
General-Purpose FPGA Platform for Efficient
Encryption and Hashing

Jakub Szefer, Yu-Yuan Chen and Ruby B. Lee
Department of Electrical Engineering

Princeton University
Princeton, NJ, USA

Email: {szefer, yctwo, rblee}@princeton.edu

Abstract—Many applications require protection of secret or
sensitive information, from sensor nodes and embedded applica-
tions to large distributed systems. The confidentiality of data can
be protected by encryption using symmetric-key ciphers, and the
integrity of the data can be ensured by using a cryptographic
hash function to calculate a ”digital fingerprint.” In this paper, we
propose reconfigurable FPGA hardware components that enable
rapid deployment of cryptographic and other algorithms. The
novelty of our hardware components is in their general-purpose
design which enables easy mappings to allow customizations of
data protection for different usage scenarios. Since we utilize only
a small part of an FPGA chip, our design can be readily inte-
grated with other processing needs of a mobile device, a sensor
node or a System-on-Chip. In addition to being able to implement
established algorithms, our analysis shows that the new hash
algorithms proposed for the National Institute of Standards and
Technology (NIST) competition for Advanced Hash Algorithms
(AHS) also map well onto our general-purpose components. Our
solution facilitates easy hardware implementation of customizable
encryption and hashing solutions, with area and speed perfor-
mance comparable to custom FPGA implementations targeted at
a specific cipher or hash algorithm. Furthermore, the components
that we have proposed can be used for many other applications -
not just for implementing block ciphers and cryptographic hash
functions.

I. INTRODUCTION

Symmetric key cryptography can be used to protect the
confidentiality of secret or sensitive information, and hash
algorithms can be used to protect the integrity of the data.
Many hardware ASIC (Application-Specific Integrated Cir-
cuit) implementations of cryptographic and hash algorithms
exist. While very good at implementing these algorithms
efficiently, the ASIC designs are fixed once manufactured and
cannot be changed if a new algorithym is needed. FPGA
(Field-Programmable Gate Array) hardware designs are more
flexible since they may be upgraded in the field, but they
are typically slower than the ASIC designs. Also, if the
FPGA design is targeted at a specific algorithm, it requires
a completely new design to be written from scratch in HDL
(Hardware Description Language) to implement a different
algorithm.

In this paper, we propose an FPGA platform that contains
two general-purpose and reconfigurable components: Ptab
implements versatile constant-time parallel table lookup op-
erations and Perm implements versatile permutations of the
subwords of its input, where a subword can be defined as

any number of bits. We show that different cryptographic and
hash algorithms can be decomposed into parts that correspond
to the two components. Furthermore, efficient implementation
of various algorithms based on these components is possible,
e.g.: AES [1], Whirlpool [2] and several of the newly proposed
candidates for the Advanced Hash Algorithms (AHS) from the
first two rounds of the NIST competition [3].

Section II describes the proposed components of the FPGA
platform. Section III describes the design flow. Section IV
describes mapping of different algorithms into the two compo-
nents. Section V presents an evaluation of the design. Section
VI has comparison to related work and section VII concludes
our paper.

II. PROPOSED ARCHITECTURE

Our FPGA platform for fast encryption and hashing makes
use of two components described below. A parallel table
component, Ptab, is used for constant-time accesses to a
set of configurable data tables. A permutation component,
Perm, is used for performing various shifts and permutations
on the subwords of its input. The two components can be
used individually or in combination. The platform can also be
expanded with other components in the future.

Our work is a ”platform” because it defines a number of
general-purpose components which can easily be parameter-
ized. These components can be used as building blocks for
various algorithms. The platform can be thought of as a set
of pre-designed components which can be resynthesized with
different options and put together to efficiently implement dif-
ferent designs. The actual inputs, outputs and interconnection
logic depend on the algorithm and the parameters with which
the components were synthesized.

A. Ptab - A Parallel Tables Component

Various implementations of cryptographic algorithms are
optimized by looking up pre-computed tables. These tables
are read many times and usually not updated during the
execution of the algorithm. Often these table lookups can
be performed in parallel since each of them performs an
independent operation.

The Ptab is a parameterized hardware FPGA implementa-
tion of table lookups which is an improvement over the more
restricted ptrd processor instruction presented by [4]. We

Jakub Szefer, Yu-Yuan Chen and Ruby B. Lee, “General-purpose FPGA Platform for Efficient Encryption and Hashing,” 
in Proceedings of the Application-specific Systems, Architectures and Processors (ASAP 2010) conference, July 2010. 

1



TABLE I
PTAB RE-CONFIGURATION PARAMETERS: PTAB(B,T,E,W,I,O,IW,OW)

Parameter Description
B Number of banks of tables
T Number of tables per bank
E Number of entries per table
W Number of bits per table entry
I Number of inputs
O Number of outputs

IW Bit width of inputs
OW Bit width of outputs

Fig. 1. Ptab component, configured with 128-bit inputs and outputs.

use block RAM memories (BRAMs) available in the Xilinx
FPGAs to store the tables and save FPGA slices used by
the implementation. BRAMs allow the lookup of different
tables to be performed in parallel, with only one cycle latency.
Ptab can be configured with different parameters, summarized
in Table I. We allow for multiple banks, or sets, of tables.
By selecting a different bank, a different set of tables is
activated and the table lookup facilitates a different algorithm
or function (e.g. encryption versus decryption). Fig. 1 shows a
sample block diagram of Ptab configured with eight 256-entry
tables per bank, with 32-bit entries.

In addition to the tables themselves, the Ptab component
contains a combinatorial logic portion which can be used to
implement logic for combining the table outputs; it is often the
case that the outputs of the tables need to be combined. For
example, for AES, the combinatorial logic block needed is a
simple XOR tree which combines all the table outputs and also
performs the key addition (by XORing in the key input from
the p_aux input, see Fig. 1). While the combinatorial block
in Fig. 1 can be arbitrarily specified for the given application,
we do define a few common implementations, expressed as a
tree of multiplexors for selecting different ways of combining
the table outputs.

B. Perm – A Byte Permutation Component

The Perm component is used to perform permutations,
which can arbitrarily reorder the bits, or disjoint subwords
of bits, in its input. The Perm component can augment the
functionality of the Ptab component: it can serve as a flexible

Fig. 2. Permutation, Perm, component.

TABLE II
PERM RE-CONFIGURATION PARAMETERS: PERM(N, SW, C, P)

Parameter Description
N Number of items to permute, N=0 indicates that Beneš

datapath will not be included in the unit

Sw Subword size
C Include check datapath in the unit?
P Include input pre-muxes?

means of reordering Ptab’s input. Fig. 2 shows the top level
view of the Perm component, with some options shown in
Table II.

The main datapath of the Perm component is based on
a Beneš network. A Beneš network [5] is composed of a
butterfly network followed by an inverse butterfly network.
The network can be configured to permute different subword
sizes. In general, a Beneš network with N inputs needs Nlog
N control bits. These control bits are obtained from the control
bit storage (Fig. 2).

The main Beneš datapath can optionally be augmented with
a set of pre-muxes, shown in Fig. 2. The pre-muxes can
improve Perm’s functionality: by having the option to select
portions, e.g. halves, of the inputs that will be permuted,
eliminating the need to combine two inputs in a separate step
before using the Perm component.

In addition, Perm can be configured to include a dedicated
check datapath, inspired by the check instruction [6] (Fig.
2). Furthermore, synthesizing the Perm with only the check
circuits, instead of the Beneš datapath, constrains the function-
ality of Perm, but this reduces circuit size considerably when
fully general permutations are not needed.

C. Other Components

The design of the proposed FPGA platform is not restricted
to only using these two components. As a general purpose
platform, it can be extended with other components – after
suitable research and design work is performed to identify
the more useful ones. What we have found is that these two
general-purpose components, Ptab and Perm, are especially
useful for implementing block ciphers and cryptographic hash
functions.

Jakub Szefer, Yu-Yuan Chen and Ruby B. Lee, “General-purpose FPGA Platform for Efficient Encryption and Hashing,” 
in Proceedings of the Application-specific Systems, Architectures and Processors (ASAP 2010) conference, July 2010. 

2



III. DESIGN FLOW

To make use of the components of the platform, the design
that is to be mapped into our FPGA platform has to be
systematically broken down into constituent parts and those
parts can then be mapped to the Perm or Ptab components.
While the mapping is done manually at present, in the future, it
could be done with new EDA (Electronic Design Automation)
tools. Because the components of the FPGA platform are
predefined and are reconfigurable with a small number of
parameters (see Tables I and II), the EDA tools could be
extended to automatically map certain code constructs to our
components.

IV. ALGORITHM MAPPING

A. AES Encryption and Decryption

AES is the Advanced Encryption Standard announced in
2001 [1]. All AES versions have the same underlying structure,
except for the number of rounds in the algorithm and the key
size. AES consists of a number of rounds, each round perform-
ing four functions: SubBytes, ShiftRows, MixColumns
and AddRoundKey. When implementing the algorithm, the
designers of AES suggested a method to implement each round
of AES using table lookups [7]; the same approach can be
translated to an FPGA hardware design. Essentially, the dif-
ferent steps of the round transformation can be combined into
a single set of table lookups. In particular, the MixColumns
and SubBytes steps of AES can be combined as a look
up of a single table of 256 32-bit entries. We employ this
table transformation in our AES implementation by using the
Ptab component. The table outputs are combined by an XOR
tree, and the AddRoundKey step is also implemented in the
combinatorial logic block of the Ptab.

Consequently, each round of AES can be broken up into two
parts, which map to our two components Perm and Ptab. First,
Perm takes a 128-bit AES round input and permutes the bytes
according to the indices required to address the appropriate
tables in the Ptab structure. Second, the output of the Perm
unit is passed to the Ptab to perform the table lookups.

B. Whirlpool Hash

Whirlpool [2] is a cryptographic hash function which was
selected for inclusion in the NESSIE portfolio of cryptographic
primitives. In addition it has been adopted as part of a joint
ISO/IEC 10118-3 international standard. It is a hash algorithm
with a structure similar to AES, except that it operates on
an 8x8 matrix of bytes. The algorithm operates by iterating
a compression function that has fixed-size input and fixed-
size output. Its compression function is an AES-like round
which operates on the 512-bit state. This hash function can be
implemented using table lookup operations which implement
the non-linear substitution and linear diffusion steps of each
round, as suggested by the authors of the algorithm [2], and
also in [8]. When implementing the hash function with table
lookups, each round consists of two parts. First the columns
of the Whirlpool state matrix are cyclically rotated at the
beginning of each round. Second, the bytes of the rotated

state matrix serve as indices into the lookup tables. When
decomposing the algorithm, the column rotations map to the
Perm component, and the table lookups map to the Ptab
component.

V. EVALUATION

The area and performance of implementations of the algo-
rithms described in this section are labelled ”Our” in Tables
III and IV.

A. AES Cost and Performance

For the AES-128 encryption algorithm, Ptab has been
configured with 1 bank of eight 256-entry tables with 32 bits
per entry and 1 bank of eight 256-entry tables with 8 bits per
entry (for the last round of AES encryption). A similar setup
is done for decryption. The storage in Ptab needed for these
four sets of tables is then 20KB = 8KB + 2KB + 8KB +
2KB. The Perm has been configured with 128-bit inputs and
8-bit subwords. The AES algorithm requires 2 sets of control
bits for Perm (64-bits for each set) to perform the various
permutations: one for encryption and one for decryption. When
executing the algorithm, each round (permutation of the input
and table lookup) requires one pass (one cycle) through the
unit, taking a total of 11 cycles for one 128-bit input block.
This slower (but smaller) unpipelined version of AES is what
we report in Table II. By pipelining the Ptab and Perm, we can
essentially double the MHz rate, the Mbps and the Mbps/slice.

B. Whirlpool Cost and Performance

For Whirlpool [2], the Ptab has been configured with 1 bank
of eight 256-entry tables with 64-bit entries. The combinatorial
logic part consists of 2 sets of XORs used to combine each
of the eight 8-byte table outputs to form a 16-byte final
output. The Perm has been configured with 128-bit input and
8-bit subwords. In our first implementation, the Perm (with
the Beneš datapath) has been duplicated 24 times, and there
are 3 levels of 8 Perms which work together to rotate the
columns of the input. All Perm units are used in one cycle to
perform the column rotation. Due to interconnection between
the units, only 3 different permutations: check.1, check.2
and check.4 are needed; this requires 3 sets of control
bits (to configure the Beneš networks which implement the
three check permutations). In our second implementation of
Whirlpool, we use the dedicated check operations without the
full Beneš datapath in a Perm unit. This achieves a much
more efficient implementation, especially in the Mbps/slice
efficiency metric.

VI. COMPARISON TO RELATED WORKS

Tables III and IV show our work and compare it to previous
works, sorted by the FPGA chip used. The throughput is
calculated as follows:

throughput =
frequency

latency
× inputsize (1)

The freqency for each implementation is in MHz, the
latency, in number of cycles, depends on the implementation,

Jakub Szefer, Yu-Yuan Chen and Ruby B. Lee, “General-purpose FPGA Platform for Efficient Encryption and Hashing,” 
in Proceedings of the Application-specific Systems, Architectures and Processors (ASAP 2010) conference, July 2010. 

3



TABLE III
SUMMARY OF AES IMPLEMENTATIONS.

Implementation FPGA Board Slices BRAMs MHz Mbps Mbps/slice
Our Virtex-5 (xc5vls110t-1ff1136) 374 25 220 2600 6.95

Helion [9] Virtex-5 349 0 350 4100 11.67
Bulens, et al. (Encryption) [10] Virtex-5 400 0 350 4100 10.20
Bulens, et al. (Encryption) [10] Virtex-4 700 8 250 2900 4.10

Lemsitzer, et al. [11] Virtex-4 (FX100) 3800 114 140 17900 4.70
Liberatori, et al. [12] Spartan-3 1643 0 52 123 0.07

TABLE IV
SUMMARY OF WHIRLPOOL IMPLEMENTATIONS.

Implementation FPGA Board Slices BRAMs cycles/byte MHz Mbps Mbps/slice
Our (configured to use dedicated check) Virtex-5 (xc5vls110t-1ff1136) 2063 64 0.34 145 3411 1.65

Our (configured to use Beneš to implement check) Virtex-5 (xc5vls110t-1ff1136) 6173 88 0.34 41 964 0.16
McLoone, et al. [13] (Iterative) Virtex-4 (xc4vlx100) 4956 68 0.16 94 4790 0.97
McLoone, et al. [13] (Unrolled) Virtex-4 (xc4vlx100) 13210 0 0.08 48 4896 0.37

Pramstaller, et al. [14] Virtex-II Pro (xc2vp40-7fg676) 1456 0 2.74 131 382 0.26
Alho, et al. [15] Virtex-II Pro (xc2vp40) 376 0 21.00 214 81.5 0.21

Kitsos, et al. [16] (LB) Virtex (v1000efg1156-8) 5585 0 0.16 87.5 4480 0.80
Kitsos, et al. [16] (BB) Virtex (v1000efg1156-8) 5713 0 0.16 72 3686 0.65

and the input size depends on the algorithm, e.g. 128 bits for
AES.

The comparison between the different implementations is
difficult because numbers for the same FPGA board are not
available for all the implementations. Also, certain designs
target specific FPGA boards and are usually customized for
a specific algorithm. Finally, certain implementations include
I/O and padding, while our does not. Our platform may
not outperform a specific algorithm implementation optimized
for a specific FPGA device. However, it achieves excellent
efficiency in Mbps/slice, especially for Whirlpool. Its two
units: Ptab and Perm can easily be re-synthesized with new
parameters and new table contents for new algorithms –
providing both good performance and flexibility.

VII. CONCLUSION

This paper presented an FPGA platform for fast encryption
and hashing which is based on a re-configurable parallel
table component (Ptab) and a re-configurable permutation
component (Perm). We propose that the platform can be used
to efficiently implement symmetric key block ciphers and
hash algorithms. We showed that different algorithms can be
mapped to use these two components and that the mapping
resulted in good performance, despite the general-purpose
nature of the components. Our implementations were also
efficient with respect to the Mbps/slice metric.

VIII. ACKNOWLEDGMENTS

This work was supported in part by National Science Foun-
dation grants: NSF EEC-0540832 and NSF CCF-0917134.

REFERENCES

[1] NIST, “Advanced encryption standard (aes), fips 197,” November 2001.
[Online]. Available: http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf

[2] P. Barreto and V. Rijmen, “Whirlpool hash function.” [Online].
Available: http://www.larc.usp.br/ pbarreto/WhirlpoolPage.html

[3] NIST, “Cryptographic hash algoirthm competition.” [Online]. Available:
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

[4] A. M. Fiskiran and R. B. Lee, “On-chip lookup tables for fast symmetric-
key encryption,” Application-Specific Systems, Architectures and Proces-
sors, IEEE International Conference on, vol. 0, pp. 356–363, 2005.

[5] V. E. Beneš, Mathematical theory of connecting networks and telephone
traffic. Academic Press, 1965.

[6] R. B. Lee, “Subword permutation instructions for two-dimensional
multimedia processing in microsimd architectures,” Application-Specific
Systems, Architectures and Processors, IEEE International Conference
on, vol. 0, p. 3, 2000.

[7] J. Daemen and V. Rijmen, The design of Rijndael: AES–the Advanced
Encryption Standard. Springer, 2002.

[8] Y. Hilewitz, Y. L. Yin, and R. B. Lee, “Accelerating the whirlpool hash
function using parallel table lookup and fast cyclical permutation,” in
Lecture Notes in Computer Science, vol. 5086/2008, 2008, pp. 173–188.

[9] H. T. Limited, “Helion Fast AES Encryptor,”
http:www.heliontech.com/downloads/aes xilinx helioncore.pdf.

[10] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy,
“Implementation of the aes-128 on virtex-5 fpgas,” in AFRICACRYPT,
2008, pp. 16–26.

[11] S. Lemsitzer, J. Wolkerstorfer, N. Felber, and M. Braendli, “Multi-
gigabit gcm-aes architecture optimized for fpgas,” in CHES ’07: Pro-
ceedings of the 9th international workshop on Cryptographic Hardware
and Embedded Systems. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
227–238.

[12] M. Liberatori, F. Otero, J. Bonadero, and J. Castineira, “Aes-128 cipher.
high speed, low cost fpga implementation,” Programmable Logic, 2007.
SPL ’07. 2007 3rd Southern Conference on, pp. 195–198, Feb. 2007.

[13] M. McLoone, C. McIvor, and A. Savage, “High-speed hardware ar-
chitectures of the whirlpool hash function,” in Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE International Conference
on, Dec. 2005, pp. 147–153.

[14] N. Pramstaller, C. Rechberger, and V. Rijmen, “A compact fpga im-
plementation of the hash function whirlpool,” in FPGA ’06: Proceed-
ings of the 2006 ACM/SIGDA 14th international symposium on Field
programmable gate arrays. New York, NY, USA: ACM, 2006, pp.
159–166.

[15] T. Alho, P. Hamalainen, M. Hannikainen, and T. Hamalainen, “Compact
hardware design of whirlpool hashing core,” in Design, Automation and
Test in Europe Conference and Exhibition, 2007. DATE ’07, April 2007,
pp. 1–6.

[16] P. Kitsos and O. Koufopavlou, “Whirlpool hash function: architecture
and vlsi implementation,” Circuits and Systems, 2004. ISCAS ’04.
Proceedings of the 2004 International Symposium on, vol. 2, pp. II–
893–6 Vol.2, May 2004.

Jakub Szefer, Yu-Yuan Chen and Ruby B. Lee, “General-purpose FPGA Platform for Efficient Encryption and Hashing,” 
in Proceedings of the Application-specific Systems, Architectures and Processors (ASAP 2010) conference, July 2010. 

4




