), Pm(v, e+1, d), Pm(v, e, d+1)]. The
greedy algorithm is guaranteed to converge to the optimal
Byzantine resilience vector that satisfies2d+e+v = m−1 and
achieves the maximum secure key establishment probability.
Details of the algorithm are omitted.

V. L OW-COMPLEXITY KEY ESTABLISHMENT SCHEME

USING XOR

Theorem 1 gives the optimal Byzantine resilience that is
achievable by the key establishment scheme in Algorithm
1. However, the(v + 1)m multiplications of large integers
in GFp with p > 2k for constructing keying messages and
the 2(v+1)m Hamming distance computation for recovering
the secret key with a sphere decoder renders Algorithm 1
impractical in wireless ad hoc networks. In this section, we
derive a class of low-complexity key establishment algorithms
that only requires bitwise XOR operations and simple table
lookups. The new algorithm, generalized from linear binary
error control codes, is able to achieve a nearly-optimal per-
formance. We first describe the proposed algorithm and then
provide a security and complexity analysis.

A. Syndrome Decoding for Linear Binary Codes

A linear binary codeC is a linear subspace of the field of
binary vectors. IfC is an(m, t, s)-code, then it encodes vectors
of length t into codewords of lengthm, whose minimum
Hamming distance iss. Let G of sizem× t be a generating
matrix for this linear code. Codewords are obtained by linear
combinations of the rows ofG, i.e. if ~x is a vector of length
t, then~y = G~x has lengthm and is the codeword for~x.

To correct both error and modification in a received code-
word, the following syndrome decoding procedure for binary
linear codes can be employed: LetH be a parity check matrix
for codeC. We first replace the erased coordinates by all zeros
(denoted by~y0) and all ones (denoted by~y1) and compute
two different syndromes (i.e.~r0 = HT ~y0 and ~r1 = HT ~y1)
respectively. By looking up~r0 and ~r1 in the syndrome table
to obtain two different error vectors~t0 and ~t1, the one that
contains fewer number of errors on non-erased coordinates
gives us the correct syndrome that should be chosen. More
precisely, if ~r0 (or ~r1 instead) gives fewer errors, then the
original codeword can be recovered by inserting zeros (or
ones) on the erased coordinates and then subtracting the error
vector ~t0 (or ~t1) i.e. ~y = ~y0− ~t0 (or ~y = ~y1− ~t1). In classical
coding theory, it has been proven that an(m, t, s)-code is able
to correct anye erasures andd modifications at the same time,
given that2d + e ≤ s− 1 [17].

The following example contains a generating matrix and a
parity check matrix for an(8, 2, 5) linear binary code

G =
[

1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1

]T

,

H =




1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 1 1 1 0 1 1 1




T

.

For an input vector~x = [1 1]T , the corresponding codeword
is given by~y = G~x = [1 1 1 0 0 1 1 1]T . Now, suppose that
the first two bits of~y are erased and the third bit is flipped,
i.e. the received vector becomes~̂y = [∗ ∗ 0 0 0 1 1 1]T .
We replace erased coordinates in~̂y with ones and zeros
respectively and compute two syndromes~r0 = [0 0 0 0 0 1]T

and ~r1 = [0 1 0 0 0 1]T . By looking up the syndrome table
for this (8, 2, 5)-code, we get~t0 = [0 0 0 1 1 0 0 0] and
~t1 = [0 0 1 0 0 0 0 0]. Since ~t0 contains two errors on
non-erased coordinates, while~t1 contains only one error, we
choose all ones on the erased bits in~̂y and subtract~t1 from it.
This gives us the correct codeword~y. In the next section,
we generalize this syndrome decoding method and derive
an algorithm for secure key establishment. The proposed
algorithm not only corrects modifications and erasures, but
also achieves unconditional secrecy for end-to-end keys.

B. Low-Complexity Key Establishment

Let X1, . . . , Xt be a set of length-k pseudo-random vectors
constructed at the source node. We stack theset random
vectors into a matrix[X1, . . . , Xt] and encode each row of
the matrix using a(m + 1, t, s) error control code, which has
a generating matrix

G =




g01 g02 . . . g0t

g11 g12 . . . g1t

...
...

. . .
...

gm1 gm2 . . . gmt




(m+1)×t

(11)

The codewords form a matrixG · [X1, . . . , Xt]T of size(m+
1)× (k). Now, we choose a secret key as the first row of the
codeword matrix and keying messageMi as the(i+1)’th row,
for i = 1, . . . ,m, i.e.

[KSD,M1, . . . , Mm]T = G · [X1, . . . , Xt]T (12)

Since linear binary codes are used, all operations required
are simply binary XORs. Let⊕ be the bitwise XOR op-
erator for vectors. The algorithm for generating keying
messages at the source node is summarized as follows:

Algorithm 2 : Generating Keying Messages

1) The source node constructst length-k pseudo-random
vectorsX1, . . . ,Xt.



2) The end-to-end secret key is derived as

KSD = (g01X1)⊕ (g02X2)⊕ . . .⊕ (g0tXt) .

3) Initialize i = 1.

4) Source node generates keying messageMi, sends it to
the destination node, and erasesMi locally:

Mi = (gi1X1)⊕ (gi2X2)⊕ . . .⊕ (gitXt) .

5) If i < n, let i = i + 1 and go to step 4.

6) Source node erasesX1, . . . , Xt from his memory.

Without loss of generality, we assume that the laste
keying messages are unavailable to the destination node due
to erasure attacks and the remainingm − e keying messages
contain d faulty ones due to modification attacks. LetH
be a parity check matrix of size(m + 1) × (m + 1 − t)
for the generating matrix in (11). We use the following
algorithm for deriving the secret key at the destination node:

Algorithm 3 : Deriving Secret Key

1) Destination node receives at leastm−e keying messages
M̂1, . . . , M̂m−e.

2) Define a mask vectorA according to the indices of
received keying messages:A1 = 0 and

Ai+1 =
{

1, if M̂i is received
0, otherwise

∀i = 1, . . . , m.

3) Destination node computes a submatrixH̃, consisting of
the m− e non-erased rows ofH:

H̃i = Hi+1, for i = 1, . . . , m− e.

4) Destination node computes a syndrome perturbation
vector r̃ as the XOR of thee + 1 erased rows ofH:

r̃ = H1 ⊕Hm−e+2 . . .⊕Hm+1.

5) Destination node derivesR0 = H̃T ·
[
M̂1, . . . , M̂m−e

]T

.

6) Initialize i = 1. Let ADDR be the base address of the
syndrome table stored at the destination node.

7) Retrieve~t0 from addressADDR + R0
i .

8) Retrieve~t1 from addressADDR + (R0
i ⊕ r̃).

9) The i’th bit of KSD is given by

KSD,i =

{
~t01, if popcnt(~t0

∧
A) < popcnt(~t1

∧
A)

1⊕ ~t11, otherwise

10) If i < k, let i = i + 1 and go to step 5.

In Step 5 above, each row of
[
M̂1, . . . , M̂m−e

]
is a valid

codeword generated by (11) withe + 1 erasures andd
modifications. According to the syndrome decoding procedure
described in Section V.A, if we assume that the erased keying
messages are all zero vectors, we can compute a syndrome

matrix R0 = H̃T ·
[
M̂1, . . . , M̂m−e

]T

, where each column of

R0 is a syndrome vector. On the other hand, if we assume that
the erased keying messages are all one vectors, it is easy to
show that the syndrome for thei’th row of

[
M̂1, . . . , M̂m−e

]

becomes̃r ⊕ R0
i , with r̃ as a perturbation vector defined in

Step 4. Thus, by looking up the syndrome table and comparing
the corresponding error vectors, we can recover the first bit of
the secret key, and thereafter bit by bit. In Step 9.popcnt is a
population count instruction which counts the number of ”1”
bits in a word andcmp means comparison of two words [18].
To facilitate table lookups, we use computed syndromes as the
indexes into the syndrome table.

C. Security Analysis

Theorem 2:For a linear binary error control code(m +
1, t, s) with dual code(m+1,m+1−t, s′), the proposed low-
complexity key establishment algorithm (i.e. Algorithms 2 and
3) achieves a Byzantine fault tolerance vector(v, e, d)m for
v = s′−2 and2d+e = s−2. In particular, when both codes are
maximum distance separable (MDS), the proposed algorithm
achieves an optimal Byzantine resilience of2d+e+v = m−3.

Proof: We first prove that the proposed algorithm can
recover the secret key undere erasure andd modification
attacks, and then show attacks have absolutely no information
about the secret key withv revealing attacks.

Since each row of the codeword matrix[KSD,M1, . . . , Mn]
is a valid codeword for the(m + 1, t, s) error control code,
classical coding theory shows that up tob s−1

2 c errors can be
corrected by syndrome decoding. In Algorithm 3, we choose
the e + 1 erased keying messages to be all zeros or all ones.
Because the error control code is binary, one of the two choices
introduces no more thanb e+1

2 c new errors, and thus leads to
no more thand + b e+1

2 c errors in total. These errors can be
corrected by the syndrome decoding in Algorithm 3, if the
following is satisfied:

d + be + 1
2

c = b2d + e + 1
2

c ≤ bs− 1
2

c (13)

This establishes2d + e ≤ s − 2 as a sufficient condition for
recovering secret keyKSD.

To show that secret keyKSD remains completely unknown
to attackers, without loss of generality, we assume that keying
messagesM1, . . . , Mv are revealed to attackers. According to
(12), attackers havev + 1 equations in the following matrix
representation




KT
SD

MT
1
...

MT
v


 =




g01 g02 . . . g0t

g11 g12 . . . g1t

...
...

.. .
...

gv1 gv2 . . . gmt


 ·




XT
1

XT
2
...

XT
t


 (14)

Because the dual error control code(m + 1,m + 1 − t, s′)
has distances′, classical coding theory shows that anys′ − 1
rows of theG matrix are linearly independent. Further,s′ is
upper bounded bys′ ≤ t + 1. When v ≤ s′ − 2 as claimed
in the statement of Theorem 2, we also havev + 1 ≤ t. This



implies that the first matrix on the right hand side of (14) is
full row-rank.

Thus, whenM1, . . . , Mv are fixed in (14), for each possible
choice of secret keyKSD, equation (14) defines a system
of v + 1 linear equations witht unknowns, i.e.X1, . . . ,Xt.
There exists2t−v−1 possibleX1, . . . ,Xt vectors such that
(14) is satisfied. More precisely, since vectorsX1, . . . ,Xt are
generated randomly by a uniform distribution, we have

Prob
{

KSD = K̂
∣∣ [M1, . . . , Mv] = M̂

}

=
Prob

{
KSD = K̂, [M1, . . . , Mv] = M̂

}

∑
K Prob

{
KSD = K, [M1, . . . , Mv] = M̂

}

=
Prob

{
[X1, . . . , Xt] ∈ XK̂,M̂

}

∑
K Prob

{
[X1, . . . , Xt] ∈ XK,M̂

}

=
1
2k

(15)

whereXK̂,M̂ is the set of allX1, . . . , Xt satisfying (14) for

KSD = K̂ and [M1, . . . , Mv] = M̂ . Equation (15) used the

fact that
∣∣∣XK̂,M̂

∣∣∣ = 2t−v for all K̂ andM̂ and thatX1, . . . ,Xt

are uniformly distributed. From (15), we conclude that given
keying messagesM1, . . . ,Mv, unconditional secrecy as de-
fined in (1) is achieved ifv ≤ s′ − 2.

In addition, according to classical coding theory, for binary
error control codes, we haves+s′ = m+1 when both the pri-
mal and the dual codes are maximum distance separable.Thus,
we derivev + 2d + e = s + s′ − 4 = m − 3, which is the
desired result.

D. Complexity Analysis

We analyze the complexity of the proposed key establish-
ment algorithm in terms of computation overhead and storage
space. For computation overhead, since we are restricted to
linear binary codes in this paper, all operations are performed
in Gf2. We observe that the algorithm consists of four basic
operations: binary XOR, table lookup, pseudo-random vectors,
and assembly instructions (i.e.popcnt andcmp). For storage
space, a syndrome table, generating and parity check matrices,
and auxiliary vectors have to be stored at each node.

Table II summarizes the complexity of our proposed key
establishment algorithm. As a numerical example, for a net-
work usingm = 30 keying messages and an AES encryption
with key size k = 128, the complexity is on the order
of 200K operations and 4M bits of storage for generating
keying messages and recovering a secret key. Our proposed
algorithm, which is able to guard against all three attacks in the
Byzantine attack model, is much less complex than previous
key establishment schemes [14][15].

Remark 2:The complexity analysis summarized in Table.II
is derived for the worst-case. A practical implementation of
the proposed key establishment algorithm may have much
lower complexity by performing the algorithm in parallel.
For example, multiple entries in the syndrome table can be
accessed at once, such that the complexity for table lookups

Complexity Metrics Generating Recovering

Computation Bitwise XOR o(km2) o(km2)

Random Vector o(m) -

Table Lookup - o(k)

popcnt andcmp - o(k)

Total Computation o(km2) o(km2)

Storage (bits) Syndrome Table - o(m2m−t)

Coding Matrices o(m2) o(m2)

Auxiliary Vectors o(km) o(km)

Total Storage o(km + m2) o(km + m2m−t)

TABLE II

SUMMARY OF THE COMPLEXITY ANALYSIS FOR THE PROPOSED KEY

ESTABLISHMENT ALGORITHM IN TERMS OF COMPUTATION OVERHEAD

AND STORAGE SPACE.

can be greatly reduced. Similarly, a logic circuit that consists
of multiple bitwise XOR logic gates can be used to perform
the XOR of vectors.

VI. N UMERICAL EXAMPLES

Consider a wireless ad hoc network withN = 1000 nodes,
uniformly distributed in a square area of sizeL = 100. We
assume that nodes in the neighborhood of Communication
range R = 15 share pre-installed keys with probabilityp.
These pre-installed link keys are used to secure keying mes-
sages during transmission. To discoverm separate message
forwarding paths for each node pair, we implement the Zone
Routing Protocol (ZRP) [16] with a zone radius of 2 hops.
In all simulations, compromised nodes are randomly selected
from the N nodes such that the locations of compromised
nodes are also uniformly distributed in the area.

We define the probability of secure key establishment as the
average probability that two nodes can successfully establish
an end-to-end secret key, and at the same time, the secret
key remains completely unknown to attackers even if they
collude. For p = 0.5 and the optimal key establishment
algorithm (i.e. Algorithm 1), Fig. 3 plots the probability of
secure key establishment for the use ofm = 1, 5, 10, 20, 30, 40
keying messages, under Byzantine attacks with equal proba-
bilities. It can be observed that the optimal key establishment
algorithm with m ≥ 20 can safeguard secret keys with a
successful probability of over 80% for as many as80 (i.e.
8%) malicious nodes, and its security performance benefits
from the increase of keying messages as more path diversity
is exploited. In another simulation withm = 30, Fig. 4 shows
that the probability of secure key establishment remains almost
the same for different pre-installed key-sharing probabilities
p = 0.5, 0.6, 0.7, 0.8. This observation implies that no matter
what key pre-distribution algorithm is used, the Byzantine
resilience achieved by the proposed optimal key establishment
algorithm can be guaranteed. Thus, complicated key pre-
distribution algorithms that are intended to provide high pre-
installed key-sharing probability may not be necessary, since
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Fig. 3. Probability of secure path key estab-
lishment v.s. number of compromised nodes for
m = 1, 5, 10, 20, 30, 40 keying messages.
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Fig. 4. Probability of secure path key es-
tablishment v.s. number of compromised nodes
for pre-installed key-sharing probabilityp =
0.5, 0.6, 0.7, 0.8.
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Fig. 5. Compare the security of different key
establishment schemes under Byzantine attacks.

full key-connectivity can be achieved by our on-demand key
establishment algorithm.

For the same network model withp = 0.5 and m = 30,
we compare the security of the optimal key establishment
algorithm in Section III, the low-complexity key establishment
algorithm in section V, key establishment using single path,
and the three previous multi-path key establishment schemes.
Our two proposed key establishment algorithms both achieve
a significant Byzantine resilience improvement over previous
schemes, while the lower-complexity algorithm in Section V
has a performance that is close to the optimal one, and is
more suitable for practical implementations. This comparison
highlights the importance of defending against multiple attacks
simultaneously: The overall resilience of a security algorithm
is determined by the worst individual-attack resilience (i.e.
min(v, e, d)) against Byzantine attacks. It also demonstrates
the excellent security-complexity properties of the proposed
method.

VII. C ONCLUSION

This paper proposes a unifying framework for analyzing the
Byzantine-resilience of any key establishment scheme, quan-
tified by a new security metric we call a Byzantine resilience
vector. A universal bound on achievable Byzantine resilience
vectors is derived in closed-form and can be attained by our
proposed optimal key establishment algorithm. For practical
implementations, we also develop a low-complexity key es-
tablishment algorithm that achieves nearly-optimal Byzantine
resilience. Our analysis and simulation show that the capability
of defending against multiple attack classes simultaneously is
critical for the security of wireless ad hoc networks.
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