
Architecture for
Data-Centric Security

Yu-Yuan Chen

A Dissertation
Presented to the Faculty
of Princeton University

in Candidacy for the Degree
of Doctor of Philosophy

Recommended for Acceptance
by the Department of

Electrical Engineering
Adviser: Ruby B. Lee

November 2012

© Copyright by Yu-Yuan Chen, 2012.
All rights reserved.

Abstract

In today’s computing environment, we use various applications on our various com-
puting devices to process our data. However, we can only implicitly trust that the
applications do not do anything harmful or violate our desired confidentiality policy
for the data, especially when those applications are run on today’s feature-rich and
monolithic commodity operating systems. In this thesis, we present two approaches
– with and without modifying the applications – that aim to provide data confiden-
tiality protection after the data is given to an authorized recipient – a problem which
we refer to as illegal secondary dissemination. We also aim for the protection of the
data throughout its lifetime.

The first approach follows the school of thought of providing a secure execution
compartment for the security-critical part of an application. We propose to use the
hardware to directly protect a trusted component of an application, which in turn
controls access to the protected data, on top of an untrusted operating system. We
devise a methodology for trust-partitioning an existing application into the trusted
component, leaving the rest of the application untrusted. The trusted component
can be used to implement the desired confidentiality policy for our sensitive data and
guarantee that the policy is enforced for the lifetime of the data. We demonstrate this
first approach by showing how the difficult-to-achieve originator-controlled (ORCON)
access control policy can be enforced with the real-world vi editor.

Our first approach essentially ties the protected data with the trusted part of the
application that is protected by the hardware. However, this results in the inconve-
nience of having to use only a particular application to access the protected data, lim-
iting the portability and availability of the data. Therefore, my second approach re-
moves the applications from the trust chain and provides an application-independent
secure data compartment that tracks and protects the data in the hardware, no matter
which untrusted application or authorized recipient is given access to the data. We
use the flexibility of software to interpret and translate high-level policies to low-level
semantics that the hardware understands, and we use the hardware to persistently
track the usage of the sensitive data and to control the output of the sensitive data
from the machine. We have prototyped the architecture on the OpenSPARC pro-
cessor platform and show how unmodified third-party applications can be run while
various data-specific high-level policies can be enforced on the sensitive data.

My second approach leverages a technique called Dynamic Information Flow
Tracking (DIFT), which has been shown to be a powerful technique for computer
security, covering both integrity and confidentiality applications. However, the false-
positives and false-negatives of DIFT techniques have hindered its practical adop-
tion and usability. We take a deeper look at the practicality and usability issues of
DIFT and explore various techniques to address the false positives and false negatives,
arising from the undecidability of conditional branches, which is a type of implicit
information flow that is particularly hard to solve dynamically. We propose various
micro-architectural and hybrid software-hardware solutions using only the application
binaries and show how the combination of these solutions help build a practical and
usable DIFT system.

iii

Acknowledgments

Considering that this is perhaps the longest acknowledgment section I have ever
written and will ever write, writing this section is no small feat in and of itself.
In fact, it takes not just one person – myself, but everyone around me to actually
accomplish this thesis.

First and most importantly, I would like to thank my thesis adviser, Prof. Ruby
B. Lee. There would not have been a thesis for you to read if not for her guidance
throughout my research, my academics, and almost everything that relates to my life
in Princeton. I especially would like to thank her for her understanding through my
ups and downs all these years, her faith in my ability, and her constant encouragement
during my repeated attempts in the paper submission process. Prof. Lee has all the
ideas in the world for me to explore, and she also challenges me in the technical details
to help me think critically to improve even further.

There are several other people who have also helped me in my academics and
research in Princeton. Prof. Sun-Yuan Kung was my academic adviser when I first
entered Princeton. Prof. Kung helped me in many ways in my first year and he also
served as one of the committee members for my Final Public Oral (FPO) presentation.
Dr. Youfeng Wu from Intel has given me the rare opportunity of an internship position
in my first summer in Princeton, back when I had very little security knowledge.
Youfeng also served as my mentor when I was awarded the Intel Fellowship, and as
one of my thesis readers. I especially thank him for helping me get my Chapter 6 in
shape, in addition to his insightful comments on all other chapters, and for taking his
precious time off of his sabbatical to read my thesis. Prof. Niraj K. Jha and Prof.
Mung Chiang gave me valuable feedbacks during my oral general exam in my second
year, of which the materials constitute some parts of Chapter 4. I thank Prof. Jha for
serving again as one of the committee members in my FPO presentation. Dr. David
R. Safford from IBM was instrumental in helping me prepare for the materials in
Chapter 4 and he proposed to experiment with the eCryptfs secure file system, which
led to my Section 1.1 in this thesis. Keen W. Chan, my manager during my second
Intel internship, gave me the opportunity to experiment with the latest technology
and to learn the practical aspects of security. The experience has proved to be useful
for my research as well. Last but not least, I would like to thank Prof. Jennifer
Rexford from the Computer Science department for being my thesis reader. Like
Youfeng, she also spent her time during sabbatical reading my thesis and gave me
prompt and insightful feedback.

Next I would like to mention some of my co-workers, lab mates and fellow graduate
students. I thank the administrative assistants, Sarah M. McGovern, Stacey Weber
and Lori A. Bailey for making everything easier. Jeffrey S. Dwoskin has helped me
in various ways – research advice, web master administration, and general counseling
on the life of a graduate student. David Champagne, who has done an impressive
thesis, was never hesitant about sharing his experiences with me. Jakub Szefer and
I shared almost all of our PhD years together. I especially appreciate his help when
a simple bug in my code thwarted my progress for a few days, and all the cat-sitting
favors that I never had a chance to return. Pramod A. Jamkhedkar, a post-doc who

iv

I only have the privilege to work with in my last year in Princeton, was my co-author
in an important paper that sped up my graduation.

There is no such thing as work-and-life-balance for a PhD student, so the friends
that I have made while in Princeton have played a huge factor in my Quality-of-Life
(QoL). Konstantinos Aisopos and Emmanouil Koukoumidis have been with me since
my first year in Princeton, and have contributed to all those unforgettable memories
that last a lifetime – sky-diving, Greece, Seattle, Portland, Taiwan, just to name a
few, and there surely will be many many more to come. I especially would like to
thank Kostas for his understanding, compassion and advice when I was going through
one of the worst periods of my life. I would like to thank Cheng-Yao Chen for driving
me around and getting lost for a full day just to shop for my first car in the United
States, Lan Hsu and Li-Fan Yue for all the trips and fun we had together and in the
future, Arvid Wang for all the intense basketball sessions that stepped up my game,
the Huang family (Yue-Kai, Vicky and Millie) for all the delicious BBQs, Taiwanese
delicacies and gatherings, the Liao family (Kung-Ching, Ya-Ching and Sophie) for
the jokes and fun and my first deafening Formula-1 experience in Montreal, the other
Huang family (Chiao-Ti and Chi-Hua) for their kindness to host me for my last month
in Princeton, the Chuah family (Jun-Wei, Michelle and Cristine) for peeking into the
Singaporean life-style, Ting-Jung Lin, Qiang Peter Liu, Silvana Endler, Constantinos
Kalfarentzos, Megan, Crisantos, Arun Raman and Niket Agarwal for the intramural
volleyball championship.

My family has been critical in supporting me both emotionally and financially,
and I wouldn’t have been in Princeton in the first place if not for my family. My dad,
Hsin-Fu Chen, and my step-mom, Mei-Fang Chiu, have been nothing but supportive.
They are the ones who encouraged me to study abroad in the beginning, even though
I did not follow their wish to become the other kind of “doctor”. I thank my mother,
Man-Shu Chien, for having me. My older sister, Wan-Yi Chen, together with my
brother-in-law, Terence Chan, and my dear nieces, Alyssa and Helena, have shared
my PhD years and given me all the laughs and family warmth whenever I need it. I
hope my accomplishment in Princeton will pave a path for my younger brother and
sister, Jacky and Irene, for I wish to see their happiness and success in the future. I
would also like to thank my in-laws – father-in-law, Ping-Huang Wu, mother-in-law,
Pao-Pei Lu, sister-in-law, Pei-Lin Wu, and brother-in-law, Tsung-Han Wu, for their
confidence in me that has given me a great deal of mental support.

Lastly, I cannot say enough “thank you” to my classmate, my best friend, my soul
mate and my wife, Carole-Jean Wu. There is not a single thing that culminates in
this thesis that was done without her, and it could not have been done without her.
I had no idea that my life would be completely changed when Carole came to ask
me questions about the first homework assignment that I had in the US. The only
thing that went through my head at that moment was: “How do I answer in a way
that doesn’t reveal that I had almost zero background in computer architecture so I
don’t know the answers, and that I had a hard time trying to understand everything
that was taught in English?” I do not remember what I answered to her questions,
but luckily we came to know each other. For all these years in Princeton, Carole has
given me love and support, whenever and wherever I need them. She has also helped

v

improve my research in every aspect, e.g., the technical details, presentations, paper
submissions, etc.

With this most important section of the thesis winding down to its end, I would
like to thank you – whoever is reading this thesis, no matter what your intention
of reading this thesis is. Hopefully after reading this thesis, I have given you the
motivation and inspiration to create something new and innovative, which someone
at someday in some place will find useful and thank you in his/her acknowledgments.

vi

To my beloved wife, Carole,
and my dear family.

vii

Contents

Abstract . iii
Acknowledgments . iv
List of Tables . xi
List of Figures . xii

1 Introduction 1
1.1 Importance of Protecting the Plaintext and Keys 3
1.2 Thesis Summary . 6

2 Past Work 10
2.1 Data Access Control . 10

2.1.1 Software-Managed Access Control 10
2.1.2 Hardware-Managed Access Control 12
2.1.3 Using Encryption . 12

2.2 Security Architectures for Protecting Trusted Application Software . 13
2.3 Information Leakage of Untrusted Applications 15
2.4 Chapter Summary . 16

3 Problem Statement and Threat Model 17
3.1 Problem Statement . 17
3.2 Trust and Threat Models . 18

3.2.1 System Assumptions . 18
3.2.2 Threat Model . 19

3.3 Chapter Summary . 20

4 Policy-Protected Data with Trusted Application Software 21
4.1 Background . 21
4.2 Baseline Architecture . 23
4.3 Application-Dependent Data Protection Architecture 26

4.3.1 Summary of Access to Protected Data 26
4.3.2 Policy-Protected Data . 27
4.3.3 TSM Architecture . 28
4.3.4 User Authentication . 29
4.3.5 Group Encryption and Trust Groups 30

4.4 Trust-partitioning an application . 31
4.5 Security Analysis . 35

viii

4.5.1 Confidentiality . 36
4.5.2 Integrity and Availability . 37

4.6 Summary . 37

5 Policy-Protected Data without Trusted Application Software 39
5.1 Overview . 39
5.2 DataSafe Architecture . 43

5.2.1 Overview . 43
5.2.2 Runtime Translation of Expressive Software Policy to Hardware

Tags . 45
5.2.3 Unmodified Applications . 51
5.2.4 Protecting the Hypervisor and Its Storage 52
5.2.5 Continuous Runtime Data Tracking 53
5.2.6 Hardware Output Control . 54
5.2.7 System Issues . 55
5.2.8 Encrypted Data Package and Key Management 56

5.3 Implementation . 57
5.3.1 DataSafe Software . 57
5.3.2 DataSafe Prototype . 61

5.4 Analysis . 62
5.4.1 Security Tests . 62
5.4.2 Performance and Cost . 65

5.5 Summary . 69

6 Practical Information Flow Tracking 71
6.1 Background of Information Flow Tracking 71

6.1.1 Explicit Information Flow . 73
6.1.2 Implicit Information Flow . 75
6.1.3 Information Flow Through Conditional Execution 77

6.2 Prior Work . 78
6.3 Mitigation Techniques for Practical Dynamic Information Flow Tracking 80

6.3.1 Tunable Propagation Tracking for Control Dependency 81
6.3.2 Using Static Analysis to Reduce False Positives 81
6.3.3 Using Static Analysis to Reduce False Negatives with Untaken

Paths . 85
6.3.4 Reducing False Positives by Save/Restore 87

6.4 Implementation and Evaluation . 88
6.4.1 Tunable Propagation . 94
6.4.2 Static Binary Analysis and Instrumentation 96
6.4.3 Tag Register Save/Restore . 97

6.5 Discussion . 100
6.5.1 DIFT and DataSafe Architecture 100
6.5.2 Static vs. Dynamic . 100

6.6 Summary . 102

ix

7 Conclusion and Future Work 104
7.1 Future Work . 105

Bibliography 106

A List of File Access Application Programming Interfaces (APIs) in C
and Ruby Language 114
A.1 File Access APIs in C . 114
A.2 File Access APIs in Ruby . 115

x

List of Tables

1.1 Three aspects of data confidentiality protection. 2

4.1 The groups of vi commands after categorization for trust-partitioning. 34
4.2 New and modified vi commands. 35

5.1 The problem space of secondary dissemination. 40
5.2 The correspondence between policy-prohibited activities and the hard-

ware tags that restrict that activity. 48
5.3 A simple key-protection policy. 49
5.4 The Bell-LaPadula (BLP) policy expressed in DataSafe. 50
5.5 Example entries of the active SDC sdc_list software structure. . . . 51
5.6 Example entries of the output memory map mem_map hardware structure. 55
5.7 The policy/domain handler API. 59
5.8 The new hypercalls exported by the DataSafe hypervisor. 62
5.9 A summary of experimental results for the security testing of DataSafe. 63
5.10 Synthetic test suite for illegal secondary dissemination and transfor-

mation tested for DataSafe (DS) and non-DataSafe (nDS) machines. . 64
5.11 Performance costs of the DataSafe software operations vs. non-DataSafe. 65
5.12 Performance cost of running Hikidoc application on DataSafe with in-

creasing file sizes. 66
5.13 Comparing the cost and critical path delay of an equality comparator

and an inequality comparator. 68
5.14 The complexity of DataSafe’s software and hardware modules in terms

of source lines of code. 69

6.1 Tag propagation rules for the proposed dynamic information flow track-
ing (DIFT) system. 89

6.2 False positive and false negative performances of DIFT systems with
implicit informal flow support. 94

6.3 Brief descriptions of the top 10 operating system functions with the
highest tagged value contributions. 98

6.4 Comparison of various information flow tracking techniques. 103

xi

List of Figures

1.1 The target AES encryption key bit values used by the eCryptfs virtual
machine. 4

1.2 Possible AES encryption key bit values found in the main memory
using the aeskeyfind tool. 5

1.3 The target RSA private key components used by the OpenSSL toolkit. 6
1.4 The RSA private key components found in the main memory at address

0xCDB3CF0 on our test system. 7

3.1 The differences between the Trusted Computing Base (TCB) of Chap-
ters 4, 5 and 6. 19

4.1 High-level view of our proposed data confidentiality protection solution
in Chapter 4. 23

4.2 The internal components of a SP processor [37]. 24
4.3 The policy package for an example protected document. 27
4.4 The Trusted Software Module (TSM) architecture. 29
4.5 The pair-wise communication between the domain manager and the

individual TSMs on different SP devices. 30
4.6 A simplified view of the vi program. 32
4.7 Partitioning an editor application into untrusted and trusted parts. . 32
4.8 Categorization of functions within an application for TSM protection. 33
4.9 The TSM architecture including application-specific functionalities. . 38

5.1 The DataSafe architecture that protects data confidentiality across ma-
chines and users. 42

5.2 Software-hardware monitoring of protected data in DataSafe architec-
ture. 43

5.3 The software and hardware components of DataSafe. 44
5.4 The translation from high-level policies to hardware tags in Datasafe. 46
5.5 The DataSafe hardware components. 53
5.6 Encrypted DataSafe package for storage and for transmission between

machines. 56
5.7 The file access redirection performed by DataSafe’s file management

module in the Ruby language. 60
5.8 The C shim implementation for the DataSafe file access redirection. . 61

xii

5.9 One possible implementation of the DataSafe information flow tracking
processor architecture. 66

5.10 The DataSafe output control hardware component. 67
5.11 A typical logic design for a 4-bit magnitude comparator (from [82]). . 68

6.1 A high-level view of tracking information flow in computer programs. 72
6.2 A taxonomy of information flows within a program. 74
6.3 The baseline hardware dynamic information flow tracking (DIFT) ar-

chitecture. 80
6.4 The control flow graph (CFG) of the conditional execution example. . 82
6.5 An example control flow graph to illustrate the loop peeling of Algo-

rithm 3. 84
6.6 The modified control flow graph after loop peeling of Algorithm 3. . 85
6.7 The instrumented control flow graph of the conditional execution ex-

ample after the compensation for tag assignments to account for the
untaken path. 86

6.8 The simplified version of the π program, to illustrate the effect of im-
plicit information flows. 90

6.9 The G() and H() functions for the π program. 90
6.10 The core character conversion function that exhibits implicit informa-

tion flow due to control dependency in sprintf(). 90
6.11 The disassembled SPARC assembly instructions for the core function

of sprintf() in Figure 6.10. 92
6.12 The control flow graph of the core function of sprintf(). 93
6.13 The additional components for the tunable propagation of the baseline

DIFT system. 95
6.14 False positives and false negatives analysis after running the π-

calculation program. 95
6.15 The Linux operating system functions that contribute to the tagged

values in the system. 97
6.16 Additional DIFT components for register file tags save/restore to ad-

dress tag pollution in the OS space. 99
6.17 False positives and false negatives analysis after running the π-

calculation program, with the register file tags save/restore mechanism. 99

xiii

Chapter 1

Introduction

With the advent of a new computing paradigm where everything is stored on a cloud
that can be accessed anywhere, anytime, using virtually anything, the importance of
data protection in terms of confidentiality cannot be overstated. Nowadays, a user’s
sensitive data can be stored on any kind of computing platform, including desktop,
laptop, tablet and smart phones. In addition, users want the data to be available
and accessible wherever they are, whether at home, in the office, on the road, or
in a random coffee shop. Furthermore, users do all kinds of things to their data
and use different applications to process or manipulate the data. For example, you
can use Microsoft Word or a simple text editor program to edit the same document.
This trend has led to a great deal of digital information leakage that we see all
over the news. Particularly there has been a growing incentive for leaking medical
information. According to a recent study [75] in 2011, medical records are worth
$50 each on the black market, much more than Social Security numbers ($3), credit
card information ($1.50), date of birth ($3), or mother’s maiden name ($6). Personal
medical information is worth more not only because they can be used against a
person’s privacy, but also because the thieves can use it for false medical claims
that are a lot more lucrative. Therefore there are more incentives for an authorized
recipient to leak the information, which can be considered as an insider threat.

In this thesis, we define data-centric security as “the enabling and enforcement
of data-specific security policies”. In general there are three aspects related to data-
centric security, i.e., primary authorization, secondary dissemination and lifetime1

policy enforcement, as listed in Table 1.1.
To address aspect 1, a modern computer system employs data access control both

in the software and in the hardware. On the software side, the operating system
mediates and controls accesses to resources, e.g., through the login command for
user authentication and the rwx attributes, commonly found in the Linux operating
systems, to limit read, write and execute privilege on different files. On the hardware
side, modern processor architectures support data access control by allowing the
software to specify the access attributes of a memory page, e.g., read-only, read-
write, user-read-only or supervisor-access-only, etc. However, once the r (read) access

1The lifetime of a piece of sensitive data begins when it is created, and ends when it is deleted
or declassified as non-sensitive.

1

Table 1.1: Three aspects of data confidentiality protection.

Aspect 1 Only authorized users and programs get access to the data
(which we call primary authorization).

Aspect 2 Authorized users are not allowed to violate the data’s con-
fidentiality policy, e.g., sending the data to unauthorized
recipients (which we call illegal secondary dissemination by
authorized recipients).

Aspect 3 The data’s confidentiality policy is enforced throughout the
lifetime of the sensitive data, irrespective of the user or ap-
plication accessing it, across a distributed computing envi-
ronment.

is given to an application, the application can copy the data to other locations and
leak out the data. Furthermore, when the data access controls are enforced by the
operating system, the Trusted Computing Base (TCB)2 is increased dramatically to
include the entire operating system and its configurations.

Another commonly used technique to address the problem of primary authoriza-
tion is to use encryption. Encryption helps solve part of the problem by encrypting
data with a key, so only those who have the decryption key can legitimately use
the data. However, since it is desirable for an authenticated and authorized user to
be able to choose any application he wishes to access the data, and the application
needs to have access to the decrypted plaintext to perform useful and meaningful
work, it is very important to control where data goes after it is decrypted and access
is given to an arbitrary application. For example, full-disk encryption can be used
to encrypt all the data on the hard drive, and this protects the data while stored,
but this does not protect the data after the data is decrypted and being used. We
show real-world examples of how a software attacker with system-level privilege can
extract the decryption keys of an encrypted file system in Section 1.1.

The data access control and encryption work well for primary authorization, but
they do not address aspects 2 and 3, which occur after primary authorization. Current
architectures fall short in providing the access control we desire after our sensitive
information has been decrypted and displayed. For example, the Linux X server
design allows any program with a Graphical User Interface (GUI) to sniff user input of
other GUI programs, or capture the displayed information in other GUI programs [80].

Consider an example of illegal secondary dissemination of personal medical
records, which consist of personal contact information, blood type, immunization
records, psychiatric reports, etc. An emergency medical technician (EMT) on an
ambulance has access to your medical history and may try to sell that information
if the patient is a celebrity. This is considered as a malicious user or insider attack.
These information could also be inadvertently leaked by a doctor who accidentally

2The TCB is the set of hardware and software components critical to a system’s security.

2

saved a copy of the record in the Universal Serial Bus (USB) drive when saving
his/her vacation plans. Furthermore, the application the doctor is using to edit the
vacation plan could also be leaking this information, either by a malicious malware
that the doctor unknowingly downloaded or a vulnerability in the application that
is exploited to leak information. This is especially true in today’s computing envi-
ronment, where we frequently use various applications to process our data and we
implicitly trust that the applications do not do anything harmful. With the increased
downloading of third-party applications from unknown sources onto smartphones,
and the attractiveness of using third-party analytics programs in cloud computing
environments for processing proprietary or high-value data, the protection of sensitive
data processed by these applications becomes of paramount importance. A recent
incident [78] where many users’ entire phone books were uploaded to a remote
server without their explicit consent vividly illustrates the importance of achieving
data protection in terms of secondary dissemination (aspect 2) and life-time policy
enforcement (aspect 3).

Since there have already been many authentication and access control techniques
for primary authorization, this thesis focuses on the second and third aspects of data
confidentiality protection, and the techniques proposed in this thesis can be integrated
with existing primary authorization techniques. These aspects are particularly dan-
gerous and harder to achieve, since an authorized recipient of protected information
(passing the primary authorization checks) can essentially do anything he or she wants
with the protected information in today’s commodity systems. Even if the data is
protected by encryption, the protected information will be accessible in plaintext for
an authorized recipient. To illustrate the importance of protecting the plaintext and
the key, we dedicate the next section to show a real-world example of how an at-
tacker who attains system-level privilege can easily get the plaintext when the data
is protected by encryption.

1.1 Importance of Protecting the Plaintext and Keys
In this section, we show how an attacker with system-level privilege can easily retrieve
the plaintext and the key when data is protected by encryption. The attacker can
attain system-level privilege by first infiltrating the operating system or the hypervi-
sor, through one of many well-known privilege escalation attacks [15, 35, 69]. Once
an attacker gains enough privilege in a computing device, either through software or
hardware, the attacker can easily mount attacks that are otherwise impossible or dif-
ficult to achieve, e.g., access to the machine’s bootloader to insert a keylogger [91] or
directly accessing the data values in the main memory by compromising the operating
system. In today’s ubiquitous computing environment where a lot of our sensitive
data is stored on our smart phones, which we may easily lose, and which is easy
for an attacker to steal, the barrier for the attackers has been significantly lowered.
This is partly due to the large attack surface3 exposed by today’s large monolithic

3The attack surface commonly refers to the set of software entities within a computer system
that can be run, interacted with or controlled by an attacker.

3

Figure 1.1: The target AES encryption key bit values used by the eCryptfs virtual
machine, indicated by the box.

operating systems. As a result, the importance of taking into account the capabilities
of attackers with system-level privilege for any new security architecture cannot be
overstated. We use real-world examples of a secure file system, eCryptfs [7] and the
public-private key management tool, OpenSSL [10] to illustrate this.

eCryptfs, an enterprise cryptographic file system for Linux, is a widely used data
encryption technique for files in Ubuntu Linux. It encrypts data on a per-file basis,
so each file has a per-file randomly-generated Advanced Encryption Standard (AES)
symmetric key to encrypt and decrypt the file. The per-file AES encryption key is in
turn encrypted using a key derived from the user’s passphrase. In this example, the
per-file AES key is the “data”, which is encrypted when not in use, but is decrypted
in plaintext to be used when an encrypted file is requested by the user4. We conduct
simulated attacks on eCryptfs on our testing platform [36] to demonstrate how easy
it is for an attacker with system-level privilege to retrieve the per-file encryption keys
from the main memory. The attack is similar in spirit to a Cold Boot attack [51],
where a physical attacker freezes the main memory module to read out the secrets
stored in plaintext in the main memory. Our attack, instead of physical access, works
as an attacker with system-level privilege through a compromised operating system,
to achieve the same effect of the Cold Boot attack.

In our experimental setup, we have two virtual machines (VMs), one with eCryptfs
running and the other simulating the attacker. While the eCryptfs VM is accessing
a sensitive eCryptfs-protected file using the plaintext AES symmetric keys, the at-
tacker controls the eCryptfs VM, e.g., by compromising the operating system, to scan
the main memory, trying to find the AES encryption key used for the sensitive file.
We dump the eCryptfs security log files to look for the specific key values for this
particular sensitive file, as shown in Figure 1.1.

Our privileged attacker runs the aeskeyfind [4] tool and finds several instances of
the exact key bit values used by eCryptfs to encrypt/decrypt the sensitive file, along
with other bit streams that resemble an AES key in the main memory, as shown in
Figure 1.2. In fact, the result shows that not only one but two copies of the exact
key bit values are found in the main memory, indicating an increased probability of
a successful attack.

4Homomorphic encryption techniques [47, 95] are proposed to operate on encrypted data. How-
ever, these techniques are still too complex to be adopted widely in practice.

4

Figure 1.2: Possible AES encryption key bit values found in the main memory using
the aeskeyfind tool. The matching AES key are shown in the boxes.

Similarly, the same attack concept can be applied to finding asymmetric keys such
as public/private keys in the RSA crypto algorithm. The RSA encryption equation
is typically expressed as:

c = pe(mod n) (1.1)

and similarly for RSA decryption:

p = cd(mod n) (1.2)

where c and m denote the ciphertext and plaintext, respectively. n, the modulus, and
e, the public exponent constitute the public key, whereas d is the private key. Two
distinct prime numbers p and q, where pq = n, are also secret since they can be used
to calculate the value of the private exponent d.

We use the same experimental setup described earlier, except that the victim vir-
tual machine now runs the OpenSSL toolkit. OpenSSL is an open-source implemen-
tation of the SSL and TLS protocols that implements basic cryptographic functions
including RSA public-key cryptography. We run the OpenSSL toolkit to process an
RSA private key that should be kept secret since it can be used to decrypt private
messages or used to perform a digital signature. Figure 1.3 shows the target RSA key
components, e.g., the public/private exponents and the prime factors.

The attacker VM again controls the OpenSSL VM to scan the main memory using
the rsakeyfind [5] tool for finding potential RSA private keys, while the OpenSSL VM
is accessing the RSA private key for web transactions. The tool uses a few methods
to search for the RSA key values in the memory: searching for the public modulus or
the RSA key object identifier, and also searching for the identifying features of the
common RSA key encoding format. Figure 1.4 shows the result of finding the exact
RSA private key bits in the main memory of the OpenSSL VM.

These simple experiments show how important it is for a computer system to
protect the decrypted plaintext and the key when data confidentiality is of concern
and they highlight the main message that this thesis is delivering:

5

Figure 1.3: The target RSA private key components used by the OpenSSL toolkit.
We show the values of the modulus (n), the public exponent (e), the private exponent
(d), and the parts of the two prime numbers (p and q).

Encryption provides no security guarantees if the plaintext of the data and
the key are not protected.

This thesis explores different hardware-software architectural solutions to provide the
desirable protections for the plaintext data and the corresponding encryption keys.

1.2 Thesis Summary
This thesis focuses on the second and third aspects of data confidentiality protection
that we defined before in Table 1.1, namely the prevention of illegal secondary dissem-
ination and the life-time policy enforcement for protected sensitive data. Specifically,
the solutions proposed in this thesis are built upon the following principles:

6

Figure 1.4: The RSA private key components found in the main memory at address
0xCDB3CF0 on our test system.

• Using encryption and controlling the access to keys are not sufficient for pro-
tecting the confidentiality of data; the decrypted plaintext and decrypted keys
must also be protected.

• To provide data confidentiality, a data-specific policy should be enforced, no
matter which applications or users access the data.

• Data protection should be achieved with the least amount of trusted software
entities, to minimize the overall attack surface of the system.

Building upon these principles, this thesis explores two approaches to protect
sensitive data and its associated data-specific policy. The first approach, described
in Chapter 4, only allows access to protected sensitive data with a piece of trusted
application software, which executes in a secure execution environment provided by

7

the hardware. The second approach, described in Chapter 5, enables protection of
the sensitive data without any trusted application software.

In the first approach in Chapter 4, any access to the sensitive data is regulated by
the trusted application software and the execution of the trusted application software
is directly protected by the hardware security architecture. We leverage the Secret
Protection (SP) [37, 60] architecture to provide the desired secure execution compart-
ment using code integrity checking, data encryption and interrupt protection. We
build the piece of trusted application software by trust-partitioning existing applica-
tions into a trusted component and leaving the rest of the application untrusted. We
use the hardware to directly protect only the trusted component of the application
software, all the while assuming that the underlying operating system is not trusted
and can be compromised by an attacker with system-level privilege. Any legitimate
access must be checked by and must go through the trusted application software,
otherwise the access is denied and only encrypted ciphertext is accessible. This ap-
proach ties the protected data and its policy with the trusted application software
such that even an authorized recipient is not allowed to abuse the data or the policy,
so the confidentiality of the protected data is guaranteed by the trusted application
software, whose execution environment is guaranteed to be protected by the hardware
SP architecture.

The approach described in Chapter 4 requires trust-partitioning existing appli-
cations and only allows legitimate access through the trusted application software
component. This partitioning has to be done for every application, making the ap-
proach harder to adopt in practice. Hence, in Chapter 5, we explore solutions where
the applications remain unmodified while the access to protected data is still en-
forced. To achieve this, we propose a hardware-software architecture called DataSafe
to provide data confidentiality protection without sacrificing practicality. DataSafe
enforces the data-specific policy of each piece of protected data, instantiated within
a Secure Data compartment, as opposed to the secure execution compartment in
Chapter 4. The DataSafe software components support arbitrary high-level policies
for data protection while enabling unmodified third party applications to access any
DataSafe-protected data. The DataSafe hardware components uses dynamic infor-
mation flow tracking (DIFT) to track the protected data and control the data output
from the machine to enforce the data-specific confidentiality policy. Furthermore, the
enforcement mechanism can track the data even when protected data has been trans-
formed or encoded by untrusted applications. This approach unties the protected
data and its policy from the application software, allowing an authorized recipient
to use arbitrary software that he or she desires to access the data, while guarantee-
ing that the confidentiality policy of the data is not violated, through our runtime
hardware data tracking and output control mechanisms.

The DIFT mechanism employed in Chapter 5 has traditionally been used more
for integrity protection than for confidentiality protection and has not been adopted
in practice due to its unacceptable levels of false-positives and false-negatives. A high
false-positive would annoy the user into turning off the DIFT system and even a small
false-negative implies that the DIFT system is not robust enough to track informa-
tion correctly. Usually reducing one of them would drastically increase the other. To

8

resolve these practicality issues of a DIFT system, we show in Chapter 6 both hard-
ware and software techniques to address the false-positives and false-negatives due to
implicit information flow. We propose to use a simple hardware counter, hardware
save and restore mechanisms, and static analysis of application binaries, to aid the
DIFT system to achieve zero false-negatives while keeping the false-positives low.

The thesis is organized as follows: Chapter 1 introduces the additional problems
of data confidentiality protection and summarizes the contributions of this thesis.
Chapter 2 reviews the past work in the area of data access control, secure computer
architectures and information leakage. Chapter 3 formally defines the problem that
this thesis solves and the threat and trust models upon which the solutions proposed
in this thesis are built. Chapter 4 presents our data confidentiality protection with
the access going through a piece of trusted application software which is directly pro-
tected by the hardware. Chapter 5 describes our DataSafe architecture that provides
data confidentiality protection without the access going through a piece of trusted
application software. Instead, the hardware tracks the protected data and enforces
the data’s policy through output control. Chapter 6 shows our contributions to the
existing DIFT technique5, especially for mitigating the implicit information flow prob-
lem to address the false-positive and false-negative performance of a DIFT system.
Chapter 7 concludes the thesis and briefly describes future work.

5Note that Chapter 6 presents our solution to the DIFT sub-system of Chapter 5. We present it
as a separate chapter for clarity.

9

Chapter 2

Past Work

As discussed in Chapter 1, important aspects of data confidentiality protection in-
clude the access control for primary authorization, the use of encryption and the
protection of the plaintext and keys, and preventing the leakage of the data through-
out its lifetime. In this chapter, we first look at how data access control is achieved
in modern computer systems and prior proposals for enhancing it. We then discuss
several security architectures that protect trusted application software to protect con-
fidentiality, and finally we see how prior work performs information leakage detection
and prevention. We defer the discussion of the related work for dynamic information
flow tracking (DIFT) techniques to Chapter 6.

2.1 Data Access Control
Data access control can be done at different levels within a modern computing system,
including the applications, operating system or hardware, with different techniques
such as access control lists or encryption.

2.1.1 Software-Managed Access Control

At the application level, Adobe Acrobat [2] has the ability to set permissions to
protect sensitive files, including viewing, printing, changing, copying or commenting.
It uses simple password protection that can be broken by a brute force attack. An
attacker with system-level privilege can also install a keylogger to record the password
or use techniques similar to what we described in Section 1.1 to scan the memory and
retrieve the plaintext data of a protected file.

To control the access to our data, modern operating systems have employed local
access control for data, e.g., the rwx attributes commonly found in Linux operating
systems – a form of Discretionary Access Control (DAC)1. FreeBSD incorporates a
mandatory access control (MAC) security module [9] in its implementation which
is able to enforce a variety of security policies on the accesses to different resources

1In DAC, the resource owner sets the access control rules, whereas in the Mandatory Access
Control (MAC) system the rules are set by the system or by a central authority

10

managed by the operating system. The system implements loadable access control
modules that can enforce policies according to the labels on the subjects and objects,
which are specified only by the system administrator. For example, certain users can
be blocked from access to some ports or sockets in the system by the MAC mecha-
nism. Similarly, multilevel security (MLS) operating systems such as SELinux [13]
use software tagging to assign and enforce the access control to sensitive data on any
machine with SELinux. However, these operating system level approaches increase
the TCB to include the entire operating system and its policy configurations. In this
thesis, we assume the operating system is not trusted.

Several Usage control (UCON) access control models and mechanisms are pro-
posed [73, 74, 76, 102] to extend beyond the rwx attributes. UCON is concerned with
how data is used after access to the data has been granted – similar to the goal of this
thesis. UCON defines a formal model [74] that is comprehensive to include different
access control policies. For example, the UCON model can specify “A junior medical
doctor can perform an operation only with the presence of a senior doctor”, or “A user
has to keep an advertisement window active all the time”. However, the enforcement
mechanisms of UCON are often implemented as a reference monitor within the oper-
ating system [73] or in multi-layers of the software hierarchy [64], i.e., the application,
the windowing display sub-system and the operating system, to be able to monitor
and control data usage across different system components. The nature of these ac-
cess control models and mechanisms assumes a trusted operating system, whereas
this thesis focuses on the architectural solutions when the operating system cannot
be trusted. Nevertheless, these various access control models can be incorporated in
our proposed solutions to address a wider range of application scenarios.

Data access control can also be done in a distributed manner. Secure Information
Sharing Architecture Alliance (SISA) [12] is an alliance of several industry compa-
nies, aiming to provide a secure end-to-end architecture for information sharing in a
distributed environment. It involves several levels of access control, e.g., physical ac-
cess control, network access control, storage access control, etc., to provide extensive
defense-in-depth. For example, a workstation connected to the network will display
a standard login screen that uses Microsoft Active Directory for user login. Cisco’s
Network Admission Control (NAC) appliance would then verify that the user’s device
complies with the security requirements, then designates which parts of the network
the user may use to access applications and content. The workstation is further
protected by using behavior-based defenses to detect and block abnormal activities.
The user can use Microsoft applications to collaborate and share files for which that
user has been authorized. Content contained within e-mails and documents is pro-
tected using Microsoft Rights Management Services (RMS). This multi-level security
approach provides defense-in-depth, and greater protection against secondary dissem-
ination and data lifetime policy enforcement, albeit at the cost of greatly increasing
the amount of software and hardware entities to be included in the TCB, e.g., every-
thing from the physical entry gates to the software networking stacks.

11

2.1.2 Hardware-Managed Access Control

On the hardware side, modern processor architecture supports data access control as
follows: each hardware translation lookaside buffer (TLB) entry in the processor can
specify the access attributes of a page, e.g., read-only, read-write, user-read-only or
supervisor-access-only, etc. This defines the access policy at the page-level granularity,
with respect to whether or not the process (representing the user) has the right to
read, write or execute the data on the particular page. However, current hardware
access control only supports the page-level granularity and requires the operating
system to configure the protection.

To address the protection granularity problem, Sentry [84] is a recent proposal on
memory access control at the cache-line size granularity. In Sentry, an application can
devise its own protection models within different modules, instead of the operating
system doing the protection configuration. Their access control mechanism repurposes
existing cache coherence states to check for access permission upon L1 cache misses
to provide an extra level of rwx permissions at the cache-line size granularity. Sentry
performs access checks when an L1 miss occurs to determine whether or not a cache
line is allowed to be brought into the L1 cache. This eliminates the need for any checks
if a data access hits in the L1 cache. Furthermore, the checks are only performed
when an application requires fine-grained or user-level access control. The checks
take place after the traditional page-sized TLB enforcement, allowing an application
to set different access protections of the same data for different modules within the
application.

Mondrian [98] is proposed as a memory protection scheme that completely replaces
the role of the TLB by introducing its own memory protection hardware. Mondrian
uses a multi-level permissions table to store the access permission information down
to the granularity of words. The entries in the permissions table store an array of
memory segments sorted by the segment start address. Mondrian uses a hardware
permissions lookaside buffer, much like the TLB for page tables, to speed up the
permission checks. The scheme provides word-level, fine-grained permission control
to allow multiple domains to share data. However, both Sentry and Mondrian only
support traditional rwx-style permissions and addresses the problem of primary au-
thorization, the system has no control over where data goes after a read access is
given to an application.

2.1.3 Using Encryption

Besides access control mechanisms, encryption is a commonly used technique to con-
trol access to sensitive data, by limiting the access to the encryption/decryption keys.
Several commercial solutions have been proposed to address this issue using encryp-
tion, in the context of digital media and digital documents. Cryptolope [58], known
as cryptographic envelopes, enables a commercial platform for the content creator
and the publisher to license their content to the customers by controlling the dis-
tribution of the decryption keys. Cryptolope decouples the distribution of the data
and its corresponding decryption keys. Several Digital Rights Management (DRM)

12

solutions [3, 6, 61] focus on the copy-protection of the digital media using encryption
to protect the media content. However, all these encryption solutions share a com-
mon threat model that assumes the entire box of the computing device is trusted,
including both the software and the hardware. Therefore, once those assumptions
are broken by attackers, e.g., by inspecting the memory using debuggers, the decryp-
tion keys are easily found and are used to evade the content protection schemes [61].
Cryptolope also assumes the same threat model as the DRM solutions – the device
and the software on the device are trusted. Therefore, if an attacker can compromise
the operating system or tap the memory bus, the attacker can have access to its
decryption keys, using techniques described in Section 1.1.

2.2 Security Architectures for Protecting Trusted
Application Software

Previous research in secure computer architectures and systems have taken the ap-
proach to protect the execution of a piece of trusted application software [25, 37,
66, 67, 85], which in turn protects the confidentiality of our data. Although these
techniques do not directly address the problem related to data confidentiality, espe-
cially in terms of secondary dissemination and data lifetime policy enforcement, our
proposed solutions in Chapter 4 and 5 can leverage and build upon these techniques
to provide data-centric security, by protecting the execution of our proposed critical
software components.

SP [60, 37, 38, 97] architecture is proposed to protect the confidentiality and
integrity of the execution of a trusted software module without trusting the operating
system, by introducing additional components in the processor. It uses encryption to
protect the secret data accessed by the trusted software module and to protect the
trusted software module from potentially malicious interrupts. The integrity of the
trusted software module is also protected by the hardware code integrity checking
to protect the code from malicious modifications. Our solution of protecting data
confidentiality with a trusted application component (Chapter 4) builds on top of
the SP architecture and we give a more detailed description of the SP architecture in
Chapter 4.

Bastion [25] architecture extends the SP architecture by using a hypervisor to
provide scalability for executing multiple simultaneous trusted software modules from
multiple trust domains. Bastion uses hardware to protect the execution of the hyper-
visor, which in turn provides the protected execution environment for any number of
trusted software modules concurrently. In addition, Bastion provides runtime memory
protection for the hypervisor using hardware memory integrity trees to ensure that
the hypervisor is not compromised even in the face of physical attackers. Both the
SP and Bastion architectural solutions are able to protect sensitive data pertaining
to the trusted application software.

Execute-only memory (XOM) [63] is a secure processor architecture that protects
applications in an untrusted operating system environment. The protected applica-
tions running on XOM are kept in different compartments, each with its own com-

13

partment key. XOM uses a complex key management system to encrypt the memory
partitions belonging to different application compartments, and it also uses hashes to
protect the integrity of those memory partitions. Like the SP architecture, XOM has
the ability to protect registers upon interrupts. Nevertheless, XOM has a more com-
plex architecture and requires adding the instructions that use the hardware security
mechanisms in the operating system kernel.

AEGIS [88] is another security architecture that provides memory compartments
for trusted application software. AEGIS utilizes a security kernel within the operat-
ing system to provide a system where any physical or software tampering (integrity
violation) can be detected and the attacker cannot obtain any information about the
software or data (confidentiality violation). AEGIS uses dedicated hardware regis-
ters to define ranges of physical memory that are either unencrypted, encrypted, or
encrypted and integrity-protected. They use the memory integrity tree to provide
the integrity protection. These protected memory compartments are enforced by the
security kernel in the operating system.

The Trusted Platform Module (TPM) [93] is an industry solution to achieve a
trusted execution environment that can be used to provide password protection, disk
encryption and, most importantly, a trusted boot-chain. TPM uses an external chip
that can store cryptographic keys and information about the system’s configuration,
such that the keys can be used to sign attestation reports or encrypt data, and the
system configuration information can be used to ensure the boot-time integrity of
the software system, starting from the Basic Input/Output System (BIOS) code to
the operating system. For example, when employing TPM protection, applications
can seal a piece of sensitive information inside the TPM chip. In other words, TPM
can essentially bind a set of files to a particular host under a specific configuration.
An attacker who has compromised the system by changing any part of the software
configurations would not be able to unseal the data that is protected by the TPM
chip. However, TPM’s protection model does not consider how the keys are used
and where they are stored after they are unsealed, therefore the access control of
the decrypted sensitive information is still left to the application and the decrypted
symmetric keys from the TPM chip can still be obtained by an attacker by examining
the memory content [51, 59], as described in Section 1.1. Hence, the protection of
the sensitive data still requires the management of the keys and the protection of the
decrypted plaintext.

Flicker [67] employs the newly introduced late launch instructions (Intel SENTER
instruction or the AMD SKINIT instruction) in the microprocessor, together with the
TPM to run a piece of trusted application software in isolation. Flicker measures the
trusted application software and stores the measurements in the TPM, suspends the
operating system, disables direct memory access (DMA) for the protected memory
region and disables interrupts, to provide a secure execution compartment for the
application.

Overshadow [29] presents a framework for protecting applications without trusting
the operating system. Overshadow does not require special hardware and implements
the protection mechanisms in the virtual machine monitor (VMM). Each physical
memory page is viewed differently as encrypted or decrypted, depending on which

14

software entity is requesting access. Therefore by providing the operating system
with an encrypted view of the memory and the applications the normal view of its
data, Overshadow can protect the privacy and integrity of application data in the
face of an untrusted operating system.

2.3 Information Leakage of Untrusted Applications
In order to get useful work done on our sensitive data, any third-party application
would need to have access to the plaintext of the data, unless fully homomorphic
encryption schemes [47, 95] are adopted – and these are currently not feasible for
practical adoption. As a result, the application can pass on the plaintext to unau-
thorized entities, if there are no proper protection mechanisms in place. The most
common defenses involve isolation of the untrusted application, and information leak-
age prevention in the application, in the operating system and in the architecture.
We first look at the techniques for isolation, and we review the past work of informa-
tion leakage prevention in each level of the system. Note that these techniques are
different from the information flow tracking techniques that we will discuss in detail
in Chapter 6.

Isolation, or sandboxing of untrusted [45, 53, 62] applications has been widely
researched to limit the scope of the damage done by the untrusted application. For
example, changes made to the file system by an untrusted application are first cached
and only committed after the user has verified the authenticity of those changes [62].
The technique is better suited for preventing the corruption of important system
states, since any modification can be regarded as an unlawful change. However, it is
difficult to detect whether or not any sensitive information is leaked, since the appli-
cation can encode or transform the data in such a way that makes it unrecognizable.

TightLip [100] presents a method for detecting leakage of sensitive information
by untrusted applications, with no hardware change and minor operating system
changes. It uses a Doppelganger process – a process that replicates the original
application process but is sandboxed to copy most of the state from the original
process. The Doppelganger process is run in parallel with the original application
process, but the Doppelganger process is fed with non-sensitive input whereas the
original process is fed with sensitive input. The system monitors the inputs and
outputs of both processes and look for divergent values to determine if the application
leaks any sensitive information. TightLip is able to detect information leakage at the
granularity of system-calls made by the untrusted application, but implies trusting
the operating system.

Using the operating system to prevent information leakage has been proposed
by HiStar [101] and Asbestos [39, 40, 96]. These two new operating systems use
concepts from information flow tracking (Chapter 6), but use it at a higher-level of
granularity within the system. Both operating systems label the OS-level objects, e.g.,
processes, to control the information flow by comparing the labels between objects
in a MAC-style policy. Each object in HiStar has a label and the label specifies the
security level and the declassification privilege for that object. Information flow is

15

controlled by the HiStar kernel by comparing the labels of objects against a MAC
policy defined for the system. A special label could be assigned to a thread object
to signify declassification privilege, i.e., the thread could bypass the information flow
restrictions. However, since the labeling is done at the granularity of the OS objects,
fine-grained policy decisions within an application cannot be made. For example,
an untrusted application consuming any sensitive data will not be allowed to send
anything to the network even if the sent data is unclassified and unrelated to the
sensitive data.

InfoShield [83] is a security architecture that restricts the access to the data to
only those instructions that are allowed to access them. It uses code signing and code
integrity checking to ensure that the application code has not been tampered with,
and uses hardware tables to record and check pre-determined authorized instructions
that are allowed to perform load/store operations on protected data, such that the
protected data can only be accessed by the authorized instructions and the data can
only be used in the order defined by the application. For example, a programmer
can annotate the source to identify sensitive data to be protected by InfoShield. The
compiler recognizes the annotation and inserts additional instructions to register the
next valid program counter that is authorized to access the data in a hardware table.
Every load/store instruction checks the hardware table to ensure no unauthorized
instruction accesses the data. The goal of InfoShield is similar to this thesis; how-
ever, their approach is application-specific whereas this thesis focuses on data-centric
protection mechanisms.

2.4 Chapter Summary
In this chapter, we reviewed three main categories of past work that are related to
data confidentiality protection: (1) data access control, (2) secure architectures that
protect application software for providing data confidentiality, and (3) information
leakage detection and prevention for untrusted applications. A lot of these solutions
have a threat model that assumes either the entire computing box is trusted, or that
the operating system is trusted, which is becoming more and more unlikely due to the
sheer code size of a monolithic operating system and the consideration of an insider
attack. In the next chapter, we lay out the foundation, including the formal problem
statement and the threat and trust model, upon which we build our solutions in later
chapters.

16

Chapter 3

Problem Statement and Threat
Model

We now define the problem of data confidentiality protection, especially with regard
to the secondary dissemination and lifetime data protection of sensitive data. We
then lay out the basic assumptions and describe the threat and trust models on top
of which we build our data-centric protection solutions in Chapters 4 to 6.

3.1 Problem Statement
We state the problem addressed in this thesis as follows:

To prevent illegitimate secondary dissemination of protected data, after
access to the data is given to an authorized recipient. The protected data
should have a pre-defined policy that is enforced during its lifetime no
matter what, when, where and how access is granted.

For example, a policy could specify “the data can be read but not copied” (what),
“access can only be granted during office hours from 9am to 5pm” (when), “access can
only be granted within the office building and using the company network” (where),
and “policy must be evaluated by the trusted policy handler” (how).

The above problem statement can also be defined formally as follows:
Suppose a subject s ∈ S creates an object o ∈ O that is to be distributed to and

accessed by recipients s′ ∈ S within domain D with the following restrictions:
1. The object o cannot be accessed by subjects s′ outside of domain D.
2. The object o cannot be accessed by subjects s′ inside of domain D without the

permission of subject s.
3. Any copy of, or transformed data derived from, the object o should include the

same policy specified by s attached and enforced, across different machines.
Cross-domain object transfers are an extension of our basic model and must also

enforce the object’s confidentiality policy, or a higher-level policy dictated by trusted
domain managers (Section 3.2.1).

17

3.2 Trust and Threat Models
In this section we first describe the common system assumptions and threat model
for Chapters 4, 5 and 6, and then we discuss their differences.

3.2.1 System Assumptions

• We assume that any protected data objects are distributed and accessed by
recipients within the domain. Each domain has a domain manager that serves
as the trusted authority within the domain and manages the computing devices
within the domain1.

• We assume that every recipient uses some type of computing device to access
the protected data, where the hardware, including the microprocessor and the
features we add in the processor in Chapter 4 and Chapter 5, is assumed to be
correctly implemented and contain no exploitable vulnerabilities.

• On each of the computing devices that is enabled with the hardware data pro-
tection mechanisms, we assume that two trusted paths exist between the user
input and the trusted microprocessor (trusted input path), and another between
the microprocessor and the display output (trusted output path). Hence, the
device user can be assured that the input comes directly from him/her and that
what is displayed is indeed that which is processed by the microprocessor. Var-
ious techniques exist [22, 43, 71] to support a trusted input path and a trusted
display, and the issue is orthogonal to the problem addressed in this thesis.

• For the low-level software running on the system, e.g., Basic Input/Output
System (BIOS) and the hypervisor, we assume that secure launch or secure
boot technology is employed to launch the system software and the hypervisor
to establish a chain of trust to ensure boot-time and load-time integrity (e.g.,
Bastion [25], TrustVisor [66] or TPM [93]) for the system-level software. These
secure booting issues are orthogonal to the work in this thesis and can be used
in conjunction with our proposed data protection techniques.

• We assume that the authorized recipients within a domain are authenticated us-
ing standard authentication mechanisms such as passphrases, private key tokens
or biometrics, through the trusted I/O paths mentioned above.

• We assume that any individual possessing the appropriate private key is legit-
imate and that the presence of a particular private key is enough for authenti-
cation purposes. Secure user authentication is orthogonal to our solutions and
hence is not in scope for this thesis.

The different system assumptions between Chapters 4, 5 and 6 are as follows (also
illustrated in Figure 3.1). In Chapter 4, we divide the application program into a
trusted and an untrusted part, where the trusted part is guaranteed to perform the
desired functions and any tampering with the trusted part will be detected, by means
of our hardware protection mechanisms. However, the adversary can exploit the vul-
nerabilities in the untrusted part to perform malicious activities. In Chapters 5 and 6,

1Cross-domain data distribution can be achieved through key exchanges between the domain
managers. We discuss the details of cross-domain data distribution in later chapters.

18

Trusted

Hardware

 App
Untrusted

App

Operating
System

SP

(a) Chapter 4.

 Hardware

 Policy/Domain
Handler

Operating
System

Hypervisor

App App

DataSafe

(b) Chapter 5.

Hardware

Static Analysis &
Instrumentation

App

Operating
System

DIFT

(c) Chapter 6.

Figure 3.1: The differences between the Trusted Computing Base (TCB) of Chap-
ters 4, 5 and 6. Gray components constitute the TCB, whereas white components
are untrusted and can be exploited by attackers. The hardware blocks SP, DataSafe
and DIFT are explained in detail in Chapters 4, 5 and 6, respectively.

we relax the assumption to consider the entire application program to be untrusted.
The application-independent DataSafe software components, i.e., the policy/domain
handler and the hypervisor, in Chapter 5 are assumed to be trusted. The static
analysis and instrumentation software components in Chapter 6 are assumed to be
trusted. No hypervisor is necessary in both Chapters 4 and 6 since the operating
system directly runs on top of the hardware, but if a hypervisor is in the system, it is
assumed to be trusted. Compared to the commodity operating system, hypervisors
are usually smaller in terms of size and complexity, and therefore expose a smaller
attack surface that is easier to be verified to be secure. Figure 3.1 summarizes the
differences between the Trusted Computing Base (TCB) of the three chapters.

3.2.2 Threat Model

The main goal of the adversary is to steal or leak out sensitive information that an
authorized recipient is allowed to access. An authorized recipient may also be an
adversary, in which case it is an insider attack. Adversaries can exploit the vulner-
abilities within the untrusted operating system to leak the protected data. In this
thesis, we do not consider the following threats:

1. Outright malicious software applications, e.g., viruses or worms.
2. Hardware Trojans.
3. Runtime data integrity protections as well as availability concerns, such as

denial-of-service attacks, are orthogonal to the scope of this thesis. Dynamic in-
tegrity protections can be achieved by incorporating memory integrity trees [25,
46, 79] into the solutions proposed in this thesis.

4. Out-of-band attacks, such as taking a photo of the screen, or human memory.
5. Data inference attacks.
6. Covert or side channels, such as timing or storage channels.

19

7. Hardware attacks, such as the memory remanence attack [17, 50, 51] or chip
re-writing attacks [17]2. These hardware attacks are already addressed by the
SP [38, 37, 60, 97] or Bastion [25] architecture and can be readily incorporated
with the solutions proposed in this thesis.

3.3 Chapter Summary
This chapter first states the definition of the problem that this thesis is solving –
illegal secondary dissemination of protected data by authorized recipients, and then
lays out the fundamental assumptions and threats that our solutions proposed in
Chapters 4, 5 and 6 are based upon. In the next chapter, we go into the details of
our first solution – Policy-Protected Data with Trusted Application Software, which
leverages the hardware protection provided by the SP architecture to build a piece
of trusted software module that controls all accesses to the protected data to ensure
data confidentiality.

2Chip re-writing attacks use microscopes or probing needles to overwrite the contents stored
in a Read-Only Memory (ROM) or an Electrically Erasable Programmable Read-Only Memory
(EEPROM).

20

Chapter 4

Policy-Protected Data with Trusted
Application Software

Traditional access control to protect data on a computer system is usually imple-
mented by the operating system (OS). However, if the OS is compromised, the access
control policy enforcement can also be compromised. Therefore, applications running
on top of the OS need some way to protect secret or sensitive information, in spite
of a compromised OS. Given today’s large and complex operating systems, and the
large number of security breaches found in commodity operating systems, it is unwise
to consider a commodity operating system as part of the Trusted Computing Base
(TCB). Hence, in this chapter, we examine how data can be protected within an ap-
plication to provide a flexible mechanism to achieve application-level access control,
without trusting the operating system.

We make the following contributions in this chapter:
• implementing a distributed access control policy at the application level. We

pick a policy that is known to be very difficult to enforce, e.g., originator-
controlled (ORCON) [49, 65] policy, and

• developing a methodology for trust-partitioning of an application.
We define trust-partitioning to mean the partitioning of an application into a

trusted software component for accessing protected data, while leaving the rest of the
application untouched and untrusted. The trusted component is then the only way
by which the rest of the application can access the protected data.

Some materials in this chapter has been published in [31].

4.1 Background
To be able to address illegal secondary dissemination and lifetime data-specific policy
enforcement, one approach is to limit which software entity has access to the plaintext
of the sensitive data. In other words, if we only allow one trusted application software
to have access to the plaintext data, and we require all access requests for the data to
go through this piece of trusted application software, then we can guarantee that the
data-specific policy enforced by the trusted application software cannot be violated.

21

Therefore, the trusted application software serves as a gateway to the sensitive data,
and we need to provide a secure execution compartment for the piece of trusted
application software, to ensure that the trusted application cannot be compromised
by an attacker, especially when running on an untrusted operating system.

In this chapter, we propose the following solution to data confidentiality protec-
tion:

A small, verifiable and trusted application module that enforces the data’s
policy with direct hardware protection that cannot be bypassed or manipu-
lated by the operating system.

Implementing the data protections in the application-space removes the dependency
on the operating system and adds the flexibility of incorporating different policies, but
the application must be protected from the potentially corrupted operating system.
To achieve this, a secure execution compartment for the trusted application module
has the requirements below:
Requirement 1: The decryption key of the sensitive data has to be protected. The

decryption key can only be accessed by the trusted application
module.

Requirement 2: The integrity of the trusted application module has to be protected,
such that an attacker cannot modify the code of the module to
perform malicious activities.

Requirement 3: The sensitive data, when decrypted in plaintext, can only be ac-
cessed by the trusted application module.

Requirement 4: Any sensitive data used by the trusted application module has
to be protected during runtime, even when the execution of the
module is interrupted.

Requirement 5: The trusted application module should be as small as possible to
reduce the attack surface and to allow for easier security verifica-
tion.

Requirement 6: The integrity of the policy of the sensitive data has to be protected.
Several of the security architectures described in Section 2.2 provide such a secure

execution compartment. Our solution architecture [31] builds on top of the Secret
Protection (SP) architecture [37, 60]. SP presents a minimal addition to the micro-
processor, which provides a secure execution compartment for a Trusted Software
Module (TSM) that meets all the requirements described above.

In SP, the protection of a TSM is proposed; however, the design of the critical
components of a TSM, and the question of how to turn an existing application into
a trusted part (TSM) and an untrusted part, was left unanswered in the original
papers [37, 60]. We address these issues in this chapter. Specifically we show how to
provide protection of existing applications by modifying them to incorporate a TSM
that is directly protected by the hardware to prevent any unauthorized information
leakage. We also design a generic TSM structure for general policy usage. We imple-
ment a proof-of-concept (originator-controlled) ORCON-like access control policy for
protected data that is designed to be enforced in a distributed manner, in a popular
Unix editor vi.

22

 Hardware SP

App App TSMApp

Operating
System

Figure 4.1: High-level view of our proposed solution. The white parts are the com-
modity computer system (untrusted) and the gray parts are the trusted part of an
application (TSM) and the SP hardware components.

Consider the case where a secret document is to be distributed to selected recip-
ients of different clearance levels, while the content of the original document cannot
be modified. Further, the dissemination of the content has to be approved by the
content creator. This policy is the Originator-Controlled (ORCON) [49, 65] policy. It
is proposed to address such a scenario. Since the access control point of the policy is
neither entirely centralized (policy dictated by the originator) nor entirely distributed
(policy enforced for all entities), it cannot be directly solved by applying Mandatory
Access Control (MAC) or Discretionary Access Control (DAC), which are typically
used in traditional systems. In this chapter, we use a ORCON-like policy to show the
effectiveness of protecting data confidentiality through the use of the Trusted Soft-
ware Module, which is partitioned from existing applications and directly protected
by the SP hardware. In the next section, we describe the baseline SP architecture,
and the secure execution compartment that it provides for the TSM.

4.2 Baseline Architecture
In our solution, the trusted computing base (TCB) consists of a combination of a
trusted part of the application software and the additions to the microprocessor hard-
ware, which build upon the Secret Protection (SP) [37, 60] architecture to provide
direct hardware protection of the application, as shown in Figure 4.1. SP Architecture
was first proposed [60] to protect the user’s secret keys (user mode). It also has later
variants which protect a remote authority’s and third parties’ secret keys (authority
mode) [37], sensitive data on sensor nodes (sensor mode) [38] and sensitive data in
embedded systems (embedded mode) [97]. Our solution builds upon the authority
mode SP [37]. We describe the fundamental ideas of the SP architecture in this sec-
tion. Note that the original SP architecture has a threat model that assumes physical
attackers, whereas this thesis does not consider physical attacks, so we describe only
the relevant SP architecture, excluding the parts that address physical attacks.

23

Encrypt/
Hash

Engine

L1 I
Cache

w/ Tags L2
Cache

w/
TagsL1 D

Cache
w/ Tags

Original
Core

Storage Root Hash (SRH)

Device Root Key (DRK)L

Derived Keys

Interrupt Address

Interrupt Hash

ModeB
IO

S
S

e
cu

re
 B

IO
S

Memory

Figure 4.2: The internal components of a SP processor [37]. The derived keys block
is enclosed in dashed line since it is not a real hardware component, but to show that
the original core does not directly access the value of the DRK.

The SP architecture consists of the Trusted Software Module (TSM) in the user-
level application and the SP hardware in the microprocessor chip, as shown in Fig-
ure 4.1. The main objective of the SP architecture is to use the SP hardware exten-
sions to directly protect the confidentiality and integrity of the execution of the TSM,
and the SP architecture achieves these by ensuring the following:

1. Each TSM is bound to a particular SP hardware and can only be executed on
that SP hardware. Furthermore, the integrity of the TSM code is continuously
checked when the TSM is executing.

2. The sensitive data of the TSM can only be accessed in plaintext by the TSM,
not by any other software entity, and any illegal changes to the TSM data can
be detected by the SP hardware.

There are two hardware trust anchors in the SP microprocessor chip (Figure 4.2)
that enable the above protections for the TSM:

1. the Device Root Key (DRK) to bind the TSM, to protect the integrity of the
TSM code and to protect the confidentiality of the TSM data in the memory
and in permanent storage, and

2. the Storage Root Hash (SRH), to protect the confidentiality and integrity of
the TSM data in the permanent storage.

The DRK has a few distinct properties:
1. it is unique for each processor chip,
2. it never leaves the chip and cannot be read or written by any software, and
3. the only software that can use the DRK is the TSM, via a special instruction

that can derive a new key from the DRK given nonces and/or constants. The
use of the DRK by the TSM is restricted to only key derivation purposes; in
other words, even the TSM does not have direct read access to the DRK and
thus cannot leak out the DRK.

The SRH securely stores the root hash of a secure user-defined storage structure
(whether on disk or on-line storage). The SRH is accessible only to the TSM. Other
software cannot read or write the SRH, including the operating system. Any sensi-
tive data can be stored in the user-defined secure storage, and hence their integrity

24

(Requirements 1 and 6 on Page 22) are protected by the SRH. Furthermore, they are
also encrypted by a key derived from the DRK while in this secure storage, so their
confidentiality is protected as well (Requirement 1).

To ensure the TSM binding and to protect the runtime execution of the TSM,
SP employs two hardware techniques to protect the TSM’s code and data: Code
Integrity Checking (CIC) and Concealed Execution Mode (CEM). Hardware Code
Integrity Checking ensures the integrity of the TSM code while executing. This
ensures Requirement 2 (Page 22) for the secure execution compartment of the TSM.
Each instruction cache line embeds a message authentication code (MAC)1, with the
DRK as the key. The MAC is verified before the instruction cache line is brought
on-chip. The verified instruction cache lines belonging to the TSM are tagged in the
on-chip caches. A TSM is bound to a particular SP-enabled machine with a particular
DRK and cannot be executed on any other machine with a different DRK.

The generation and insertion of these MAC values for the TSM code are done in
a two-step process. First, the compiler for the TSM takes two inputs, the TSM code
and the target machine cache line size, to compile the binary for the TSM such that
the compiler inserts nop instructions to reserve the byte locations at the end of the
cache line, where the MAC value for the instructions in the beginning of cache line
will occupy. The compiler is responsible for calculating the correct branch or jump
targets accounting for the nops. At the second stage, the compiled TSM binary is
transferred to the trusted depot, where the trusted authority uses a binary re-writing
tool that takes the TSM binary and the DRK, to calculate the MAC values and
replace the nop instructions with the correct MAC values in the TSM binary.

Hardware Concealed Execution Mode (CEM) protects the TSM’s data while it
is executing, to guarantee confidentiality and integrity of any temporary data that
the TSM uses, whether this is in on-chip registers or caches, or evicted to off-chip
memory. A Mode register is used to indicate whether or not the system is operating
in the Concealed Execution Mode (CEM). CEM is triggered by a special instruction.
The hardware begins checking the code integrity and all tagged protected data are
accessible using special load and store instructions while the system is in CEM. All
data cache lines containing protected data are tagged while stored in the on-chip
caches. They are encrypted and hashed when evicted from the microprocessor chip.
Access to tagged protected data while not in CEM will trigger a violation, ensuring
Requirement 3 (Page 22) of a secure execution compartment. During interrupt han-
dling, the contents of general registers are encrypted using a DRK-derived key and
a hash is calculated and stored in the Interrupt Hash register, so that the operating
system cannot observe or modify the register values without being detected, fulfilling
Requirement 4 (Page 22). Furthermore, the interrupt return address is stored in the
Interrupt Address register to be protected from a potentially corrupted OS.

In addition to the protection of the TSM’s execution, SP architecture uses a Secure
BIOS to initialize the system with a unique DRK and a lock (L) bit is used to prevent
the DRK from being modified by a malicious party. Only the authority who knows
the DRK can unlock the DRK and re-initialize the system with a different DRK.

1A MAC, also called a keyed hash, is a short piece of information used to authenticate a message.

25

SP also incorporates a hardware encryption and hashing engine to accelerate the
automatic encryption (or decryption) and hash generation (or verification), reducing
cryptographic overhead to the infrequent cache-miss handling of the last level of on-
chip caches.

4.3 Application-Dependent Data Protection Archi-
tecture

Having established the baseline architecture that protects the execution of a Trusted
Software Module, which is a piece of application, we now investigate two critical issues
that are not addressed by the SP architecture alone:

1. how we can construct or carve out a part of an existing application to become
the TSM, i.e., trust partitioning the application, and

2. what should the TSM components be to enable enforcing an application-level
distributed access control policy on confidential data.

Before we go into the details of the TSM components, we first look at the overall oper-
ations of the distributed access control mechanism and the structure of the protected
data.

4.3.1 Summary of Access to Protected Data

We walk through a simple usage example to show how our overall architecture protects
and enforces the access control of the protected data in a distributed manner.

1. The data owner creates the document containing sensitive data using any ap-
plication he/she chooses.

2. The data owner dictates the policy he/she would like to enforce, e.g., who has
what access to the data.

3. The data owner runs an editor application which contains the TSM, to turn the
document into a protected document, which involves the following steps:
(a) The TSM first randomly generates a new symmetric key.
(b) The TSM encrypts the data using the generated key and erases the plain-

text.
(c) The TSM calculates the hash of the policy and asks the content creator to

sign the hash.
(d) The TSM computes a hash over the encrypted document, policy, metadata

and the key, and stores them in a package called the policy package in the
secure storage protected by the SP hardware.

4. The data owner can now distribute the encrypted document to all recipients
he/she desires.

5. The TSM on the data owner’s device encrypts the policy package using a sym-
metric communication key derived from the DRK and sends the encrypted pol-
icy package to the domain manager. (An alternative implementation can make
use of the group encryption technique [56], which we discuss in Section 4.3.5.)

26

PolicyPackage︷ ︸︸ ︷
m︷ ︸︸ ︷ OwnerSignature(m′)︷ ︸︸ ︷

Policy Metadata Key K [hash(policy)]JeffPri
hash(EncK(Storm) ‖ m ‖ m′)

Policy
Data Owner: Jeff
Expiration date: 01012016
Alice, read, -
Bob, read, append
...

Metadata
Filename storm
Size 60KB

Figure 4.3: The policy package for an example protected document named storm.
JeffPri represents the private signing key of Jeff. ‖ denotes concatenation.

6. The TSM of the recipient’s device requests the domain manager for the policy
package. The domain manager re-encrypts the policy package using a symmetric
communication key and sends the encrypted policy package to the recipient
TSM (Figure 4.5). The recipient TSM securely stores the policy package in the
SP-enabled computer’s secure storage.

7. The TSM on the recipient’s device authenticates the recipient and checks the
policy before granting access to the contents of the protected document.

4.3.2 Policy-Protected Data

Each protected data package contains the data itself and a policy package that spec-
ifies the policy associated with the data and other critical information associated
with the data. The policy and the data should be logically tied together. Whether
or not they are physically separated is implementation-dependent. We tie together
the policy and the data by a cryptographic hash. The policy package is stored and
protected in the secure storage which is protected by the SP hardware. This ensures
that only the TSM can legitimately access or modify the stored policies in the secure
storage. Any illegitimate modifications to the stored policies will be caught by the
TSM when calculating the hash value of the secure storage and comparing the hash
with the on-chip Storage Root Hash (SRH) – see Requirement 6 on Page 22.

The sensitive data is protected by encrypting the document with a randomly-
generated key that is stored in the policy package in the secure storage. Since the
document is encrypted, it can be safely stored in any public storage without additional
access control protection. The key to decrypt it is bound by the policy and the policy

27

is enforced by the TSM. In other words, the TSM always controls the access to the
decryption keys. In addition to the policy and the key, we store other pertinent
information of the protected document in the policy package. Figure 4.3 shows the
internal structure of an example policy package in the secure storage. The package
contains a policy dictated by the data owner, metadata pertaining to the protected
data, a randomly generated key to encrypt/decrypt the data, a signature of the policy
signed by the owner and a hash of all the above items generated by the TSM. This
policy package is stored in SP’s secure storage which is encrypted by a key derived
from the DRK. Hence, the confidentiality and the integrity of both the decryption key
K, and the owner’s policy, is protected by hardware in the secure storage (fulfilling
Requirements 1 and 6 on Page 22).

4.3.3 TSM Architecture

The TSM acts as a gateway to the protected data – only legitimate access to the
plaintext data is allowed through the TSM. All other accesses will either be denied
by the TSM or only the ciphertext can be accessed. Before the user is allowed access
to the contents in the document, the TSM first checks the integrity of the encrypted
document and the policy package, to make sure that they have not been tampered
with. The TSM brings in to the memory the encrypted policy package stored in the
secure storage using normal load instructions, and then reads the policy package using
special secure load instructions (Section 4.2). If the data cache lines for the policy
package was in the on-chip caches, a secure load to these cache lines would trigger
an exception, causing the cache lines to be evicted out to the memory and brought
back in again through the hardware crypto engine to be decrypted, so the TSM can
check the integrity of the plaintext policy. Then the TSM checks if the policy allows
the particular recipient access to the contents of the document. After all checks have
successfully passed, the TSM brings in the data file, encrypted under key K, to the
memory. The TSM sets aside a region of memory that is to be used as the TSM
buffer, decrypts the data file using the key K, and writes the decrypted data file into
the TSM buffer using secure store instructions. The data file, although decrypted,
gets re-encrypted automatically by the crypto engine with a DRK-derived key when
the cache lines of the data file get evicted to the memory by secure stores, so no
plaintext data ever appears in the memory. When the TSM gets a request to read
the plaintext data, the TSM uses secure load instructions to read from the TSM buffer
and sends the plaintext data through the trusted display link to display the contents
to the authenticated recipient. The temporary TSM buffer is a region of memory
that is accessible only through special load and store instructions during CEM and
hence is only accessible to the TSM (Section 4.2). When new data are appended, the
TSM is responsible for updating the policy package and the tie between the policy
and data, to make them consistent. Distribution of the new file and the new policy
package is required for other recipients to have access to any newly appended data.

Figure 4.4 shows a general structure of the TSM consisting of several modules
that perform different functionalities required by the TSM. The TSM is constructed

28

 memory

Policy
enforcement

module

PKI APIs

non-TSM

TSM

keyboard
display

network

Crypto
module

RNG
module

TSM
buffer

User
authentication

module

PGP TPM …

storage

secure storage

Trusted I/O
module

Untrusted
application
component

Figure 4.4: TSM architecture. The trusted (gray) parts of the system are the TSM
and the SP-protected secure memory and secure storage.

in such a way that avoids being limited to a specific application and a specific access
control policy.

A trusted I/O module serves as the gateway for the TSM to securely receive user
input, to securely display output or to connect with other TSMs. A crypto mod-
ule that implements symmetric key encryption/decryption, asymmetric key encryp-
tion/decryption and cryptographic hash functions, and a random number generation
(RNG) are included in the TSM, so that the TSM does not need to depend on the
operating system or other libraries for these security-critical functions. The core of
the TSM is the policy enforcement module that interacts with the TSM buffer and
interprets the policy stored in the secure storage to mediate the I/O of the TSM. The
policy enforcement module can be tailored to implement any desired data confiden-
tiality policy within a domain, so only one TSM for an application is needed to access
any protected data object within a domain. A user authentication module, along with
a set of PKI interfaces is included in the TSM to take care of the user authentication
required to guarantee that the owner of the public/private key pair specified in the
policy is correctly authenticated. We describe the issue of user authentication next.

4.3.4 User Authentication

User authentication is a difficult problem for the TSM, since we cannot rely on the
operating system for existing user authentication mechanisms. To simplify the de-
sign of the TSM and not burden it with complex user authentication functions, we
propose a public/private key authentication solution. We build a generic Application
Programming Interface (API) that can interact with and make use of different pub-

29

Domain
Manager

(DRK1comm,
DRK2comm
DRK3comm,

...)

SP1

DRK1comm

SP2

DRK2comm

SP3

DRK3comm

Figure 4.5: The pair-wise communication between the domain manager and the in-
dividual TSMs on different SP devices. Each SP device has its own unique DRKi

and DRKicomm denotes the symmetric communication key derived from the DRK
to encrypt the communication data.

lic/private key applications, e.g., OpenPGP or GnuPG, which manage users’ private
keys. We outline below the protocol used by the TSM to authenticate a user utilizing
other PKI applications.

When invoked by the user to read a policy-protected document, the TSM prompts
the user for identity, for example, Alice. The TSM reads the corresponding policy
in the secure storage to locate Alice’s public key, AlicePub. The TSM calls the RNG
module to generate a new random number and uses AlicePub to encrypt the random
number as a challenge. The TSM sends the random challenge to the PKI application
through the PKI interface and asks it to decrypt the random challenge.

The PKI application authenticates the user via its normal mechanisms, e.g., a
passphrase or password. The PKI application returns the decrypted challenge to the
TSM. The TSM checks for the validity of the random challenge to determine if the
user has been successfully authenticated.

Theoretically, the whole PKI application could be included in the TSM, since it
is a security-critical function. As the PKI applications are not included in the TSM,
they could also be compromised and provide fake authentication responses. However,
the security-critical keys that are used to decrypt the document, and the plaintext
of the document, are never released outside the TSM. Hence, even if an impostor is
incorrectly allowed access to the protected data, the data never leaves the TSM and
the data’s confidentiality policy will not be violated.

4.3.5 Group Encryption and Trust Groups

According to the description in Section 4.3.1, each TSM must request the policy
package from the domain manager. Since an SP device only stores a symmetric Device
Root Key (DRK), which is known only by the SP device and the domain manager,
the policy package is encrypted using a pair-wise symmetric communication key that
is derived from the DRK, between any TSM and the domain manager, as shown in
Figure 4.5. This means that the first time each protected data is accessed by any
TSM on any machine, the domain manager needs to re-encrypt the policy package
for that TSM, and therefore the domain manager may become the bottleneck if the

30

communication channel is down. To address this issue, an alternative implementation
for the policy-protected data uses group encryption [56] for distributing the protected
policy package to the authorized recipients.

Group encryption is the dual of the well-known group signature scheme [19, 27, 28].
In a group signature scheme, a member of a group can anonymously sign a message
on behalf of the group, without revealing his/her identity. In a group encryption
scheme, the sender can encrypt a piece of data and later convince a verifier that it
can be decrypted by the members of a group without revealing the identity of the
recipient. The authority in both cases is the only entity that can reveal the identity
of the signer in the group signature scheme or the recipient of the group encryption
scheme. In a group encryption scheme, a group has one group encryption key and
multiple group decryption keys associated with it. The group encryption key is public
and is used to encrypt messages, while the group decryption keys are private.

In order for an originator to securely distribute the policy package to the autho-
rized recipients using group encryption, he/she first defines a group which at least
consists of all authorized recipients. Then instead of encrypting the policy package
with the domain manager’s public key, the TSM on the data owner’s machine encrypts
the policy package using the group encryption key and sends the policy package di-
rectly to the authorized recipients who are in the same group and the TSMs on those
recipients’ machines can decrypt the policy package using their group decryption keys.

In SP [37], a trusted authority installs all TSMs and knows the DRKs of all the SP
devices. The domain manager serves as this trusted authority and could also be the
authority in the group encryption scheme2. Under the group encryption scheme, the
domain manager that initializes and installs the TSMs creates a group that includes
all SP devices, and assigns each SP hardware a unique group decryption key, while
publishing the group encryption key for that group, such that in the secure storage
of each SP device a pair of group encryption and decryption keys is stored and tied
to the particular SP hardware. Therefore the data owner can be assured that the
policy package can only be decrypted by SP-enabled devices in the same group. For
simplicity, we assume that all SP-enabled devices are in the same group, although
different groups of SP-enabled devices can be established.

4.4 Trust-partitioning an application
In this section, we take a concrete example of an editor application to see how we
can partition an application into a trusted TSM part and an untrusted part. We
chose vi [14], one of the most common text editors in the Unix operating system
as our proof-of-concept application. Our methodology can also be applied to other
applications. A simplified view of the vi program is shown in Figure 4.6, where the
program takes the input files into its internal buffers, manipulates the data within
the buffer through the commands from the user, and writes the data of the buffer to
the output file.

2Note that the authority that governs the SP-enabled devices and the trust groups need not be
the same as the certificate authority in the PKI systems for user authentication.

31

Ouput
file

Buffer
Buffer

commands

vi

Input
file

Figure 4.6: A simplified view of the vi program. vi reads in the input file and puts
the content in the temporary buffer to manipulate it according to the commands from
the user. vi commits to the output file from the buffer.

Editor

TSM

Memory

TSM
buffer

Editor
buffer

Secure
storage

Persistent
storage

Figure 4.7: Partitioning an editor application into untrusted (white) and trusted
(gray) parts. The TSM gets its own buffer to work with temporary decrypted data,
and it can access both the secure storage where the policies are stored and normal
storage where the protected (encrypted) content is stored.

As mentioned before, we dedicate a special TSM buffer for use only by the TSM to
store and manipulate any temporary plaintext data it uses. All the data in the TSM
buffer are tagged as secure data in the processor’s on-chip caches. When secure data
cache lines are evicted from on-chip caches out to the main memory, the SP hardware
will ensure that they are encrypted and hashed, by a key that is derived from the
DRK. The TSM buffer is used by the TSM to hold temporary decrypted lines of the
protected content. In other words, the protected content remains encrypted inside all
internal buffers of temporary files used by the editor, only decrypted by the TSM in
the TSM buffer when the TSM is active. Figure 4.7 shows the interaction between
the editor application (the trusted TSM and untrusted parts), the temporary buffers
(SP-protected and unprotected), and the persistent storage (secure and normal).

To partition an application, we need to identify the entry points in and out of the
TSM.We first categorize the commands available in vi. Figure 4.8 shows the flow chart
we used to categorize the commands of vi into 5 groups. In this categorization process,
we wish to identify whether or not a command is related to the opening/closing and

32

C
o

m
m

an
d

s
R

e
ad

 in
p

u
t

fi
le

?

G
ro

u
p

 I:
R

e
ad

in

p
u

t

Y
E

S

M
an

ip
u

la
te

b

u
ff

e
r?

N
O

Y
E

S

C
o

m
m

it

o
u

tp
u

t
fi

le
?

N
O

G
ro

u
p

 II
I:

C
o

m
m

it

o
u

tp
u

t

Y
E

S

E
n

d
 s

e
ss

io
n

?
N

O

G
ro

u
p

 IV
:

E
n

d

se
ss

io
n

Y
E

S

G
ro

u
p

 V
:

O
th

e
rs

N
O

M
ak

e
 n

e
w

 c
o

m
m

an
d

s
fo

r
re

ad
in

g
 p

ro
te

ct
e

d

d
o

cu
m

e
n

ts
.

M
o

d
if

y
o

ri
g

in
al

 c
o

m
m

an
d

to

 c
al

l T
S

M
 f

ir
st

.

G
ro

u
p

 II
:

M
an

ip
u

la
te

b

u
ff

e
r

D
is

p
la

y
o

r
ap

p
e

n
d

?

Y
E

S

N
O

M
ak

e
 n

e
w

 c
o

m
m

an
d

s
fo

r
d

is
p

la
yi

n
g

 o
r

ap
p

e
n

d
in

g
 t

o
 T

S
M

b

u
ff

e
r.

K
e

e
p

 o
ri

g
in

al

co
m

m
an

d
s

as
 is

.

M
ak

e
 n

e
w

 c
o

m
m

an
d

 f
o

r
co

m
m

it
ti

n
g

 p
ro

te
ct

e
d

d

o
cu

m
e

n
ts

.
K

e
e

p
 o

ri
g

in
al

 c
o

m
m

an
d

s
as

 is
.

M
o

d
if

y
o

ri
g

in
al

co

m
m

an
d

 t
o

 c
al

l
T

S
M

 f
ir

st
.

K
e

e
p

 o
ri

g
in

al

co
m

m
an

d
s

as
 is

.

F
ig
ur
e
4.
8:

C
at
eg
or
iz
at
io
n
of

fu
nc
ti
on

s
w
it
hi
n
an

ap
pl
ic
at
io
n
fo
r
T
SM

pr
ot
ec
ti
on

.

33

Table 4.1: The groups of vi commands after categorization. The commands in bold
are modified vi commands and the commands in italics are new commands. Com-
mands in normal font are not changed.

Group I Group II Group III Group IV Group V
Read input Manipulate buffer Commit output End session Others

ex print write quit abbreviate
tsm_ex read tsm_write args

tsm_print cd
tsm_read delete

...
tsm_create

reading/writing of a file, and whether or not a command is manipulating the data
stored in vi ’s buffer. These commands need to be identified since the TSM must be
invoked to access the protected data when these commands are issued on a protected
file. We modify the original command when a command changes the state of the TSM-
protected data, e.g., the “quit” command terminates the current editing session and
the TSM needs to be invoked to erase the plaintext in the TSM buffer. For commands
that manipulate the editor buffer, we introduce new TSM commands that perform the
same operation on the protected data in the TSM buffer, since the original command
does not have access to the data in the TSM buffer. These are for the commands
“print” and “read”. Likewise, we introduce new commands that read a protected
file (“ex”) and commit the protected data back to the permanent storage (“write”).
All other commands that are not relevant to the above (Groups I-IV) or commands
that are not allowed to be performed on protected data, e.g., delete a string, are not
modified (Group V). One special case is the tsm_create command which turns existing
documents into a protected document. This command is introduced to facilitate the
data owner for creating protected documents.

Table 4.1 shows the commands in each group. In particular, we are interested in
the commands that are relevant to our protected data, e.g., displaying the content of
a file or appending new data to the original file, etc. The commands in bold (i.e., ex
and quit) are modified vi commands and the commands in italic are new commands.
These commands are the entry points to the TSM and are the only commands that can
legitimately manipulate the plaintext within the TSM buffer. They start by bringing
the processor into CEM and finish by exiting CEM, hence each of these commands
is protected by the SP hardware to ensure they perform the desired functions. All
other commands of vi remain unchanged. There are a total of 70 commands in the
original vi, with 2 modified, 5 new ones added and the remaining 68 unmodified. The
new and modified commands are described in more detail in Table 4.2.

34

Table 4.2: New and modified vi commands.

tsm_ex filename Open a protected document.

tsm_print line_number Display the contents of a protected document.

tsm_read filename Append the contents of filename to current protected docu-
ment.

tsm_write Automatically re-encrypt the protected document (with any
appended data) and update the length and the hash stored
in the policy package.

tsm_create filename Turn an existing document into a protected document.

quit & ex End the current editing session. Erase the plaintext in TSM
buffer, if any.

The above partitioning steps, although applied to vi specifically, can also be ap-
plied to other applications, with the goal of identifying the entry points of the TSM.
We propose the following methodology for trust-partitioning an existing application:

1. Identify the security-critical information that needs to be protected.
2. Identify whether the information is transient data or persistent data. Transient

data refers to the data that only exists during execution, such as a temporary
buffer or program states, whereas persistent data are data stored in persistent
storage, such as the disk.

3. Identify the input and output paths leading to and leaving from the protected
information. These are the code paths that take certain input values and end
up accessing the security-critical information, and the code paths that access
the information and produce output values that are related to the information.

4. Relocate the protected information to the TSM buffer for transient data or
the secure storage for persistent data. To relocate the information, one needs
to modify or replicate existing code into TSM code to enter CEM and access
the transient information through secure load/store instructions. For security-
critical persistent data, they need to be turned into a protected data, e.g., using
the tsm_create command, and be accessed through the TSM.

5. Modify the input and output paths using the new TSM functionalities. Since
the security-critical part of the application has been turned into a TSM, the rest
of the application needs to be modified to call the TSM at appropriate points
within the application.

4.5 Security Analysis
We analyze the security of our proposed solution according to three main security
concerns: confidentiality, integrity and availability.

35

4.5.1 Confidentiality

In the ORCON policy, the data owner is most concerned with the confidentiality of
the sensitive content in the protected document – only the authorized recipients can
have access to the decrypted content.

We first consider the case where the adversary is outside the trust group, e.g.,
the adversary does not have a legitimate device enabled with our architecture. The
adversary can try to attack the system by intercepting the communication (1) when
the data owner is sending the encrypted document over to the recipients, or (2) when
the data owner’s device is sending the policy package to the recipients’ devices. The
adversary does not gain any information in the first case since the document sent over
the communication is encrypted, and we assume the use of strong cryptography. Sim-
ilarly, the communication channel intercepted in the second attack is also encrypted,
using the group encryption key, which is known only by a legitimate device within
the same group.

The attacker can also steal one of the recipients’ devices and try to impersonate
the authorized recipient. In this attack, in order for the adversary to successfully
authenticate himself as the authorized recipient, he must know, or have access to, the
private key of the authorized recipient.

In the extreme case where the adversary is in the authorized recipient list – an
insider attack – the adversary can access the contents of the document but has no
way of digitally copying the contents to another file, since the plaintext document is
only present in the TSM buffer during Concealed Execution Mode (CEM) and there
is no command that allows direct memory copy of the plaintext from the TSM buffer
to unprotected memory.

Although covert channels and side-channels are not included in the threat model
in this thesis (Chapter 3), we briefly discuss it with regard to information leakage. We
consider how side-channel and covert-channel would affect the security of our solution
and how such issues should be mitigated in the implementation. First of all, the
encryption algorithm employed in all encrypted data, including all of the input/output
paths from/to the TSM (disk, keyboard, display, network, etc.) must have semantic
security [48]3. For example, the length of the ciphertext should be made unrelated
to the length of the plaintext, e.g., by always padding zeroes to a fixed length, to
prevent the attackers from knowing the size of the protected data. Furthermore, the
encryption should employ chaining of the plaintext to prevent dictionary attacks on
the ciphertext. Chaining of the plaintext blocks makes each ciphertext block depend
on all previous plaintext blocks. Otherwise, identical plaintext blocks are encrypted
into identical ciphertext blocks and attackers are able to learn the data patterns.

Even with semantic security measures, the ciphertext can still offer both side and
covert channels that leak information, including timing and addressing channels. For
example, even if the keyboard data is encrypted, the timing information can leak
both the identity of the user, and likely the plaintext sequences. The addressing
information can lead to traffic flow analysis for the network and the disk. In general,

3A system is said to be semantically secure if an adversary who knows the encryption algorithm
and the ciphertext is unable to determine any information about the plaintext.

36

timing information can be blinded by fixed timing, albeit with performance penalty.
However, the addressing information, e.g., Internet IP addresses, is difficult to block
and out-of-scope for this thesis. Several layers of security measures would need to
be employed on top of our solution to fully mitigate these side and covert channel
attacks.

4.5.2 Integrity and Availability

The integrity of the protected document and the corresponding policy is enforced
by the hash that ties together all the pertinent information of a policy-protected
document (See Figure 4.3). The hash is stored in the secure storage, which is itself
encrypted and integrity protected by the TSM using the keys accessible only to the
TSM. The root of trust of the integrity of the secure storage is stored on the processor
chip (SRH). Therefore, there is an integrity trust-chain from the protected content and
policy package to the SRH, which does not depend on the potentially compromised
OS.

This thesis does not directly address denial-of-service attacks, therefore if the
adversary modifies or completely deletes the document, or the policy package in the
secure storage, any access to the protected information is lost. Although it is easy to
achieve such denial-of-service attacks, they are not considered detrimental since no
security-critical information is leaked by these attacks. In fact, these attacks show the
fail-safe nature of the access control implementation. Nevertheless, our architecture
does provide intrinsic support for availability, in terms of the resiliency of the TSM to
unrelated attacks to other software entities within the system. Since the trust chain
consists only of the SP hardware and the TSM, attacks on the untrusted part of the
application and/or the operating system do not prevent the TSM from enforcing its
data protection functions.

4.6 Summary
In this chapter, we showed how to build applications to express and enforce an
originator-controlled (ORCON) distributed information sharing policy for data, which
is difficult to achieve with traditional MAC or DAC mechanisms. We leveraged the
existing SP architecture to provide the runtime execution protection of the security-
critical part of an application, i.e., the Trusted Software Module (TSM), and we
design the generic TSM structure that can be extended to support different policies.
We also demonstrated a proof-of-concept implementation using the vi application,
having only to change a small fraction of its code base for the TSM. We also de-
veloped a methodology for trust-partitioning an existing application, which is useful
generally for separating out the security-critical parts of an application.

The policy enforcement module in the TSM can implement any desired data con-
fidentiality policy within a domain, so only one TSM for an application is needed to
access any protected data object within a domain. Nevertheless, the approach taken

37

 memory

Policy
enforcement

module

PKI APIs

non-TSM

TSM

keyboard
display

network

Crypto
module

RNG
module

TSM
buffer

User
authentication

module

PGP TPM …

storage

secure storage

Trusted I/O
module

Untrusted
application
component

Application-
specific

functions

Figure 4.9: The TSM architecture including application-specific functionalities
(shown in lighter gray with stripes).

in this chapter of protecting data by trusting a piece of application software, the
TSM, that is protected by the hardware, has certain limitations:

1. The trust-partitioning methodology can only be applied one application at a
time. In other words, every application that the authorized recipient would like
to use to access the protected data would need to be partitioned before it can
be used to access the data.

2. Although in our vi example, only around 10% of the total commands are ei-
ther converted or introduced into the TSM, in practice, the more functional-
ity one would like to operate on the protected data, the larger the portion of
the application that would have to be included in the TSM, as shown by the
“application-specific functions” block in Figure 4.9. For example, a modified
search command would have to be provided by the TSM if the data owner
allows the recipients to search within the protected document.

In order to address these limitations, this thesis explores solutions that are application-
independent, which lead us to the next chapter on Policy-Protected Data without
Trusted Application Software.

38

Chapter 5

Policy-Protected Data without
Trusted Application Software

In the previous chapter, we explored the potential of providing data-centric protection
with a trusted application software component. However, the inconvenience of having
to partition every piece of application into trusted and untrusted parts, and the
possibility of bloating the size of the trusted application software may hinder the
adoption of such a method. In this chapter, we investigate a technique to protect
data confidentiality in the absence of a piece of trusted application software. We
propose DataSafe [30], a hardware-software architecture that provides data-centric
protections independent of the applications that are accessing the data. Specifically,
we make the following contributions:

• A new software-hardware architecture, DataSafe, to realize the concept of Self-
Protecting Data. This architecture allows unvetted application programs to
use sensitive data while enforcing the data’s associated confidentiality policy.
In particular, DataSafe prevents secondary dissemination by authorized recip-
ients of sensitive data, protects data derived from sensitive data, and protects
sensitive data at-rest, in-transit and during-execution.

• DataSafe architecture is the first to bridge the semantic gap between high-
level policies and low-level hardware enforcements by automatically translating
high-level policies expressed in software into hardware tags at runtime, without
requiring modification of the application program.

• DataSafe provides efficient, fine-grained runtime hardware enforcement of confi-
dentiality policies, performing derivative data tracking and nonbypassable out-
put control for sensitive data, using enhanced dynamic information flow tracking
mechanisms.

This chapter contains content from [30] as well as additional material.

5.1 Overview
This chapter proposes a new software-hardware architecture called DataSafe for pro-
tecting the confidentiality of data when processed by unvetted applications, e.g.,

39

Table 5.1: The problem space of secondary dissemination.

Inadvertent Malicious

User X X
Benign applications X Not applicable

Explicit Implicit

Malware X X partial

programs of unknown provenance. It is based on the following key insights. First,
the data owner (not the application writer) is the one most motivated to protect the
data, and hence will be motivated to make some changes. Hence, in our proposed
solution, the data owner must identify the data to be protected and must specify
the data protection policy. The application program is unchanged and continues to
deal with data only, and is unaware of any policies associated with the data. This
gives the added advantage of our solution working with legacy code. The behavior
of the application program must be monitored, to track the protected data as the
application executes, and to ensure that the data’s protection policy is enforced at all
times. Table 5.1 summarizes the various types of secondary dissemination supported
by DataSafe.

Second, we observe that while an authorized user is allowed to access the data
in the context of the application and the current machine (or virtual machine), data
confidentiality (beyond this session) is protected as long as any output from the cur-
rent machine is controlled according to the data’s protection policy. Output includes
the display, printing, storing to a disk, sending email or sending to the network. Fur-
thermore, any data derived from sensitive data must also be protected. Hence, our
DataSafe solution proposes continuous tracking and propagation of tags to identify
sensitive data and enforce nonbypassable output control.

DataSafe architecture realizes the concept of self-protecting data, data that is pro-
tected by its own associated policy, no matter which program, trusted or untrusted,
uses that data, unlike in the previous chapter where the protected data has to be ac-
cessed through a Trusted Software Module. The data must be protected throughout
its lifetime, including when it is at-rest (i.e., in storage), in-transit, and during exe-
cution. The data protection must apply across machines in a distributed computing
environment, when used with legacy applications or new unvetted programs, across
applications and across the user and operating system transitions. A self-protecting
data architecture must ensure that: (1) only authorized users and programs get ac-
cess to this data (which we call primary authorization), (2) authorized users are
not allowed to send this data to unauthorized recipients (which we call secondary
dissemination by authorized recipients), (3) data derived from sensitive data is also
controlled by the data’s confidentiality policy, and (4) confidentiality policies are en-
forced throughout the lifetime of the data.

40

We assume that the first problem of primary authorization can be solved by well-
known access control and cryptographic techniques, and will not discuss this further
in this chapter. Rather, this chapter tackles problems (2), (3) and (4). Problem
(2), the secondary dissemination by authorized recipients, is especially difficult and
dangerous, since an authorized recipient of protected information (passing the primary
authorization checks) can essentially do anything he/she wants with it in commodity
systems today.

Secondary dissemination of protected information can be by an authorized user
or by an application, and can be either malicious or inadvertent. A malicious user
example could be a confidentiality breach by an insider, such as a nurse in a hospi-
tal trying to sell the personal information of some celebrity admitted to the hospital
whose medical records he or she is authorized to access. An example of inadvertent
secondary dissemination of confidential data could be a doctor trying to send his/her
family a vacation plan as an attachment, but accidentally attaching some patient’s
psychiatry record instead. When programs are the culprits rather than users, a ma-
licious, privacy-stealing malware, installed on an authorized user’s machine through
social-engineering, could send out sensitive information, or a benign application may
contain bugs that could be exploited to leak sensitive information. In DataSafe, we
enforce nonbypassable output control to prevent such breaches by authorized users.

Data derived from sensitive data must also be tracked and protected. An unvetted
application program can be designed to leak sensitive information. It could trans-
form or obfuscate the sensitive data. For example, a credit card number could be
transformed and obfuscated into several paragraphs of text, before being output from
the application, so that no sequence of numbers resembling a credit card number can
be identified. This requires somehow tracking the information flows from protected
data to other variables, registers or memory locations, across applications and system
calls, and across combinations of data such as in mashups. In DataSafe, we argue that
such continuous tracking of sensitive data, through any number of transformations,
requires some form of dynamic information flow tracking.

For confidentiality policies to be enforced throughout the lifetime of the protected
data, DataSafe uses encrypted packages to transmit data between DataSafe and non-
DataSafe machines in a distributed environment, as illustrated by Figure 5.1. A data
owner wants the sensitive data to be accessed and used by authorized users according
to the data’s associated security policy. However, authorized users or applications
can maliciously or inadvertently compromise the confidentiality of the protected data
by distributing (or leaking) the plaintext of the sensitive data to unauthorized users.
DataSafe addresses this problem by: (1) controlling the use of data and preventing
leakage on a DataSafe machine while data is used by authorized users (Case A), (2)
ensuring secure data transfer to both DataSafe and non-DataSafe machines, and in
particular that no protected data is ever sent in plaintext outside the machine (Case
B), (3) enabling only authorized users to use protected data on DataSafe machines
(Case C, D), and (4) preventing any user from accessing protected data (in plaintext)
on a non-DataSafe machine (Case E, F). This last case is restrictive, in terms of avail-
ability, but provides fail-safe confidentiality protection within the current ecosystem.

41

Data
Owner DataSafe

Machine

Authorized
Primary
Recipient

DataSafe
Machine

DataSafe
Machine

Non-DataSafe
Machine

Non-DataSafe
Machine

Secondary Recipients

Authorized

Not Authorized

DataSafe Encrypted Data

Plaintext Data

Network/Disk port

Authorized

Not Authorized

Transformed Data

A

B

C

E

F

inter-machine
secure transfer

D

Figure 5.1: DataSafe architecture protects data confidentiality across machines (new
and legacy) and users (authorized and not authorized).

(With built-in processor security, the idea is that eventually, all future ubiquitous
computers will include DataSafe features.)

Figure 5.2 illustrates the key ideas on how DataSafe enables self-protecting data.
To protect data-at-rest and data-in-transit, DataSafe uses strong encryption to pro-
tect the data, while ensuring that only legitimate users get access to the decryption
key. For data-during-execution, DataSafe creates a Secure Data Compartment (SDC)
where untrusted applications can access the data, as they normally would. When
data (e.g., a protected file) is first accessed by an application, DataSafe software
(Policy/Domain Handler) does a primary authorization check, before translating the
data’s high-level policy to concise hardware “activity-restricting” tags. The DataSafe
hypervisor then creates Secure Data Compartments (SDC), within which sensitive
data is decrypted for active use by the application. Each word of the protected
data in the SDC is tagged with a hardware activity-restricting tag. From then on,
DataSafe hardware automatically tracks the data that initially comes from SDCs,
propagating the hardware tags on every processor instruction and memory access.
By restricting output activities based on the hardware tags, DataSafe prevents il-
legitimate secondary dissemination of protected data by authorized recipients, even
when the data has been transformed or obfuscated. The hardware tag propagation
and output control is done without the knowledge of the applications software, and
applies across applications and across application and operating system transitions.
We prototype our software-hardware architecture and show that it indeed prevents
confidentiality breaches, enforcing the data’s confidentiality policy, without requiring
any modifications to the third-party applications.

42

Policy/Domain Handler

Hypervisor

App

1

App

2
OS

Context

& User

Unprotected

Data

PD (Plaintext)

HW tags

UD

HW tags

SDC

PD (Plaintext)

HW tags

HW tag

propagation

Unprotected

Data

Protected Data

(Plaintext)

Protected Data

(Encrypted)

Policy

App 1

App 2

Software

Hardware

Memory

O
u

tp
u

t
C

o
n

tr
o

l

Protected Data

(Encrypted)

Policy

Figure 5.2: Software-hardware monitoring of Protected Data (PD) in DataSafe ar-
chitecture. Unprotected Data (UD) is unchanged. Since the hardware tags of the
Protected Data are tracked and propagated at the physical memory level by the
hardware, this allows seamless tracking across applications and across application-
OS boundaries, as illustrated by the top row of boxes. (Gray indicates DataSafe
additions).

5.2 DataSafe Architecture
We first describe the overall operation of enforcing data confidentiality and next
describe how the DataSafe software components achieve the automatic translation
of high-level security policies without having to modify the third-party applications.
Lastly we show how the DataSafe hardware components achieve continuous runtime
data tracking with output control.

5.2.1 Overview

DataSafe architecture consists of software and hardware components, as shown in
Figure 5.3. The DataSafe software has the following responsibilities: (1) to translate
protected data’s high-level security policy into hardware enforceable tags, (2) to create
a secure data compartment (SDC) by associating the tags with the plaintext data in
the memory, and (3) to achieve application independence by enabling third party
applications to use the data without having to modify them.

The key challenge in the tag generation process is that the hardware tags must
accurately reflect the permissions and prohibitions required by the data’s security
policy. Tags for a given policy are not fixed, but rather they change depending on the
context within which the policy is interpreted. In DataSafe software, a policy/domain
handler is responsible for translating policies to tags, and the hypervisor is responsible
for associating hardware tags with data to create an SDC.

43

7

Hypervisor

 Processor

Memory

DataSafe
Hardware

Data
SDC Tracking &

Output Control

I/O
Devices

1

Unmodified
3rd Party

Application

Policy/Domain Handler

generate sdc return (handle)

DataSafe
Software

2

3

Data
Owner Data User Start file

interaction
Session

authentication

6

8

Operating System

File
Access

Library

0Protected
Data

+
Policy

File Management

5

get HW tags 4

file
calls

Runtime

HVSecure
Storage

HDD

HW
Enc.

Engine

Figure 5.3: The software and hardware components of DataSafe. The gray parts
are new and trusted DataSafe components, while the striped file access library is
modified but untrusted. All other software entities including the unmodified third-
party applications and the operating system are assumed to be untrusted.

Both the hypervisor and the policy/domain handlers are assumed to be trusted
code. The hypervisor maintains its own secure storage (protected by hardware) to
store keys and other data structures. The hypervisor is protected by the most-
privileged level in the processor and directly protected by the hardware (e.g., as
in Bastion [25]). The policy/domain handler is run in a trusted virtual machine pro-
tected by the trusted hypervisor. Alternatively, for a simple, fixed policy/domain
handler, it can be incorporated as part of the trusted hypervisor, to reduce the total
number of software entities to be protected. We describe the protection of the trusted
hypervisor in Section 5.2.4.

DataSafe Operation

DataSafe operates in four stages – Data Initialization, Setup, Use, Cleanup and Write-
back, as explained below.

Data Initialization. During the Data Initialization stage, represented by Step
0 in Figure 5.3, a DataSafe package containing the (encrypted) data to be protected,
along with its associated policy, is brought into a DataSafe enabled machine. The
details of creation and unpacking of DataSafe packages are explained in Section 5.2.8.

44

Setup. In the Setup stage, a secure data compartment (SDC) is dynamically
created for the data file. An SDC consists of hardware enforceable tags defined
over a memory region that contains decrypted data. Hardware tags are generated
from the policy associated with the data. Once an SDC is created for a file, users
can subsequently use the data file via potentially untrusted applications, while the
hardware ensures that the data is used in accordance with the associated policy.

The Setup stage takes place during Steps 1-6, as shown in Figure 5.3. In Step 1, a
user starts a new session by providing his/her credentials, and is authenticated by the
policy/domain handler. The user authentication information and other system and
environment properties constitute the context that is collected by the policy/domain
handler. During the session, the user requests file interaction using a third-party
application, as shown in Step 2. The third-party application’s request is forwarded to
the file management module in Step 3 by the modified file access library of the runtime.
In step 4, the file management module requests the policy/domain handler to provide
the hardware tags to be set for the file. The policy/domain handler validates the
policy associated with the data file taking into consideration the current context (i.e.,
the user/session properties, data properties and system/environment properties), and
generates appropriate hardware tags for the data file.

In Step 5, the file management module requests the hypervisor to create an SDC
for the data file with the corresponding hardware tags. In Step 6, the hypervisor
decrypts the data file, and creates an SDC for the data file associating the appropriate
tags with each word in the SDC. In Step 7, the file handle of the SDC is returned back
to the policy/domain handler and the execution is returned back to the application.

Use. In the Use stage, the DataSafe hardware tags each word of the protected
data in each SDC and persistently tracks and propagates these tags, as shown by Step
8. Once an SDC is set up for a data file, in accordance with the session properties,
any third-party application can operate on the protected data as it would on any
regular machine. The DataSafe hardware will ensure that only those actions that are
in conformance with the data-specific policy are allowed.

Cleanup and Writeback. After the application finishes processing the data,
the DataSafe hypervisor re-packages the protected data and the policy if the data
was modified or appended to, re-encrypts the protected data, removes the associated
tags within the SDC, then deletes the SDC.

5.2.2 Runtime Translation of Expressive Software Policy to
Hardware Tags

The two DataSafe software components, the policy/domain handlers and the hyper-
visor, take a high-level policy specified in a policy model, translate the policy into
the hardware enforceable tags and create an SDC for the protected data, as shown in
Figure 5.4.

DataSafe employs a two step process for the hardware tag generation: (1) a secu-
rity policy is interpreted to determine what high-level actions are permitted (policy
interpreter), and (2) depending on the high-level actions permitted, the appropriate

45

Ch.Wall Domain Context
MLS Domain Context

(Domain Context)
<variable1 = value1>
<variable2 = value2>

…
<variablek = valuek>

Session/User
Properties

Data
Properties

System/Env.
Properties

Policy
Interpreter

Tag
Generator

Action-Tag Mapping
actioni : { tagm , …, tagj }

permitted
high-level

actions

DataSafe
Hardware

Tag
Combination

Policy Rules Format
{action1 , constraint1}

...
{actionn , constraintn}

BLP Policy Rules
Chinese Wall Policy Rules

Figure 5.4: Translation from high-level policies to hardware tags.

hardware tags are chosen (tag generator). DataSafe is designed to be generic, sup-
porting multiple policy languages and policies such as Bell-LaPadula (BLP), Biba,
etc (see Page 49 for their definitions). However, we will not go into the details of the
various policy models and their implementations in this thesis.

A policy is expressed and interpreted in terms of a context, which typically includes
information about user properties, data properties and system properties necessary to
interpret the policy appropriately, in a given domain. For example, a BLP policy will
require the user’s security clearance and the data’s security classification, whereas a
Role-Based Access Control (RBAC) policy will require the user’s role. The context
information is collected and stored in the form of {variable, value} pair. The policy
and the context information are then fed to the policy interpreter, which determines
what high-level actions are permitted by the policy, on the data, under the current
context values. If no high-level action is permitted, then access is denied at this point.
If this set is non-empty, it means that the user has authorized access to the data, but
is expected to use the data only in the manner defined by the permitted action set.
The permitted action set is then used to calculate the hardware tags, and to generate
the SDC for the data.

Policy Model. Our policy model consists of a set of restricted actions
{ra1, ra2, ra3, ..., ran}, where each restricted action includes an action associated
with a constraint, represented by rai = {actioni, constrainti}. The action, is a
high-level action such as “read”, “play”, “view”, etc. The constraint, is a predicate
defined in terms of context variables. A context is defined by a set of variables
{v1, v2, ..., vn}, that represents user, data and system properties. A given constraint
evaluates to either true or false based on the values of the context variables. For a
given restricted action, rai = {actioni, constrainti}, if constrainti evaluates to true,
then actioni is permitted, otherwise it is not permitted. Algorithm 1 describes the
algorithm for calculating the set of restricted actions for a set of DataSafe-protected

46

Algorithm 1: Calculate the restricted actions for a protected data element.
Input: P : Set of protected data; RA: Set of restricted actions
Output: ra[p] : Set of restricted actions for each protected data p ∈ P
foreach p ∈ P do

Set the context v with p;
foreach action ∈ RA do

Query the policy: Is action allowed under context v?;
if no then

ra[p]← ra[p] ∪ action;
end

end
end

data. The context variables can be a arbitrary set of values required by a specific
policy. For example, the name of the caller function, the current date and time or the
current user name could be used as context variables. These context values can be
retrieved from the policy/domain handler itself, from the operating system through
system calls or from the hypervisor through hypercalls.

Permitted Policy-Level Actions to Hardware tags. For every policy, the
semantics of its high-level actions, described within the policy, have a specific in-
terpretation in terms of hardware-level actions. Based on this interpretation, every
high-level action maps to a set of hardware tags. At present, the DataSafe proto-
type supports six hardware tag values, as shown in Column 4 of Table 5.2, but the
architecture can support more tag values. Hardware restriction tags are expressed
in the form of a bit vector, where each bit, when set to 1, corresponds to a type of
restriction. The hardware tags are restrictive, which means that if a particular tag
bit is set, that particular hardware-level action is prohibited. For example, if the tag
bit 0x01 is set for an SDC, the DataSafe Hardware will prevent any application and
the OS from copying that SDC’s data to the display output. On the other hand, if
the policy permits the action “view”, then tag 0x01 should not be set. Hence, for a
given policy interpretation, the set of tags corresponding to the permitted actions are
not set, and the rest of the tags are. The tag generation process is independent of
whether a policy is attached to a particular datum, or it applies system wide to all
data items. Hence, DataSafe can support both mandatory and discretionary access
control policies.

DataSafe hardware tags are divided into three categories: (1) Access, (2) Transient
Output, and (3) Persistent Output tags. Tags in the Access category, which include
write (or edit), append and read, prevent in-line modification, appending or reading of
an SDC, respectively. The tags in the Transient Output category refer to the output
devices where the lifetime of the data ends after the data is consumed by the device,
e.g., the display or the speaker. The Persistent Output category deals with the output
devices where data remain live after being copied to those devices, e.g., network or
disk drives. If an application or a user, after gaining authorized access to protected

47

Table 5.2: The correspondence between policy-prohibited activities and the hardware
tags that restrict that activity.

Actions Category Restriction Tag
Edit Access No write to SDC 0x08
Append Access No append to SDC 0x10
Read Access No read from SDC 0x20
V iew Transient output No copy to display 0x01
SendP laintext Persistent output No copy to network 0x02
SaveP laintext Persistent output No copy to disk 0x04

Algorithm 2: Calculate the tag combination for a given set of restricted actions.
Input: ra[p]: Set of restricted actions for protected data p; T : Set of tags; F :

mapping of restricted actions to tag values
Output: tra[p]: Tag combination representing the set of restricted actions ra[p]

for protected data p
Tinclude = φ;
foreach action ∈ ra[p] do

Tinclude ← Tinclude ∪ F (action);
end
tra[p] ← 0x0;
foreach tags t ∈ Tinclude do

tra[p] ← tra[p] + t;
end

plaintext data, saves the data in plaintext form on a disk drive, or sends the plaintext
over the network, the data’s confidentiality is permanently lost. Most policies don’t
explicitly mention the requirement to prevent such activities, but rather assume that
the authorized user is trusted not to illegally leak the data out. In order to enforce
this critical and implicit assumption, in DataSafe systems, these two tags, No copy to
network and No copy to disk, are always set for all confidentiality-protected data for all
policies, except for policies that have explicit declassification rules. Algorithm 2 shows
the algorithm to calculate the set of hardware tag values for a set of restricted actions
for DataSafe-protected data. The DataSafe prototype uses a mapping function F as
described by Table 5.2 to map the restricted actions to the hardware tag values.

Policy Examples

To get a concrete idea of how the policy translation works, we consider two examples:
(1) a simple data-protection policy for protecting encryption keys such as AES keys
or private keys such as RSA keys (e.g., against the memory search attacks to find
keys, as described in Section 1.1), and (2) a Bell-LaPadula (BLP) policy defined over
a multi-level security (MLS) environment.

48

Table 5.3: A simple key-protection policy.

Context Variables:
caller ∈ {libcrypto, all others}

Action to Tags Map:
read⇒ {No read from SDC}
write⇒ {No write to SDC, No append to SDC}
leak data ⇒ {No copy to display, No copy to disk, No copy to network}

Key-Protection Policy:
ra1 := {action := read, constraint := (caller == libcrypto)},

Use Case:
Actions permitted: {read}
Actions prohibited: {write, leak data}
Tags set: {No write to SDC, No append to SDC, No copy to display, No copy to disk, No
copy to network}

For a key-protection system, it is desirable that the keys can be used but never
seen, either by explicitly displaying the key value, by saving the plaintext key value
on the disk or by sending the plaintext key value out on the network to another
machine. Therefore, a simple key-protection policy may state: “An authorized user
can only use a key value for encryption/decryption purposes and that the plaintext
key value is not allowed to be displayed on the screen, saved on the disk, sent to
the network or changed to another value.” The representation of this policy in our
standard policy model is shown in Table 5.3. For the DataSafe system to recognize
that the request is indeed from an encryption/decryption process, we install a trusted
cryptographic library (libcrypto in the example in Table 5.3) in the system. When
the library is invoked by an application to perform encryption/decryption, it notifies
the domain/policy handler that the application is requesting to access the key for
encryption/decryption purposes. The domain/policy handler can then query the
policy based on the restricted actions and verify the satisfaction of the constraint,
before granting access to the key. Note that an application now has to call the
trusted crypto library for the key access and will not be able to use the protected key
if the application performs its own cryptographic operations. Table 5.3 also shows
an example use case where only the read action is permitted to use a protected
encryption key.

As a second example, we describe how the Bell-LaPadula (BLP) policy can be im-
plemented for a Multi-Level Security (MLS) system. In a MLS system, each user has
a Security Clearance and each data item has a Security Classification. Both properties
range over the ordered set {Top Secret > Secret > Confidential > Unclassified}. The
BLP policy states: “A user at a security clearance x can only read data items with
security classification y such that y ≤ x (no read up), and can write only to data items

49

Table 5.4: The Bell-LaPadula (BLP) policy expressed in DataSafe.

Context Variables:
sec_clear ∈ {Top Secret, Secret, Confidential, Unclassified}
sec_class ∈ {Top Secret, Secret, Confidential, Unclassified}

Action to Tags Map:
read⇒ {No copy to display, No read from SDC}
write⇒ {No write to SDC, No append to SDC}
leak data (implicit)⇒ {No copy to disk, No copy to network}

BLP Policy:
ra1 := {action := read, constraint := sec_class ≤ sec_clear},
ra2 = {action := write, constraint := sec_class ≥ sec_clear}

Use Case 1: sec_clear := Secret, sec_class := Confidential
Actions permitted: {read}
Actions prohibited: {write, leak data}
Tags set: {No write to SDC, No append to SDC, No copy to disk, No copy to network}

Use Case 2: sec_clear := Secret, sec_class := Top Secret
Actions permitted: {write}
Actions prohibited: {read, leak data}
Tags set: {No read from SDC, No copy to display, No copy to disk, No copy to network}

with security classification z such that z ≥ x (no write down)”.1 The representation
of this policy in our standard policy model is shown in Table 5.4.

The context variables sec_clear represents Security Clearance and sec_class rep-
resents Security Classification. BLP has read and write as high-level actions, while
leak data is an implicit action. Each action corresponds to the hardware tags as
shown. The BLP policy is the set of restricted actions {ra1, ra2}, where the con-
straints are expressed over context variables sec_clear and sec_class.

In Use Case 1 of Table 5.4, action read is permitted according to the BLP policy
(no read up), since the subject’s security clearance (Secret) is higher than the object’s
security classification (Confidential) and hence the read tag is not set, while write
and data leakage tags are set, to prevent the object from being modified and leaked
out of the system.

In Use Case 2, the subject is allowed to write to the object (no write down) but
not allowed to read, and hence the write tag is not set, while read and data leakage
tags are set to prevent the object from being read and leaked out of the system.

1A Biba policy states the dual of BLP as follows: “A user at a security clearance x can only read
data items with security classification y such that y ≥ x (no read down), and can write only to data
items with security classification z such that z ≤ x (no write up)”.

50

Table 5.5: Example entries of the active SDC sdc_list software structure.

ID Virtual address Size Tag
id1 vaddr1 size1 0x08

id2 vaddr2 size2 0x1C

5.2.3 Unmodified Applications

In DataSafe, the confidentiality-protection policy is defined for the data and pack-
aged with the data (see Section 5.2.8), not defined by a particular application or its
programmer. In other words, the data’s policy is enforced no matter which applica-
tion is accessing the data; therefore, applications are agnostic of DataSafe’s operation
and do not have to be modified to work with DataSafe. Only the file access library
in the runtime or the interpreter has to be modified to redirect file calls of the ap-
plication to the file management module of the DataSafe Software. Furthermore,
DataSafe-protected data are protected with the SDCs, where the SDCs are defined
at the hardware level, the layer below any software entity.

This is one of the key design features of DataSafe – defining the SDC over the
physical machine memory, instead of the virtual memory. This enables us to achieve
application independence and cross boundary data protection. Applications access
their data through virtual memory. Once an SDC is created in the physical memory,
an application can access the data within the SDC by mapping its virtual mem-
ory to the SDC in the physical memory. This data can be passed among multiple
applications and OS components.

Once the hardware restriction tags are determined for a given data file, DataSafe
associates those tags with the memory region allocated to the file, without having
to change how the application accesses the protected data. Such an association is
achieved by a secure data compartment (SDC). The DataSafe hypervisor is respon-
sible for the creation, maintenance and deletion of SDCs, and maintains a software
SDC list as shown in Table 5.5. An SDC is a logical construct defined over a memory
region that needs to be protected, independent of the application. Every SDC has a
start memory address, a size, and a tag combination specifying its activity-restricting
rules with which the data within the SDC are protected.

For applications to access the DataSafe-protected data in an SDC, we modify the
application file access library to redirect the access requests from the applications to
the policy/domain handler(s), as shown previously in Figure 5.3. The modified file
access library does not have to be trusted. In case the access request is not redirected
by a malicious library for protected data, only encrypted data will be available to the
application, which is a data availability issue instead of a confidentiality breach. We
describe our modified file access library in more detail in Section 5.3.1.

SDCs can be defined at different granularities. DataSafe can define different types
of SDCs over different parts of the data object. For example, different sections of
a document, different tables in a database, or different parts of a medical record

51

need different types of confidentiality protection. Correspondingly, the policy for
the protected file must specify the offset of the different parts with their respective
policies, such that the policy/domain handler can request the hypervisor for different
SDCs for the different parts of a file.

5.2.4 Protecting the Hypervisor and Its Storage

In addition to assuming that the hypervisor is launched with boot-time integrity
protection, the trusted hypervisor is also supplied with persistent secure storage,
enabled by four registers inside the processor in Figure 5.5. This persistent secure
storage is an encrypted and hashed area of non-volatile storage where the hypervisor
can keep software “registers” and other security-critical information such as the public-
private key pairs and certificates for the domain(s) it belongs to. These four registers,
modeled after Bastion’s hypervisor protection [25], ensure that no other software,
including a malicious hypervisor, can access a given hypervisor’s persistent secure
storage.

The hv_id (hypervisor identity) register contains the hash of the hypervisor calcu-
lated at bootup time, and identifies the loaded hypervisor. The hv_id register is only
written by the processor when invoked through dynamic secure bringup instructions,
such as the secure_launch in the Bastion architecture [25], Intel SENTER instruction
or the AMD SKINIT instruction used to bring up TrustVisor [66].

The hypervisor’s persistent secure storage is cryptographically secured by three
non-volatile registers: its confidentiality is protected by encryption with a key stored
in the pss_key register, and its integrity by a hash tree with the root secured in the
pss_hash (persistent secure storage hash) register. The identity of the hypervisor
that created this persistent secure storage is kept in the pss_owner (persistent secure
storage owner) register. This hypervisor storage is persistent in that it survives power
on-off cycles.

Upon a subsequent bootup of a potentially malicious hypervisor, the identity of
this hypervisor is calculated and stored in the hv_id register. In order to access any
previously stored hypervisor storage, this new hv_id value must be equal to that in
the pss_owner register. This ensures that the pss_key and pss_hash registers are
only unlocked by the hardware when the loaded hypervisor is the rightful owner of the
persistent secure storage. The hypervisor can then verify the integrity of the secure
storage by verifying pss_hash and then use pss_key to decrypt its secure storage.

For protecting the dynamic execution of the trusted hypervisor, several existing
memory integrity protection techniques exist [24, 42, 46, 79] and they can be ap-
plied together with DataSafe to ensure a secure runtime environment for the trusted
hypervisor. Furthermore, the trusted hypervisor can be employed to protect the pol-
icy/domain handler, similar to a Bastion-protected software module [23, 25]. Note
that the policy/domain handler is not application-specific like the Trusted Software
Module presented in Chapter 4, where the policy is only enforced for a particular
application accessing protected data, but rather the policy/domain handler enforces
the policy regardless of which application is accessing DataSafe-protected data.

52

Crypto
Engine

L1 I Cache
w/ Tags

L2 Cache
w/ Tags

L1 D
Cache w/

Tags

Processor
Core

hv_id

Memory

pss_owner

pss_key

pss_hash

Memory
Map

Output
Control

Tag
Prop.

Hypervisor secure
launch

Hypervisor secure
storage

Reg.
w/ Tags

Shadow
Memory

Figure 5.5: The DataSafe hardware components (gray).

5.2.5 Continuous Runtime Data Tracking

In order to provide continuous runtime protection for the protected data within an
SDC while the application is executing, we use hardware mechanisms to track each
word of the protected data throughout the execution of the untrusted application.
DataSafe extends each 64-bit data word storage location with a k-bit SDC ID and a
j-bit tag. The shadow memory shown in Figure 5.5 is a portion of the main memory
set aside for storing the tags. It is a part of the hypervisor secure storage, which the
DataSafe hardware protects and only allows the hypervisor to access. The hardware
tag is set by the hypervisor when an SDC is requested to be set up by the policy
handler. Note that only the hypervisor has read/write access to the shadow memory
for adding and deleting the tags for the SDCs.

To track and monitor where the protected data resides in the system, we propagate
the tags along with the data from within the SDC as it goes outside the SDC to
other parts of memory. First, the hardware tag bits are propagated from the shadow
memory to the last level on-chip cache, when a cache line is brought from the main
memory due to a cache miss. The same tag bits are copied throughout the cache
hierarchy, i.e., up to the level-1 data cache. The general purpose registers in the
processor are also extended with the ability to propagate the tag bits. On memory
load instructions, the tag bits are copied from the level-1 data cache to the destination
register.

Each instruction executed in the processor performs tag propagation operations
along with its arithmetic or other operations. This way the hardware restriction tags
can track sensitive data even if the data has been transformed or encoded by the ap-
plication. We use the principles of existing information flow tracking techniques [33],
where the source tag bits are propagated to the destination register as long as the
source register has a nonzero tag bit. In the case where both of the source registers
have nonzero tag bits, we take the union of the two tag bits to give the destination
register a more stringent policy2. For load instructions, the union of the tag of the
source address register and the tag of the source memory data is propagated to the

2Special cases such as zeroing a register (e.g., “xor %eax, %eax” on x86) are treated differently.
For example, the destination tag is cleared in this example.

53

tag of the destination register. For store instructions, the union of the tag of the
source data register and the tag of the source address register is propagated to the
tag of the destination memory address. Thus, the tag propagations for load and
store instructions account for the index tag for table lookups. For integer arithmetic
and multiply and divide instructions, the tag is a combination of the tag of the first
source register, the tag of the second source register, the tag of the condition code
register3 and the tag of other registers if necessary, e.g., the y register4 for the SPARC
architecture. The tag of the condition code register is also updated if the instruction
has these side-effects. The detailed descriptions for each instruction type and the
propagation rules used by DataSafe are given later in Chapter 6 in Table 6.1.

If both of the source registers are tagged with the same SDC ID, the destination
register is also tagged with this SDC ID. If they are not from the same SDC, we assign
a reserved ID tag of 2k − 1. Since the resultant data does not belong to either of the
two source SDCs, the SDC IDs are not combined; rather a special tag is substituted
to indicate that this is an intermediate result. These intermediate results are cleared
up with zeroes by the hypervisor when there is no active SDC in the system, e.g.,
when the user logs out of a session. For the tags of the data within an SDC, the
hypervisor clears those tags when the SDC is deleted; whereas for the tagged data
that propagates outside of SDC regions, the hypervisor zeroes those data locations in
the background after the particular SDC is deleted.

The tag propagation rules described above handle explicit information flow from
the data within an SDC, where the destination operands receive direct information
from the source operands. There are also cases where the destination operand receives
information from the source operand(s) through a third medium, e.g., the integer
condition code or branch instructions. This kind of information flow is implicit but
can be exploited to leak information. A vanilla dynamic information flow tracking
system without considering such information flow would lead to false-negatives since
information could be leaked without being tagged. However, a naive approach that
tags any instruction that is dependent on the branch condition’s tag may lead to an
impractically large amount of false-positives [16, 55]. Such implicit information flows
are discussed in more detail in Chapter 6.

5.2.6 Hardware Output Control

DataSafe hardware checks to see whether copying the data to another memory loca-
tion or output device is allowed, or whether writing to memory locations within the
SDC is allowed, according to the hardware tags. In particular, hardware checks if a
memory location to be written to is a memory-mapped output device, and enforces
output control according to the tag of the word being written.

We introduce a new hardware structure inside the processor: the output memory
map, mem_map. The mem_map is only accessible to the trusted hypervisor. It stores

3To avoid being overly conservative, one could implement one tag for each bit in the condition
code register, e.g., one tag for the zero flag and another tag for the overflow flag.

4The y register is used for storing the upper 32-bit result in multiplication and the remainder in
division in SPARC architectures.

54

Table 5.6: Example entries of the output memory map mem_map hardware structure.

Start addr End addr Mask
addr1 addr2 (display) 0x01
addr3 addr4 (network) 0x02
addr5 addr6 (disk) 0x04

memory-mapped I/O regions and I/O ports to enable the hardware to know if a
memory store instruction is attempting to perform output. It is checked on the
destination address of memory store instructions, or any other instructions that write
to an output device (e.g., in and out instructions in x86 architecture), to see if there
is a violation of the output policy specified in the tag associated with the data to be
written.

Table 5.6 shows example entries in the mem_map hardware structure. The de-
vice mask is a bit mask which indicates its functionality e.g., display, speaker, USB
storage, NIC, etc. Two devices having the same functionality would have the same
mask value. In our DataSafe prototype, the mask is designed to match the activity-
restricting bits in the hardware tags (Table 5.2). Therefore, the hardware output
control unit performs an xor of the tag value from the data with the mask read out
from the mem_map. A non-zero result indicates an output violation, whereas a zero
result indicates that the value is allowed to be sent to the output device.

5.2.7 System Issues

DataSafe’s tag propagation is performed by the hardware logic on the physical mem-
ory; therefore the propagation mechanism is not changed when the protected data is
passed between applications, OS components or device drivers.

Direct Memory Access (DMA) data transfers do not need to include the hardware
activity-restricting tags, which are runtime tags only and are not stored in persistent
storage or transmitted on a network. DataSafe treats DMA regions as output device
regions and performs output control to prevent protected data (based on their hard-
ware tags) from being written to these DMA regions. The DataSafe hypervisor also
prevents SDCs from being created over allocated DMA regions (and vice versa) so
that data in SDCs cannot be over-written by DMA input transfers.

The technique of checking load and store instructions for input/output violations
and policy enforcement is suitable for memory-mapped I/O architecture, which is the
only mechanism for the SPARC chip family since it treats accesses to the I/O space
the same as it treats accesses to the memory space [72]. In other words, the com-
munication with the I/O device registers is accomplished through memory; therefore,
checking load/store instructions is enough for the SPARC architecture.

Unlike SPARC architectures, the x86 family permits direct data transfer to and
from I/O ports in addition to the main memory [52]. The x86 platform uses a set
of I/O instructions to access the I/O address space, in particular the family of in

55

m︷ ︸︸ ︷
m′︷ ︸︸ ︷ OriginatorSignature︷ ︸︸ ︷

{KFE}DM EKFE
(Data) Policy [hash(m′)]HVPri

A→ B : m,CertA
B → DM : {KFE}DM

DM → B : {KFE}HV _B

Figure 5.6: Encrypted DataSafe package for storage and for transmission between
machines: the originator (A), the receiver (B) and the domain manager (DM), with
respective DataSafe hypervisors on A and B denoted as HV_A and HV_B. [x]HV

denotes a private key signature or decryption operation by HV , while {x} denotes a
public-key verification or encryption operation. CertA denotes the public key certifi-
cate of A that is signed by the domain manager.

and out instructions. The x86 platform can also use memory-mapped I/O where the
access is handled with the processor’s general-purpose move and string instructions.
Our hardware enforcement of output control for Secure Data Compartments can be
achieved by including the checking on the I/O instructions. Alternatively, the output
checking can be performed at the processor boundary by incorporating the output
control unit in the memory controller.

5.2.8 Encrypted Data Package and Key Management

A piece of data can be turned into a piece of DataSafe-protected data on any comput-
ing device within a domain that is enabled with DataSafe support. The data owner
specifies the confidentiality policy for the data. We describe one implementation of
key management for a domain, e.g., a hospital; many other implementations are pos-
sible. The format of a piece of DataSafe-protected data is shown in Figure 5.6. To
create DataSafe-protected data that binds the owner-specified policy to the data, the
hypervisor first generates a new symmetric key KFE, called the file encryption key,
and uses KFE to encrypt the data. Each protected data file has its own random file
encryption key. KFE is then encrypted by the domain manager’s public encryption
key, KDM . A domain manager is the administrator or authority that manages the
computing devices within a domain and it could be installed on any DataSafe ma-
chine. The trusted DataSafe hypervisor then calculates a cryptographic hash over
the encrypted KFE, the encrypted data and the owner-specified policy and signs the
hash using the its private signing key, HVPri, as the Originator Signature.

Transfer. Once a DataSafe self-protecting data package is created, it can be
moved to any DataSafe enabled computing device within the domain for use. In a
non DataSafe-enabled machine, only encrypted data can be accessed.

Unpacking. When an authorized recipient receives a piece of DataSafe-protected
data and accesses it with an application, the policy/domain handler validates the

56

data and the policy, and retrieves the file encryption key KFE. Validation of the
data and the policy is done by verifying that the originator signature was signed by a
trusted hypervisor within the domain. A hash is re-calculated and compared with the
decrypted hash in the signature, to ensure that the data, the policy and the encrypted
file encryption key have not been tampered with.

Since the file encryption key KFE is encrypted with the domain manager’s public
encryption key, the policy/domain handler follows a secure protocol to retrieve the
file encryption key. The domain manager ensures that the requesting hypervisor is
not on the revocation list; otherwise the request is denied.

In DataSafe, public-key crypto is used for system identification and non-
repudiation to protect smaller-size items such as the KFE, and efficient symmetric-
key crypto is used for protecting the larger data content. Since the KFE is encrypted,
it is stored on the user’s machine in the normal unsecured storage, whereas the
hypervisor’s private signing key, HVSign, and the domain manager’s secret decryption
key are stored in their respective DataSafe machine’s hypervisor secure storage (see
Figure 5.3 and Section 5.2.4 for descriptions of the hypervisor secure storage). Note
that since the KFE is encrypted using the domain manager’s public encryption key,
no key exchange between different DataSafe systems is required. Only individual
communication between each DataSafe machine and the domain manager is needed
(Figure 5.6).

To prevent the domain manager from becoming a bottleneck or a single point of
failure, multiple or backup key management servers can be installed on other DataSafe
machines to provide enhanced data availability.

Redistribution and Declassification. An authorized user can access the
DataSafe protected material in plaintext, and also pass on the original DataSafe
encrypted package (signed by the originator) to another machine. If he transforms
the protected data and wants to pass this modified data to another machine, he has
to re-package it (as described for packaging above) and sign with his own trusted
hypervisor’s private key.

Some data items may get declassified to be used on non-DataSafe devices. De-
classification is done by the Domain/Policy Handler while the data is not in use
(not loaded into memory in SDCs) by any application, and thus precludes the need
to un-tag the data. This allows for authorized declassification by trusted software
components – by decrypting the data, and dissociating any policy associated with it.
Once declassified, such data can be treated as data that can be used on any device.

5.3 Implementation

5.3.1 DataSafe Software

Policy Handler

The policy/domain handler is primarily responsible for hardware tag generation from
the high-level policy. It is also responsible for setting up the context, which includes
maintaining the values for user properties, data properties, and system/environment

57

Listing 5.1: The structure of a sample policy in XML.

<?xml version ="1.0" encoding ="utf -8"?>
<permissions >

<activity num = "1" activity = "view">
<entity -restrictions type = "Subject">

<restriction property ="Role" function ="=="> PrimaryPhysician </
restriction >

</entity -restrictions >
<entity -restrictions type = "Environment">

<restriction property =" Location" function ="=="> Hospital </
restriction >

<restriction property =" Network" function ="=="> Medical </
restriction >

<restriction property ="Date" function =" Between
" >01/31/2011 ,12/31/2011 </ restriction >

</entity -restrictions >
<entity -restrictions type = "Resource">

<restriction property ="Part" function =" include">Immunizations
,Medications </ restriction >

</entity -restrictions >
</activity >
<activity num = "1" activity = "view">

<entity -restrictions type = "Subject">
<restriction property ="Role" function ="=="> Pharmacist </

restriction >
</entity -restrictions >
<entity -restrictions type = "Environment">

<restriction property =" Location" function ="==">Store </
restriction >

</entity -restrictions >
<entity -restrictions type = "Resource">

<restriction property ="Part" function =" include">Medications </
restriction >

</entity -restrictions >
</activity >

</permissions >
<?xml version ="1.0" encoding ="utf -8"?>

properties. Since both these responsibilities are specific to a particular information
domain, we have a separate policy/domain handler for each domain. At present, we
have implemented a policy/domain handler for Multi-level Security systems that sup-
ports a simple key protection policy, BLP confidentiality and Biba integrity policies
and one for medical information systems. In all policy/domain handlers, policies are
represented in the standard policy model using the XML format.

Listing 5.1 shows an example medical policy expressed in the XML format. This
example policy states the following: the primay physician can view the immunization
and medications records in the hospital using the medical network between 1/31/2011

58

Table 5.7: The policy/domain handler API.

API Call Description

open_file Open an existing DataSafe protected file.

close_file Close an open DataSafe protected file.

read_file Read from an open DataSafe protected file.

write_file Write to an open DataSafe protected file.

and 12/31/2011. The pharmacist can view the medications record in the pharmacy
store.

New policies can be specified in XML and interpreted directly by the policy inter-
preter. Each policy/domain handler maintains a separate database for storing user
and data properties. All policy handlers share a common policy interpreter, which is
possible since all policies are represented in a standard form.

File Management Module

For the prototype implementation, DataSafe software has a separate file management
module that provides a file management API for accessing DataSafe-protected files
and provides file handling functions, as shown in Table 5.7. This set of APIs repre-
sents the minimal set of functions that need to be redirected to DataSafe software.
Other file access functions with different access granularities, such as the readline()
function that reads a line from the file in Ruby or the fgetc() function that reads
a character from a file in C, would also have to be included in the API to provide
seamless protected-data access for an unmodified application. We list the total file
access APIs that need to be included in the redirection for the C and ruby languages
in Appendix A. Note again that accessing a DataSafe-protected data through an
unsupported API function would simply return the encrypted data and no confiden-
tiality policy would be violated. The file management module loads the encrypted file
into the memory, and forwards the file access request to the policy/domain handler,
which translates the policy associated with the file into hardware tags, and requests
the hypervisor to set up SDCs for the file. Currently, the file management module
supports file handling functions for Ruby and C-based applications. We first describe
the Ruby implementation and then the C implementation.

We have modified the Ruby Interpreter to redirect file handling calls to the file
management module. This file management module provides a file handle to the Ruby
Interpreter, which it subsequently uses for file operations. If an application attempts
to obtain untagged data by bypassing the redirection of file calls, it only ends up
getting encrypted content. We show the file access redirection flow in Figure 5.7.
When an application requests to access a file, the modified Ruby interpreter will first
determine if the file is a DataSafe-protected file. If not, then the normal file open()

59

app. open()

interpreter
if

DataSafe
normal
open()N

return

verify
policy

Y

open
file

mmap

create
SDC

policy
handler

Figure 5.7: The file access redirection performed by DataSafe’s file management mod-
ule in the Ruby language.

function is called and no redirection is needed. If yes, then the policy handler is
invoked to verify and consult the policy, open the protected file, allocate the memory
space for the file (mmap), and then finally invoke the hypervisor to create the SDC if
the access is allowed. Since the current prototype implementation does not include
all of the file access-related functionalities provided by the Ruby interpreter, the file
management module calls the normal file open() after the above steps are done by
the policy handler.

A corresponding file management module for the C language is also implemented
in DataSafe. However, unlike the Ruby language where the interpreter has to be
modified to perform the file access redirection, we design a new dynamically loaded
“shim” that interposes between the C application and the C library (libc) to perform
the file access redirection, without having to deal with the intricate interdependen-
cies of the C library. Figure 5.8 shows the high-level block diagram of our C shim
implementation. Our C shim basically is a dynamically loaded library that is loaded
before any other library (e.g., libc) is loaded, such that DataSafe intercepts the four
basic libc functions for accessing a file – fopen, fread, fwrite and fclose. Similar
to the flow of redirection in the modified Ruby interpreter (Figure 5.7), the C shim
checks if the requested file is a DataSafe-protected file and redirects the access request
to the policy/domain handler for policy evaluation and SDC creation, if the access is
granted.

60

APP	
 APP	

OS	

libc	

File	

management	

module	

Policy	

handler	

Policy	

handler	

Shim	
 +	
 C	
 mmap	

Figure 5.8: The C shim implementation for the DataSafe file access redirection.

Hypervisor

The hypervisor is responsible for the instantiations of SDCs, the management of
domain-specific secret keys and the provision of environment properties for context
generation. To manage the SDCs, the hypervisor keeps a software structure, called the
active SDC list, sdc_list, which stores a list of active SDCs for all policy handlers.

Table 5.8 shows the new hypercalls introduced to support the SDCs: sdc_add,
sdc_del and sdc_extend. Hypercalls for context generations and others are omitted.
The sdc_add hypercall is called when the policy/domain handler requests a new
SDC. The sdc_del is called later to delete an SDC. The sdc_extend is used when
the high-level policy allows for appending to the protected data, where the size of
a SDC is adjusted to include appended data. When the hypervisor receives the
sdc_add hypercall with a virtual address and size of the requested SDC, the hypervisor
walks the guest page table and the shadow page table to determine the corresponding
physical page(s) that consist of the SDC. Multiple SDC entries are created with the
same SDC ID if the virtual address range spans across physical memory ranges that
are not contiguous.

5.3.2 DataSafe Prototype

Our prototype implementation builds upon the open source processor and cache hard-
ware and the hypervisor in the OpenSPARC platform. The current prototype is im-
plemented in the Legion simulator of the OpenSPARC platform. This simulates an
industrial-grade OpenSPARC T1 Niagara processor with 256 MB of memory, running
the UltraSPARC Hypervisor with Ubuntu 7.10. We utilize the load_from/store_to
alternate address space (ldxa and stxa) instructions in the SPARC architecture to

61

Table 5.8: The new hypercalls exported by the DataSafe hypervisor.

Semantic Description

sdc_add(addr, size) Adds a new SDC protecting policy-encoded data start-
ing at virtual address addr with size size

sdc_del(sdcid) Deletes an existing SDC with ID = sdcid

sdc_extend(sdcid, size) Extends an existing SDC with ID = sdcid, with con-
tents of size size

access our new hardware structure, mem_map, at the same time limiting the access to
only hyperprivileged software.

The open source hypervisor in the OpenSPARC platform is modified and extended
with the functionality to support secure data compartments (SDCs). Our new hy-
percall routines are implemented in SPARC assembly and the SDC-specific functions
are implemented using the C language. The policy/domain handler is implemented
in the Ruby language and the policies are expressed in XML format.

5.4 Analysis
This section evaluates the security, performance and cost of the DataSafe architecture.

5.4.1 Security Tests

We tested our prototype with several experiments.

Application Independence

We tested DataSafe’s capability to support unmodified third party applications, using
three applications, Ruco, Grepper and HikiDoc, downloaded from RubyForge [11].
All three are Ruby-based applications. Ruco is a lightweight text editor, Grepper
provides the same functions as the “grep” command-line utility for searching plain-
text data sets for lines matching a regular expression, and HikiDoc reads text files and
converts them to HTML documents. We were able to run all the three applications
on DataSafe, unmodified. Table 5.9 summarized our security testing results.

The experiments with the Ruco editor include basic read/display and write con-
trol. In addition we modified Ruco to test illegal saving of plaintext on the disk,
either with or without data transformation. A similar set of experiments were carried
out with the Grepper application. In addition, with Grepper we tested fine-grained
tracking by creating SDCs with different tags and sizes over different parts of a file –
DataSafe could successfully track the data and enforce fine-grained output control of
sensitive data.

62

Table 5.9: A summary of experimental results for the security testing of DataSafe.

Test Case Attacks Result

Application Independence

1 Editor (Ruco) read, write, output ctrl., transformation 3

2 Search (Grepper) read, write, output ctrl., transformation,
fine-grained control

3

3 Text Transformation (HikiDoc) password leak (allow read but no display) 3

With HikiDoc we tested a scenario for authorized read but prohibited display.
In this scenario, simulating "password leak" attacks, the HikiDoc application takes
two files as input: 1) text file (to be converted to HTML), and 2) a file containing
passwords for user authentication. The program is supposed to read the password
file for authentication, but not leak the password out. We inserted a malicious piece
of code in the application which transforms the password into a code, and then
distributes the code at predefined locations in the HTML file. The attacker can
then retrieve the code parts from the HTML file, assemble the code, and reverse the
transformations to get the original password. DataSafe could track the transformed
pieces of a password and prevent their display.

In all these applications, the data read from the file is passed through different
Ruby libraries, the Ruby Interpreter, and the operating system, before being dis-
played. In addition, the data is processed in different formats before being output
in a presentable form. Tests on these applications show that DataSafe is application
independent, can continuously track protected data after multiple transformations
and can do this across multiple applications in the user space, and across the user-OS
divide.

Continuous Data Tracking and Output Control

Apart from testing policy support and application independence, the experiments
above also test the capability of DataSafe to enforce SDCs and hardware activity
restricting tags. This includes the capability to track protected data in a fine grained
manner across applications and OS, and to enforce output control only on that data
which is tagged with such a restriction. The insight we derived from the above tests
is that a more comprehensive, yet quick, coverage can perhaps be achieved by just a
small set of synthetic test cases which represent different classes of attacks that can
leak protected data, as shown in Table 5.10. In each test case, programs were run on
the DataSafe machine (DS column), and on an existing non-DataSafe machine (nDS
column). For each test case, the sensitive data files were protected by a policy to
prohibit the test case scenario.

63

Table 5.10: Synthetic test suite for illegal secondary dissemination and transformation
tested for DataSafe (DS) and non-DataSafe (nDS) machines. “F” represents a file,
and “P” represents a program. “7” means attack failed (good), and “3” means attack
succeeded (bad).

Test Case DS nDS

Output Control

1 edit [F1, P1] 7 3

2 append[F1, P1] 7 3

3 read[F1, P1] ; save[F1, P1] 7 3

4 read[F1, P1] ; send[F1, P1] 7 3

5 read[F1, P1] ; display[F1, P1] 7 3

Transformations

6 read[F1, P1] ; transform[F1, P1] ; save[F1, P1] 7 3

7 read[F1, P1] ; transform[F1, P1] ; send[F1, P1] 7 3

8 read[F1, P1] ; transform[F1, P1] ; display[F1, P1] 7 3

Cross-Program

9 read[F1, P1] | save[F2, P2] 7 3

10 read[F1, P1] | send[F2, P2] 7 3

11 read[F1, P1] | display[F2, P2] 7 3

Transformations and Cross Program

12 read[F1, P1] ; transform[F1, P1] | save[F2, P2] 7 3

13 read[F1, P1] ; transform[F1, P1] | send[F2, P2] 7 3

14 read[F1, P1] ; transform[F1, P1] | display[F2, P2] 7 3

15 Fine-grained Transformation and Tracking 7 3

Test cases 1-5 of Table 5.10 test the access type and output control capabilities of
DataSafe based on output port types. In these cases, SDCs were created to prevent
edit, append, save, send over the network, and display. Test cases 6-8 represent data
transformation attacks by a single program. In these cases, a test program reads and
transforms the data multiple times, and then tries to send the data out on one of
the output ports (i.e. disk, network and display). Test cases 9-11 represent cross
program attacks, where data is read by Program 1 (P1) and passed on to Program 2
(P2) which carries out the attack. Test cases 12-14 represent transformation and cross
program combined attacks. In these test cases, data is read by Program 1(P1) and
transformed multiple times, and then the transformed data is sent to Program 2 (P2),
which carries out the attack. In test case 15, different parts of a file were protected by

64

Table 5.11: Performance costs of the C-shim DataSafe software operations vs. non-
DataSafe (in cycles on the Legion simulator).

Operation non-DataSafe DataSafe

open 117,521.4 341,109.8

add_sdc N/A 10,177

read 9,016,594 2,847,026

write 2,847,026 1,659,347

delete_sdc N/A 3,976

close 22,076.4 278,525

SDCs with different protection tags. DataSafe was able to prevent different attacks
targeting each of these protected segments. In all the test cases, the attack succeeded
in the existing machine (nDS), but DataSafe (DS) was successful in defeating the
attack.

5.4.2 Performance and Cost

Since DataSafe is a software-hardware architectural solution, its advantages come at
the cost of changes in both hardware and software. These costs are in two distinct
phases: 1) the Setup (and Termination), carried out by DataSafe software, incurs
performance costs in the redirection of file calls and setting up of SDCs, and 2) the
Operation phase, carried out by DataSafe hardware, incurs performance costs due to
information flow tracking and output control. We analyze the cost of these changes
separately, and then discuss the end-to-end cost of running third party applications.

Software Performance

Table 5.11 shows the costs incurred for file operations open, add_sdc, read, write,
delete_sdc and close, for the C-shim version of file redirection. The overhead of open
is due to file access redirection and the setting up of memory mapped regions which
does not take place in non-DataSafe machines. The cost of adding and deleting SDCs
on DataSafe is small compared to the other operations. These performance costs are
the same for any file size.

In contrast, we actually achieve better performance during the Operation phase
for read and write operations in DataSafe because of the use of memory mapped file
operations. These performance gains are directly proportional to the file size (shown
for reading or writing a 2.5MB file in Table 5.11). Hence, as the file size increases,
the performance costs of open and close5 get amortized leading to better results.

5For close, DataSafe software needs to delete the SDC, remove the tags and tear down the
memory-mapped file, resulting in a 10X performance cost for this single operation.

65

Table 5.12: Performance cost (in seconds) of running Hikidoc application on increas-
ing file sizes.

App 0.5 MB 2.5 MB

non-DS DS non-DS DS

Hikidoc 0.53 0.67 (26.42%) 3.49 3.68 (5.44%)

Instruction Fetch

& Decode

Register

File

Store

Buffers

L1

D-Cache
L2

Register

File

Tags

Output

Control

L1

Tag

Cache

Store

Buffer

Tags
L2

Tag

Cache

ALU
Shifter Multiplier

L1

I-Cache

Tag

Op

0

Violation?

Figure 5.9: One possible implementation of the DataSafe information flow tracking
processor architecture. White boxes are existing components while grey boxes are
new.

This is verified by the total application execution times of different file sizes, shown
in Table 5.12. As the file size increases, the relative performance cost of DataSafe
decreases. For a reasonable file size of 2.5MB, the performance cost of DataSafe is
only about 5%.

Hardware Performance

We now evaluate the hardware performance overhead during the Operation phase.
The hardware tags can be added to the existing processor datapaths by extending
the widths of the registers, buses and caches (as shown in Figure 5.5). Alternately, as
shown in Figure 5.9, they can be a separate and parallel “tag datapath”. This clearly
shows that the tag propagation logic is done in parallel with the instruction execution,
hence the hardware tag propagation does not incur runtime overhead, as also found
in [34]. Comparing the hardware parallel tag datapath to the parallel execution of the
software DIFT system [70], which utilizes one main application thread and one helper
tag thread to process the tags, and incurs around 1.5X runtime overhead when running
on a multicore system, the hardware tag provides some performance advantages that

66

Start address End address Mask

>= <

Store

address
Policy

tag

Hit

Violation

Figure 5.10: The DataSafe output control hardware component.

can be attributed to the following: (1) inter-core communication is needed for the
software parallel DIFT system to communicate the appropriate flag values, and a
hardware FIFO is added to [70] to speed up this communication bottleneck. On the
other hand, the hardware parallel tag datapath is more tightly coupled, removing the
need for this communication overhead. (2) The main application thread needs to be
interrupted by the helper tag thread in the software parallel DIFT system, whereas
the hardware tag datapath can produce the interrupts when violations occur, leading
to a more precise interrupt and without the need for potential rollback of the system
states.

Since all tag propagation operations can be done in parallel, the only source of
hardware runtime overhead involves the output checking of memory store instructions.
However, memory stores are not on the critical path, as opposed to memory loads,
and normally stores are delayed waiting in the store buffer queue for an unused cache
access cycle. Hence, the output checking can be performed while the memory store
instruction sits in the store buffer.

Output control involves checking against the mem_map structure, similar to the
operation of a victim buffer [54] or a small fully associative cache, with a different
comparator design. The comparator for a victim buffer is testing for equality, whereas
we test for inequality, as shown in Figure 5.10. Table 5.13 details our synthesis
results to compare the cost and the access delay for the two types of comparator
design, showing that they have comparable performance. This is expected since the
logic designs for the two types of comparators share most of the logic gates for a
magnitude comparator. A typical logic design for a 4-bit magnitude comparator [82]
is shown in Figure 5.11. The comparator compares the relative magnitudes of two
binary numbers, starting from the most significant bits. To achieve the inequality
comparison of the start address (>=) for the output control, the design in Figure 5.11
would need an extra OR gate for the bottom two output signals, A > B and A = B to

67

Table 5.13: Comparing the cost and critical path delay of an equality comparator and
an inequality comparator. The actual cost for mem_map would require two inequality
comparators. Look Up Table (LUT) is the resource used to implement logic on an
FPGA.

Total LUTs MUX Path delay

Equality comparator 14 14 5.707ns

Inequality comparator 40 20 5.588ns

A4

B4

A3

B3

A2

B2

A1

B1

A = B

A < B

A > B

Figure 5.11: A typical logic design for a 4-bit magnitude comparator (from [82]).

get A >= B. However, this extra OR gate can be avoided by using the (start address -
1) as the start address. The difference in timing between the equality and inequality
comparator becomes a single stage delay for an OR gate, albeit in the expense of 8
extra gates. Overall, the net effect of performing output checking on store instructions
is equivalent to adding a one cycle delay for store instructions waiting in the store
buffer queue. Hence, the output checking has no discernible impact on the overall
processor bandwidth (in Instructions executed Per Cycle, IPC).

Storage Overhead and Complexity

The software complexity of DataSafe amounts to a total of 50% increase in the hy-
pervisor code base, about half of which was for a suite of encryption/decryption
routines for both asymmetric and symmetric crypto and cryptographic hashing algo-

68

Table 5.14: The complexity of DataSafe’s software and hardware modules in terms
of source lines of code (SLOC).

Ruby C

Policy/Domain handler 1197 207

Software SPARC Assembly C

Base hypervisor 37874 35066

DataSafe hypervisor 41657 51959

Crypto 0 16045

Hardware SPARC Assembly C

Base OpenSPARC 1050 51395

DataSafe hardware 0 3317

rithms (Table 5.14). Each sdc_list entry takes up about 26 bytes of memory space,
considering a full 64-bit address space. The total storage overhead incurred by the
sdc_list varies according to the number of entries in the sdc_list. In our prototype
implementation 20 entries are typically used, amounting to around half a kilobyte of
storage overhead.

For the DataSafe hardware, the main cost comes from the cache and memory over-
head for storing the tags. For a 10-bit tag per 64-bit word used in our prototype, the
storage overhead is 15.6% for the shadow memory, on-chip caches and the register file.
Existing techniques for more efficient tag management [89] can be applied to reduce
storage overhead. The tag storage includes 4 of the 6 new (grey) CPU components
in Figure 5.9. Of the remaining 2 blocks, the Output Control block has already been
described, and the Tag Operation block will be described in further detail in the next
chapter.

5.5 Summary
We presented the DataSafe architecture for realizing the concept of self-protecting
data. DataSafe enables owners of sensitive data to define a security policy for their
encrypted data, then allow authorized users and third-party applications to decrypt
and use this data, with the assurance that the data’s confidentiality policy will be
enforced and plaintext data will be prevented from leaking out of these authorized use
sessions. Data is protected even if transformed and obfuscated, across applications
and user-system transitions. Data is also protected when at-rest or in-transit by
encrypted, policy-attached, DataSafe packages.

DataSafe hardware uses our enhanced dynamic information flow tracking (DIFT)
mechanisms to persistently track and propagate data in-use, and to perform nonby-

69

passable output control to prevent leaking of confidential data. Because this is done
in hardware, performance overhead is minimal. However, unlike previous hardware
DIFT solutions, DataSafe’s key novelty is in seamlessly supporting flexible security
policies expressed in software, bridging the semantic gap between software flexibility
and efficient hardware-enforced policies. DataSafe is also application independent,
thus supporting both legacy and new but unvetted applications. This is often a prac-
tical necessity, since users have no means to modify third-party program executables.
More importantly, DataSafe provides the separation of data protection from applica-
tions, which we feel is the right architectural abstraction.

Self-protecting data, with unmodified legacy applications, may seem an unreach-
able goal, but we hope to have shown that it may be possible if we are willing to
consider new hardware enhancements with a small trusted software base. We hope
that DataSafe provides the architectural foundation over which multi-domain, multi-
policy, end-to-end self-protecting data solutions can be further researched for dis-
tributed systems.

70

Chapter 6

Practical Information Flow Tracking

From Chapter 5, we see the importance of tracking data after an untrusted applica-
tion is granted access to the sensitive data. We go into the details of how this can
be achieved in this chapter. We use a technique called Information Flow Tracking
(IFT), where we first show the different ways information can flow within a system.
We propose a taxonomy of various information flows that can occur while a program
is executing and discuss the practical issues of a particular kind of IFT called Dy-
namic Information Flow Tracking (DIFT), on which we base our solutions. Then,
we present the prior work using this technique. Finally, our two different approaches
to address the issues of DIFT are described and we show experimental results that
demonstrate the practicality of our proposed information flow tracking systems and
how information flow tracking can help prevent information leakage and protect data
confidentiality.

In summary, this chapter makes the following contributions:
• a taxonomy of information flow in computer systems,
• analyzing and proposing different hardware solutions for solving the implicit

information flow problem, especially reducing false positives,
• practical hybrid solutions using binary code analysis to inform hardware DIFT

schemes, providing strong security (no false-negatives) and usability (low false-
positives) guarantees, and

• practical hardware-only solution that uses register save and restore mechanism
to prevent unnecessary propagation of tags between application and the oper-
ating system space to reduce false positives.

6.1 Background of Information Flow Tracking
Digital information (or data1) is an important asset, e.g., a person’s social security
number or medical record. On the other hand, the information can also be used as
an effective weapon. For example, malicious or malformed input can cause buffer
overflow, which may potentially lead to a complete compromise of system security.
Furthermore, information can be abused or misused to either carry information that

1For the purpose of this chapter, we use information and data interchangeably.

71

Output not related
to tracked input

Program

Tracked
input

Non-tracked
input

Output related to
tracked input

Figure 6.1: A high-level view of tracking information flow in computer programs. The
goal is to be able to distinguish whether or not the program’s output is related to the
input that we wish to track.

is not intended, i.e., covert channels, or to gather information indirectly, i.e., side
channels. Although confidentiality and integrity can often be considered duals of
each other, in this thesis, we focus on protecting the confidentiality of data. In other
words, we treat information as an asset and want to prevent information leakage using
IFT. In this section, we identify and categorize different possible information flows
that could occur within a computer system. In particular, we focus on the aspect of
information flow pertaining to the execution of the untrusted application.

Figure 6.1 summarizes the high-level view of tracking information flows during
program execution. A program’s input can be divided into two parts – tracked input,
i.e., the sensitive data we wish to track, and non-tracked input that is not related to
the sensitive data, e.g., constants or environment variables. The goal of information
flow tracking is to be able to identify which part of the program’s output is related
to the tracked input, and which part is not, in order to determine if the program is
leaking any sensitive information. A program’s execution consists of the execution
of a chain of instructions. Therefore, in order to understand how information flows
or propagates through the execution of a program, we look at how information flows
within an instruction and across instructions.

Before we look at the details of each machine instruction, here are the basic rules
or assumptions of IFT:

1. Each data storage location is extended with an associated data “tag”, e.g., mem-
ory, cache lines, registers or entries in a load-store queue.

2. The tag is considered as attached to the data and travels along with the data
wherever the data is stored or processed.

3. The tag can be of arbitrary size, representing different meanings depending on
the particular architecture.

4. For the purpose of this thesis, a non-zero tag value denotes the correspond-
ing data to be sensitive and protected, whereas a zero tag value denotes non-
sensitive data.

Information flows resulting from the execution of program instructions can be
largely divided into two categories: (1) explicit information flows, and (2) implicit in-

72

formation flows. Explicit information flows refer to the cases where actual data values
are propagated from the source to the destination. For example, a load instruction
copies the data value from the memory (source) to the register (destination). Corre-
spondingly, the tag of the same memory location should be copied to the tag of the
destination register, to capture the information flow from the memory to the register.
On the other hand, implicit information flows occur not by direct data copying, but
through program side-effects. For example, if the time taken to execute an instruction
is dependent on a tagged register value2, although there is no direct data movement
between the tagged register and the time measurement, the time measurement does
carry information related to the tagged register value. We consider these implicit
information flows as side-channels or covert-channels. Figure 6.2 shows the taxon-
omy of information flows resulting from the execution of a program. Before we give
examples for each of the items in Figure 6.2, we sketch out the skeleton for an ideal
information flow tracking system as follows:

1. An ideal information flow tracking system should exhibit no false positives and
no false negatives. In other words, an ideal system should be able to distinguish
between data that is truly related to the source input and data that is not
related.

2. An ideal information flow tracking system should be able to recognize special
conditions that erase information, such as zeroing a register by xor with itself.

3. An ideal information flow tracking system should be able to track seemingly
unrelated events, e.g., timing or power, and determine if those output channel
contain information related to the source input.

4. An ideal information flow tracking system should be able to identify data that
are truly conditionally dependent on the source input, and track the information
flows correctly. For example, a data value that is modified when a certain
condition happens should be tagged, whereas a variable that happens to be
assigned the same value under all possible conditions should not be tagged.

5. An ideal information flow tracking system should be able to understand program
semantics to determine whether or not information flows across table lookups.
For example, character conversion using table lookups does carry information
from the table lookup index, whereas information should not propagate from
node to node in a linked-list traversal, if only one of the node is tagged.

6.1.1 Explicit Information Flow

• Arithmetic: an arithmetic operation such as add, sub or div usually takes two
source variables, computes the result and puts the result into the destination
variable. For example, an assignment a ← b + c means that the variable a
gets information from both variables b and c. Correspondingly, we denote the
tag assignment to be tag(a) ← join(tag(b), tag(c)). The join() operation is
definable according to how the tags are defined. For an IFT scheme with 1-bit

2We consider a data “tagged” if its corresponding tag value is non-zero.

73

In
fo

rm
at

io
n

 F
lo

w

E
x

p
lic

it
Im

p
lic

it

Lo
ad

 &
 S

to
re

C
o

p
y

D
e

p
e

n
d

e
n

cy
C

o
m

p
u

ta
ti

o
n

D
e

p
e

n
d

e
n

cy
C

o
n

tr
o

l
D

e
p

e
n

d
e

n
cy

M
e

m
o

ry
In

d
e

x
O

th
e

r
S

id
e

-C
h

an
n

e
ls

A
ri

th
m

e
ti

c
Lo

g
ic

al
R

e
g

is
te

r
M

o
ve

e
.g

.,
 a
d
d

, s
u
b

.
e

.g
.,

 x
o
r

, a
n
d

.
e

.g
.,

 m
o
v

, b
s
w
a
p

.

C
o

n
d

it
io

n
al

B
ra

n
ch

In
d

ir
e

ct
Ju

m
p

T
im

in
g

T
e

rm
in

at
io

n
 &

E
x

ce
p

ti
o

n
P

o
w

e
r

F
ig
ur
e
6.
2:

A
ta
xo

no
m
y
of

in
fo
rm

at
io
n
flo

w
s
w
it
hi
n
a
pr
og

ra
m
.

74

tags, the join() operation can be defined as a simple logical or of tag(b) and
tag(c).

• Logical: a logical operation such as or, and or xor behaves similarly to arith-
metic instructions described above. Therefore, they use the same join() op-
eration for the tags. Special cases such as zeroing a register using xors are
treated differently, since no information flows from the source registers to the
destination register in these cases.

• Memory Loads & Stores: load instructions copy data values from the main
memory to the destination register, whereas store instructions copy data values
from the source register to the main memory. Correspondingly, the tag of the
source (memory or register) is copied to the tag of the destination as well. For a
load example, a← [addr], the tag assignment should be tag(a)← tag([addr]).

The above examples are cases where direct data flows are involved within an
instruction. Next we give examples where information flows without having direct
data flows.

6.1.2 Implicit Information Flow

• Conditional Control Dependency: modern general purpose computer archi-
tectures employ certain mechanisms to conditionally execute some code, which
is often realized using a set of status or flag registers, e.g., the FLAGS register
in x86 or the Condition Code Register (CCR) in SPARC. A typical set of flags
include the zero flag, the carry flag, the sign flag and the overflow flag. An
arithmetic or logical instruction can affect the value of these condition flags
if certain condition is met. For example, the if statement in C can be im-
plemented using an arithmetic instruction that sets the condition flag with a
branch instruction that branch to certain locations in the code depending on
the value of the condition flag. Therefore, it is possible for information to flow
from the arithmetic instruction to the condition flag, and from the condition
flag to the instructions executed after the branch instruction. In this thesis, we
focus on this case of implicit information flow and will go into the details in
Section 6.1.3.

• Indirect Jump: indirect jumps execute some code based on the jump target
value stored in a register (or sometimes, in two registers). Therefore, informa-
tion flows from the register that stores the target address to the instruction
executed after the jump instruction. If the jump targets can be known or de-
termined statically before the program’s execution, we can handle the indirect
jumps in a similar fashion as conditional branches, since they both set the new
program counter’s value depending on the value(s) of some register(s). However,
if the jump targets cannot be determined statically, the entire memory space
could potentially be the target for the indirect jump. Program-level informa-
tion is needed to determine whether or not there is information flow across the
indirect jump.

• Memory Indexing: memory indexing is related to the memory loads and
stores described previously, regarding the addr component that is used to decide

75

which memory address to read from or write to for a load or store instruc-
tion, respectively. The fact that the addr component decides the memory ad-
dress implies that some information is passed from the addr to the destination,
whether the destination is a memory location or a register. Therefore, taking
the memory indexing into account, we have a modified tag assignment for the
previous load instruction example: tag(a) ← join(tag([addr]), tag(Regaddr)),
where Regaddr denotes the register that contains the value of addr. For the
previous store instruction example: tag([addr]) ← join(tag(a), tag(Regaddr)),
where Regaddr denotes the register that contains the value of addr. To properly
address the issue stemming from memory indexing, we need to analyze the in-
tended operations of the source code. For instance, some keyboard character
mapping routines use table lookups [99], and thus tag propagation should be
performed in this case to avoid false-negatives for key-logging malware. How-
ever, in some cases a table lookup result would provide a sanitized value that
does not need to be tagged. Since this chapter focuses on the case where only
the application binary is readily accessible and no source code is available, we
do not take into account the memory indexing issue in this chapter, assuming
that no information flows from the index to the destination.

• Timing: we can gather information about a certain operation without direct
data copying, just by measuring the amount of time taken for the operation.
Consider the following example, adapted from [20]:

const int x = 1;

send_value(adversary_site, x);
y = ...sensitive...

... // delay loop

... // time propotional to y

send_value(adversary_site, x);

In this example, the adversary can gain information about y by measuring the
time difference between the two send_value operations, even though only a
constant value x is sent to the adversary. Ideally, a correct IFT scheme should
be able to catch this with a tag assignment of tag(x)← tag(y).

• Termination & Exception: besides normal program execution, abnormal
program execution can also be leveraged to gain information about the state of
a program. Consider the following example, adapted from [94]:

for (i = 0; i < MAX; i++) {
if (i == secret) {

throw_exception();
}
printf("x");

}

76

Assuming that the secret value is 5 and that MAX is larger than 5, then the
execution of this particular example will output “xxxxx before the program ter-
minates with the exception (throw_exception()). Although the printf state-
ment is not dependent on the secret value and thus does not contain informa-
tion related to the secret value, the occurrence of the exception changed this
assumption by terminating the execution before the end of the program.

• Other Covert- and Side-Channels: besides the methods of gathering infor-
mation without direct data copying as described, there are several other ways to
gain information indirectly about certain operations in a computer systems. Our
listing is not exhaustive and, as new technology evolves, new side-channels will
be exploited to convey information implicitly. Examples of other side-channels
include probabilistic [26], resource exhaustion3, and power [57] side-channels.

6.1.3 Information Flow Through Conditional Execution

Addressing implicit information flows stemming from memory indexing [86], timing
or other side-channels, typically requires higher-level knowledge of the program se-
mantics, thereby requiring access to the program’s source code. In this chapter, we
deal with third-party application binaries, focusing on the case of the condition flag in
the implicit information flow, as it occurs most often in legitimate code, e.g., format
conversion, and is prevalent in document editing programs [55]. Although it is one of
the most common cases of implicit information flow, it is difficult to correctly track
using IFT schemes.

The following code snippet shows a simple example of implicit information flow
through the condition flag dependency of a program:

x := y := 1
if s <= 0 then x := 0 else y := 0

There clearly is a flow of information from the variable s to x; however, it is not
the result of direct data copying, but the result of affecting the branch outcome by
setting the condition flag through the comparison. For this particular example, an IFT
scheme may have the tag assignment tag(x)← tag(s) when s ≤ 0 and tag(y)← tag(s)
when s > 0. However, if we look closely, we can conclude that both tag assignments
for x and y should always be performed, no matter the value of s, since observing
the value of either x or y would reveal information about the assignment that did
not occur, and we can use this information to reveal the signedness of s. Before
we describe our proposed solutions to address this kind of implicit information flow,
we look at various prior IFT schemes to understand what is needed for a practical
information flow tracking system.

3A value of 0 or 1 could be interpreted by the availability of a specific resource which may be
filled up (hard disk), overloaded (100% cpu), etc.

77

6.2 Prior Work
Information flow tracking can be achieved either statically before the program is run,
dynamically when the program is running, or both. In addition, the tracking can be
done at the software level or at the hardware level. The granularity of the tracking
can also be varied depending on the application, e.g., at the lowest gate level or at a
higher operating system objects level. We review different IFT systems, regardless of
whether their original intent was to protect integrity or to protect confidentiality.

Static language-based software techniques [81] track information by type-checking
programs that are written in languages that express information flow directly. Pro-
grammers can specify the legitimate information flows and policies in the program
such that no illegal information flow would be allowed once the program is compiled.
This static method can be formally verified to be secure and can address most of
the implicit information flow and side-channels since the high-level semantics of the
program can be checked. However, it requires access to the source code, requires
re-writing or re-compiling the applications and makes the programmer responsible
for specifying the information flow policy.

On the other hand, information flow tracking can be done dynamically, which is
usually called dynamic information flow tracking (DIFT). Different tracking granular-
ity can be applied when tracking information dynamically in the software. At a coarse-
grained level, new operating system designs like HiStar [101] and Asbestos [39, 40, 96]
proposed labeling of system objects to control information flow. In these systems, a
process (thread) that has accessed tagged data is not allowed to send any data to the
network, even if the data sent has no relation at all to the tagged data. This coarse-
grained information flow protection requires the application to be partitioned into
components with different privilege levels. Tracking information flow dynamically
at a finer-grained level such as bytes can be achieved using binary translation [77].
However, such software-only DIFT approaches often incur prohibitive performance
overhead [77]. For example, to deal with tag assignments and bookkeeping, a single
data movement instruction becomes eight instructions after binary translation. A
single arithmetic/logic or control flow instruction is replaced by 20 instructions after
binary translation. Even with parallel execution of the binary translation [70] the
performance overhead is around 1.5X.

Tracking information flow dynamically at the byte or word level can be done a lot
more efficiently at the hardware level, since often times the tag assignment can be
done in parallel to the instruction’s execution. Raksha [34] is a hardware DIFT system
which can detect both high-level and low-level software vulnerabilities for integrity
purposes. Raksha exposes software configurable registers to support four security
policies at a time. However, since Raksha is targeted for integrity applications, it
does not deal with implicit information flow or side-channel problems.

With hardware support, information tracking can be done at a even finer-grained
level. GLIFT [92] is another hardware DIFT solution that tracks information flow

78

at a much lower hardware level – the gate level. It uses a predicated architecture4

which executes all paths of a program (i.e., no path is untaken) to track both explicit
and implicit information flow due to condition flags, albeit at the cost of execution
efficiency. While this is a very interesting and potentially promising approach, all the
hardware has to be re-designed from the gates up, requiring unproven new hardware
design methodologies and tools. Furthermore, it requires re-writing or re-compiling
existing applications, making its practical adoption even more difficult.

Suh et al [89] proposed the architectural support for DIFT to track I/O inputs
and monitor their use for integrity protection, whereas our methods provide support
for DIFT to track I/O outputs and monitor the use of confidentiality-protected data.
They assume that the programs can be buggy and contain vulnerabilities, but they
are not malicious and that the OS manages the protection and is thus trusted. One
bit is used as the security tag that indicates whether the corresponding data block is
authentic or spurious. The proposed technique also does not track any form of control
dependency; in other words, implicit flows are not tracked, since the authors believe
that it is difficult for attacks to exploit control dependencies because programs do
not use control dependencies to generate pointers in the authors’ set of benchmarks.
The authors assume that adding non-constant offset to the base pointer implies that
the program performed a bounds-check before. The authors do acknowledge that not
propagating the tags through table lookups or pointer additions may be problematic;
however, they did not present any false negatives in their experiments.

To be able to track implicit information flow while incurring minimal performance
overhead, a hybrid approach that combines static analysis with DIFT is desirable. RI-
FLE [94] is a hybrid approach that uses compiler-assisted binary re-writing to change
the program to turn implicit information flows due to condition flags into explicit
tag assignments. Once the implicit flows are turned explicit, the hardware can track
these explicit information flows efficiently. The BitBlaze project [87] also combines
static binary analysis and dynamic tracking for application binaries for various pur-
poses, e.g., spyware analysis [41, 99] and vulnerability discovery [18, 32]. Note that
this hybrid approach is not to be confused with combining static information flow
tracking with DIFT, as the static analysis does not track the information flow but
merely assists the DIFT scheme to provide information which may be missed for a
pure DIFT scheme.

Cavallaro et al. [21] discussed several practical examples that can be used by
malware to evade dynamic taint analysis. For example, control dependence, pointer
indirection, implicit flows and timing-based attacks are desribed. More concrete ex-
amples are explained in the context of browser helper objects (BHOs), which can be
categorized as plug-ins in some browser architectures.

4In a predicated architecture, the effect of an instruction is guarded by a predicate register.
The operations for both cases (predicate true/false) get executed, but only the instructions whose
predicates evaluate to true actually write their value back to a register.

79

Instruction Fetch
& Decode

Register File

Store
Buffers

L1
D-Cache

L2

Register
File

Tags
Store
Buffer
Tags

L1
Tag

Cache

L2
Tag

Cache

ALU
Shifter Multiplier

L1
I-Cache

Tag
Op

0

Figure 6.3: The baseline hardware DIFT architecture. The white blocks are basic
processor components whereas the gray blocks are DIFT components.

6.3 Mitigation Techniques for Practical Dynamic In-
formation Flow Tracking

In this section, we propose a few hardware or hybrid mitigation techniques to address
the issues of false-positives (FPs) and false-negatives (FNs) of the DIFT system and
describe their concept and implementation. The security, complexity and performance
evaluation are given in Section 6.4.

This chapter focuses on the confidentiality aspect of the DIFT system, and the
techniques presented in this section aim to address implicit information flow and the
FPs and FNs due to control dependencies. In order to track control dependencies
dynamically, we first establish a baseline DIFT system (as shown in Figure 6.3) with
such a capability to reduce FNs arising from control dependencies. Let us revisit the
conditional execution example given in Section 6.1.3 and see how the information flow
problem is solved using static information flow tracking and whether or not we can
adopt the same technique dynamically:

if s <= 0 then x := 0 else y := 0

Language-based static information flow tracking techniques [81] solve this problem by
introducing the concept of the program counter tag, denoted Tpc, which indicates the
information that can be learned by knowing the control flow path that has been taken
in the program. In the case of the above example, since the taken path depends on
the value of the variable s, the Tpc in the then and else clauses will inherit the label
of s. If the source code of the program was available, this can be more easily achieved
by the compiler performing the static analysis; thus the program would contain no
illegal information flow if it passes the compilation.

80

We can apply the same technique to dynamic information flow tracking to track
information across conditional execution. Suppose we have Tpc that gets the tag of
s dynamically and every instruction takes into account the value of Tpc in addition
to the tags of the source registers or memory locations. We will be able to correctly
capture the information flow from s to either x or y, even though they are assigned
a constant value in either path. Unfortunately, without knowing the scope of the
branch instruction dynamically, false positives5 may arise depending on when the
Tpc is cleared. A naïve DIFT system that tracks control dependency might tag every
instruction that is executed after the tagged branch, thus leading to an unusable
system with a large amount of false positives.

6.3.1 Tunable Propagation Tracking for Control Dependency

As a simple mitigation technique for reducing the amount of false positives in the
naïve DIFT system, we utilize a count-down counter Tpc_CNT that counts from a
maximum value, FLOW_MAX, to zero, to determine when to clear the Tpc. The
counter value is set to the maximum value whenever there is a branch instruction
that sets the Tpc to a non-zero value, indicating a tagged conditional execution.
Tpc_CNT decreases by one after each instruction is executed when the counter
value is greater than zero and Tpc is reset (set to zero) when the counter Tpc_CNT
reaches zero. Tpc_CNT does not go below zero. The process starts again when the
program’s execution reaches another tagged branch instruction. We call Tpc_CNT
the propagation counter since it determines how much information is propagated due
to a tagged branch instruction. From a different perspective, clearing the Tpc_CNT
can be described as declassification in the program, since clearing the Tpc essentially
declassifies the sensitivity of the data that are operated upon by the instruction.

This propagation counter technique requires adding one 32-bit count-down
counter to the baseline architecture and one 32-bit register to store the value of
FLOW_MAX.

6.3.2 Using Static Analysis to Reduce False Positives

The simple tunable propagation technique described in the previous section requires
the appropriate setting for the FLOW_MAX value for a particular application.
However, this is often a very hard decision to make since setting the value too low
would create false negatives that eventually leak information, and setting the value
too high would create false positives just like in the naïve DIFT system.

Since it is difficult to determine the optimal FLOW_MAX value dynamically,
we resort to static techniques that can assist the DIFT system in determining the
optimal value. For this section, we look at a similar conditional execution example

5False positive (FP) is defined as the variable or memory location that is tagged while it contains
no information related to the source tagged data. False negative (FN) is defined as the variable or
memory location that is not tagged while it does contain information related to the source tagged
data.

81

s <= 0?

x = 0
z = 0

Y N

x = 1
y = 0

immediate
post-dominator

z = 1
y = 1

Figure 6.4: The control flow graph (CFG) of the conditional execution example. A
node p post-dominates a node a if all paths to the exit node of the graph starting at
a must go through p.

as before but slightly more complicated to see how static analysis can help a naïve
DIFT system.

z := 1; y := 1;
if s <= 0 then x := 0; z := 0; else x := 1; y := 0;

The control flow graph of this example is shown in Figure 6.4. From the control
flow graph, we can determine that the information should flow and be tracked from the
tagged branch block (s<=0?) until the start of its immediate post-dominator block,
where declassification should happen. Intuitively this means that we are allowing the
Tpc to affect only the instructions that are control-dependent on the tagged branch
but nothing more. In practice, this static analysis can help the tunable propagation
in two ways. The first one is to run the static analysis to figure out the appropriate
FLOW_MAX value for each potentially tagged branch instruction and insert an
extra instruction before the branch instruction to set the FLOW_MAX value, in
order to guide the DIFT system to reduce the amount of false positives. An alternative
implementation is to set the FLOW_MAX value to a large enough value that fits
the desired security requirement, run the static analysis and insert an instruction at
the start of the immediate post-dominator block to clear the Tpc. This implies that
now we do not have to determine the optimal value of FLOW_MAX, but can set the
FLOW_MAX arbitrarily while reducing false positives due to tagged conditional
branches.

In practice, clearing out the Tpc at the immediate post-dominator block only
works for a single level of tagged branch. To account for potentially nested levels of
tagged branches, we employ a Tpc stack6 to push the old Tpc value at the tagged
branch block. We will describe Algorithm 3 which shows how to insert pushes and
pops into this Tpc stack. Complications dues to loops are also illustrated with Fig-
ures 6.5 and 6.6.

6The Tpc stack lies in the protected memory space of the hypervisor (Chapter 5).

82

Algorithm 3: Instrument a program to reduce false positives due to tagged
branches.
Input: Set of basic blocks
Output: Instrumented program binary

1 foreach tagged branch block t do
2 Find t’s immediate post-dominator block p;
3 Insert an empty block to ensure a unique immediate post dominator block,

if necessary;
4 if p is inside a loop and t is outside then
5 Do a loop peeling to make sure t and p are at the same loop level;
6 end
7 end
8 foreach tagged branch block t do
9 Find t’s immediate post-dominator block p;

10 Push Tpc onto stack: push(Tpc);
11 foreach path from t to p do
12 if t reaches itself before reaching p then
13 Insert in the path before reaching back to t, if a pop has not been

inserted there for t: Pop old Tpc back from stack, Tpc = pop();
14 end
15 end
16 Insert before the beginning of p: Pop old Tpc back from stack: Tpc =

pop();
17 end

Since nested branches may share the same post-dominator block, we insert empty
blocks to make sure that each tagged branch block has a unique immediate post
dominator block (line 3 of Algorithm 3). Lines 4 to 6 shows the loop-peeling process
to prevent the Tpc stack from being out-of-sync due to the first iteration of a loop.
Additionally, to handle loops that may reach the same node again before reaching
the post-dominator block of a tagged branch, our algorithm detects if the same node
is visited again and inserts a pop operation right before the code reaches the same
node (lines 11 to 15 of Algorithm 3). These mechanisms ensure that each push
operation has a corresponding pop operation. Algorithm 3 sketches out the static
binary analysis and instrumentation. Note that this type of static analysis can be
done on the program binaries [87], and does not need the source code.

Figure 6.5 and 6.6 give an example for the loop peeling process in Algorithm 3
(lines 4 to 6). The loop peeling process is necessary to correctly match the number
of pushes and pops of the Tpc stack, such that the stack is not out-of-sync with the
program control flow. An example control flow graph is shown in Figure 6.5, with a
loop in between node B and J. Loop peeling works by first duplicating all the nodes
and edges within the loop, nodes B’ to J’ in Figure 6.6. Then the loop back edge

83

A

B C

E FD

G

H

J

K

loop

Figure 6.5: An example control flow graph to illustrate the loop peeling of Algo-
rithm 3.

from J to B is diverted to B’, and the exit edge from J’ to K is added for the peeled
loop.

The main purpose of loop peeling is to distinguish between the first loop iteration
and the rest of the iterations. Taking the tagged branch block A in Figure 6.5 for
example, A’s immediate post dominator block J is within the loop. If we perform
Algorithm 3 without the loop peeling part, we would instrument the program to
push the Tpc at block A and pop the Tpc before the block J (at lines 10 and 16,
respectively).. However, since J is within the loop, there will be many more pops
that do not have corresponding pushes, causing the stack to be out-of-sync with the
program’s execution. After the loop peeling, A’s immediate post dominator block J,
is now not in the loop and only executed once, so there will only be a single pop for
the push of Tpc in block A.

As another example, we focus on the block J in Figure 6.5. If we perform Algo-
rithm 3 without the loop peeling part, we would push the Tpc at block J and insert
a corresponding pop before reaching J in each path leading back to J, i.e., H to J.
However, if we consider the first time the loop is entered, the pop operation actually
happens before the push at block J, leading to an out-of-sync Tpc stack. Therefore,
by breaking the loop for the first loop iteration using loop peeling, we would insert
the pop in the path H’ to J’ instead, so the pushes and pops for the first iteration of
the loop will not result in a out-of-sync Tpc stack.

84

A

B C

E FD

G

H

J

K

B’

E’ F’D’

G’

H’

J’

Figure 6.6: The modified control flow graph after loop peeling of Algorithm 3.

6.3.3 Using Static Analysis to Reduce False Negatives with
Untaken Paths

Another issue remains even though a near optimal value of FLOW_MAX can be
determined. Let’s refer back to the code example used in the previous section. Sup-
pose we use the DIFT scheme in a Multi-Level Security (MLS) system where x has
no security tag, s and y are tagged HIGH while z is LOW, and we want to prevent in-
formation flowing from HIGH to LOW. When s is less than or equal to zero, a violation
would be detected since information flow from s to z is not allowed. However, when
s is greater than zero, no violation occurs. Nevertheless, an adversary can still gain
information about the value of s just by observing the value of z, since z was assigned
a value 1 before the if statement. This problem stems from the fact that only one
path of the program is taken dynamically, so the Tpc does not affect the tag of the
variables that are supposed to be modified by the path that was not taken. To solve
this problem dynamically, we would need to compensate for the tag assignments in
the untaken path, as shown in Figure 6.7.

Figure 6.7 shows the tag assignment compensations that account for the untaken
path. For the left path, we insert the tag assignment for y such that although the
y = 0 statement is not executed, we can still ensure that the implicit information
flow is tracked dynamically. The same holds true for the right path in Figure 6.7.
To enhance Algorithm 3 to achieve the effect of Figure 6.7, we need to identify the
variables or memory locations that are changed between the tagged branch block and
its immediate post-dominator block. This set of variable and memory locations can
be identified using standard compiler analysis and we omit the details here.

85

s <= 0?Y N

immediate
post-dominator

z = 1
y = 1

tag(y) = Tpc tag(z) = Tpc

x = 0
z = 0

x = 1
y = 0

Figure 6.7: The instrumented control flow graph of the conditional execution example
after the compensation for tag assignments to account for the untaken path in the
dashed boxes.

Algorithm 4 assigns proper tag assignments to the variables for the untaken path7.
succ[n] denotes the successor blocks of n. These extra tag assignments are inserted
for each path, since each path may have touched a different set of variables. We
only need to find the variables that are live at the immediate post dominator block
and have been assigned different values in between the tagged branch block and the
post dominator block (vset), since data that is not live will not be able to leak any
information, and data that is not changed between the tagged branch block and the
post dominator block does not carry any information regarding the tagged branch.
Since during program execution, variables that are assigned a value between the
tagged branch block and the post dominator block (cset) will already be tagged with
the Tpc, we do not need to duplicate their tag assignment. Although the algorithm
may insert some redundant tag assignments, late phase of optimizations, such as dead
code and redundancy eliminations, will clean up the code. It addresses the issues of
false-positives and false-negatives for implicit information flows due to conditional
execution and the untaken path.

Nevertheless, there is a limitation regarding live memory locations. If the address
of the live memory location can be determined statically, the algorithm can instru-
ment the proper tag assignment for the untaken branch. If the address cannot be
determined or not all of the target memory locations can be identified statically, we
need some high-level program information to help guide the static analysis about the
potential live memory addresses, e.g., by annotating the base and bounds of a table
used in a table lookup.

7The analysis includes the condition code register (CCR), although the individual CCR register
flags are usually used implicitly, e.g., through compare instructions, and applications typically do
not access the CCR register directly. However, a compromised application could include code that
specifically tests the value of the CCR register; therefore the tag of the CCR register also needs to be
accounted for on the untaken path.

86

Algorithm 4: Instruments a program to reduce false negatives with untaken
paths.
Input: Set of basic blocks
Output: Instrumented program binary
foreach tagged branch block t do

Find t’s immediate post-dominator block p;
Insert an empty block to ensure a unique immediate post dominator block,
if necessary;
if p is inside a loop and t is outside then

Do a loop peeling to make sure t and p are at the same loop level;
end

end
foreach tagged branch block t do

Find t’s immediate post-dominator block p;
Push Tpc onto stack: push(Tpc);
foreach path from t to p do

if t reaches itself before reaching p then
Insert in the path before reaching back to t, if a pop has not been
inserted there for t: Pop old Tpc back from stack, Tpc = pop();

end
end
Find vset = variables and memory locations that are changed between t
and p, and reach p;
foreach j ∈ succ[t] do

Find cset = variables and memory locations that are defined between j
and p;
foreach m ∈ (vset− cset) do

Insert tag assignment in the beginning of j: tag(m) = Tpc;
end

end
Insert before the beginning of p: Pop old Tpc back from stack: Tpc =
pop();

end

6.3.4 Reducing False Positives by Save/Restore

The main issue of a naïve DIFT system is false positives, which we aimed to address
using the tunable propagation counter (Section 6.3.1) and analysis and instrumenta-
tion from static analysis (Section 6.3.2). Both of the techniques are simply addressing
the false positives stemming from within an application. However, once false positives
have found their way into the operating system, the false positives grow very quickly
across different operating system modules (as we will shown in Section 6.4) and would
render the DIFT system unusable due to the sheer amount of false positives.

87

We explore an idea that further reduces the amount of the false positives in the
entire system by leveraging system characteristics. We propose saving and restoring
the register file tags (Figure 6.3) whenever the processor changes its privilege level.
In other words, if the execution of the userspace program is interrupted, we propose
that before the control is transferred to the operating system for asynchronous inter-
rupts, the DIFT hardware automatically saves the register file tags and then zeroes
out the current register file tags, so no unnecessary tagged values are accidentally
propagated to the operating system. Before the user space program resumes execu-
tion, the DIFT hardware would restore the register file tags. Note that the register
file tags is only saved and restored when the userspace program is interrupted asyn-
chronously. In other words, for synchronous privilege level changes such as system
calls, the hardware save/restore of the register file tags is not triggered. This allows
the DIFT system to continue tracking information across privilege level boundaries
to avoid false negatives.

6.4 Implementation and Evaluation
We describe our prototype implementations of the four proposed mitigation tech-
niques and evaluate their overhead and performance in terms of the false positives
and false negatives. As described in the Introduction, too many false positives can
result in less security, since the DIFT protection system may be turned off temporar-
ily to get real work done – and then one may forget to turn it back on. Of course,
allowing false negatives implies the system is not always preventing leaks. Hence,
reducing false positives can translate to real-world practicality and usability while
minimizing false negatives is necessary for security.

Our baseline DIFT architecture is implemented on the OpenSPARC open source
processor [90] simulator. We have modified the stock OpenSPARC T1 processor to
track all explicit information flows as described in Section 6.1.1. Table 6.1 lists the
propagation rules for the baseline DIFT architecture as well as the tunable propaga-
tion employed in our implementation.

We wanted a program that has a pre-existing implicit information flow situation
that we could use to show how well our mitigation techniques work. Also the program
needs to be small for efficiency, yet realistic for our simulator. We wanted a program
that goes through both userspace and the operating system. We found a program that
calculates the digits of π, and uses conditional branches to determine how to format
the printing of these digits. If we mark the initial values of π as confidential data,
then the π program has an implicit information flow based on a sensitive condition
used in a conditional branch instruction, and does go from userspace to OS space and
back. A simplified version of the program [1] is shown in Figure 6.8.

This example π-calculation program starts with an array src[] with 337 elements,
all of which we tag as sensitive variables. The tags propagate to variable q, which
is a function F() of src[] and other untagged data. These then propagate to other
calculations, e.g., H(), which is shown in Figure 6.9. Note that the function G() does
not contain a sensitive condition, since both k and j are non sensitive. At the end

88

Ta
bl
e
6.
1:

Ta
g
pr
op

ag
at
io
n
ru
le
s.

B
ol
d
fo
nt
s
in
di
ca
te

ru
le
s
sp
ec
ifi
c
fo
r
th
e
tu
na

bl
e
pr
op

ag
at
io
n.

T
he

ca
pi
ta
l
T

de
no

te
s
th
e

ta
gs
.
T
he

ru
le
s
in

pa
re
nt
he
se
s
ar
e
im

pl
em

en
te
d
de
pe

nd
in
g
on

th
e
sp
ec
ifi
c
in
st
ru
ct
io
n
th
at

ei
th
er

op
er
at
es

di
ffe

re
nt
ly

ac
co
rd
in
g

to
th
e
co
nd

it
io
n
co
de

re
gi
st
er
,a

ffe
ct
s
th
e
co
nd

it
io
n
co
de

re
gi
st
er

or
us
es

th
e
y
re
gi
st
er
.
cc
r
re
fe
rs

to
th
e
co
nd

it
io
n
co
de

re
gi
st
er

in
th
e
SP

A
R
C

ar
ch
it
ec
tu
re
.
T
y
is

th
e
ta
g
fo
r
th
e
y
re
gi
st
er
,T

cc
r
de
no

te
s
th
e
ta
g
fo
r
th
e
co
nd

it
io
n
co
de

re
gi
st
er
,a

nd
lik

ew
is
e

fo
r
th
e
so
ur
ce

re
gi
st
er
s
(s
rc
1
or
sr
c2
)
an

d
th
e
de
st
in
at
io
n
re
gi
st
er
,d
es
t.

Fo
r
lo
ad

an
d
st
or
e
in
st
ru
ct
io
ns
,T

[s
rc
]
re
fe
rs

to
th
e
ta
g

of
th
e
m
em

or
y
lo
ca
ti
on

po
in
te
d
by

sr
c,

an
d
lik

ew
is
e
fo
r
T
[d
es
t]
.
T
he

m
em

or
y
in
de

xi
ng

di
sc
us
se
d
in

Se
ct
io
n
6.
1.
2
ar
e
sh
ow

n
in

pa
re
nt
he
se
s
fo
r
th
e
lo
ad

an
d
st
or
e
in
st
ru
ct
io
ns

an
d
it
de
pe

nd
s
on

th
e
im

pl
em

en
ta
ti
on

to
tu
rn

on
/o

ff
fo
r
th
e
tr
ac
ki
ng

of
m
em

or
y

in
de
xi
ng

.

In
st
ru
ct
io
n
C
at
eg
or
y

T
yp

e
P
ro
p
ag
at
io
n
R
u
le

In
te
ge
r
A
ri
th
m
et
ic

rs
1
,r
s2

T
d
es
t
←

T
sr
c1
∪
T
sr
c2
∪
T
p
c
(∪

T
cc
r
∪

T
y
)

sr
c,
im

m

T
d
es
t
←

T
p
c
(∪

T
cc
r)

T
d
es
t
←

T
sr
c1
∪
T
p
c
(∪

T
cc
r
∪

T
y
)

T
d
es
t
←

T
sr
c2
∪
T
p
c
(∪

T
cc
r)

(T
cc
r
←

T
sr
c1
∪
T
p
c
(∪

T
cc
r
∪

T
y
))

(T
cc
r
←

T
sr
c1
∪
T
sr
c2
∪
T
p
c
(∪

T
cc
r
∪

T
y
))

(T
y
←

T
sr
c1
∪
T
p
c
)

M
ul
ti
pl
y,

D
iv
id
e

(T
y
←

T
sr
c1
∪
T
sr
c2
∪
T
p
c
)

M
em

or
y
ac
ce
ss

Lo
ad

T
d
es
t
←

(T
sr
c1
∪)

T
[s
rc
1]
∪
T
p
c

St
or
e

T
[d
es
t]
←

T
sr
c1
∪
(T

d
es
t∪

)T
p
c

B
ra
nc
h

C
on

di
ti
on

al
if

(T
c
c
r
6=

0
){

T
p
c
=

T
c
c
r
;
T
p
c
_
C
N

T
=

F
L
O
W

_
M

A
X

;
}

if
(T

s
r
c
1
6=

0
){

T
p
c
=

T
s
r
c
1
;
T
p
c
_
C
N

T
=

F
L
O
W

_
M

A
X

;
}

if
(T

s
r
c
1
∪

T
s
r
c
2
6=

0
){

T
p
c
=

T
s
r
c
1
∪

T
s
r
c
2
;
T
p
c
_
C
N

T
=

F
L
O
W

_
M

A
X

;
}

U
nc
on

di
ti
on

al
N
on

e

E
ve
ry

in
st
ru
ct
io
n

if
(T

p
c
_
C
N

T
>

0
){

T
p
c
_
C
N

T
−
−
;
}
e
ls
e
if

(T
p
c
_
C
N

T
=
=

0
){

T
p
c
=

0
;
}

89

1: src[337], k=4000, p, q, t=1000, n=0, dst[1100];
2: for(;src[j=q=0]+=2,--k;)
3: for(p=1+2*k;j<337;q=F(src[j], k, q, p, t),src[j++]=q/p)
4: if(G(k, j))
5: n+=sprintf(&dst[n], "%.3d", taint=H(src[j-2], t, q, p))
6: printf("%s", &dst[0]);

Figure 6.8: The simplified version of the π program, to illustrate the effect of implicit
information flows.

G(k, j) = k != j > 2;
H(a, t, q, p) = a % t

+ q/p/t;

Figure 6.9: The G() and H() func-
tions for the π program.

sprintf(buffer, format, number){
...

while (number != 0)
{
digit = number % 10;
number /= 10;
switch (digit)
{
case 0: character = ’0’; break;
case 1: character = ’1’; break;

...
}
buffer[cnt++] = character;

} ...
}

Figure 6.10: The core character conver-
sion function that exhibits implicit infor-
mation flow due to control dependency in
sprintf().

of the calculations, the array dst[] is written with ASCII characters corresponding
to the calculations derived from src[]. One of the character conversion functions
contains a conditional branch that depends on a tagged value, as shown by the number
variable in Figure 6.10. In the π example, the tagged value to be used as the number
in sprintf() is the taint variable in line 5 of Figure 6.8.

We will show that there is an inadvertent implicit information flow in this little
program, hidden in the sprintf() library call. We first describe the working of this
program. The seemingly complex program can be interpreted as two nested loops and
an sprintf() function to print ASCII characters to the dst[] array. Looking at the
program more closely, we can deduce that at least the following variables or memory
locations should ideally be tagged as sensitive when the program finishes execution:
(1) the entire array src[], the original tag source, (2) 64-bit variable q, since q is
assigned to a value that depends on the values in src[] (line 3), (3) the first 1001

90

bytes (1001 / 8 ≈ 126 64-bit words) of dst[], since they get assigned based on the
variable taint which is based on some function of both the tagged src[] and tagged
q (line 5), and (4) the 64-bit variable n, since it depends on the actual number of
characters printed by sprintf() which depends on the value of taint (line 5). n is
equal to 1001 at the end of the execution.

The core of the sprintf() function is a while loop that extracts the remainder of
the division of the integer argument (number in Figure 6.10) by 10. The while loop
keeps executing as long as the quotient is greater than zero, and the quotient is used
as the dividend in the next loop iteration. The extracted remainders are then used
to lookup the corresponding characters to print. We show the disassembled SPARC
assembly instructions for the core of the sprintf() function in Figure 6.11.

Looking more closely at the assembly instructions in Figure 6.11 shows that the
compare instructions (cmp) at lines 22 and 26, sets the tag of the condition code
register (Tccr), since register %g2 contains sensitive data digit. The subsequent
branch-if-equal instruction be propagates the tag from the condition code register
to the tag of the program counter (Tpc). Therefore the instructions executed after
the branches (line 31-34, and 35-38, respectively) will carry the tag value of digit.
If this implicit information flow is not tracked by the DIFT system, the store-byte
instruction (stb) at lines 32 and 36 will not be tagged, resulting in false negatives.
The corresponding control flow graph of the assembly code of Figure 6.11 is shown in
Figure 6.12, with each block showing their line numbers in Figure 6.11. Note that the
implicit information flow from the outer while loop actually does not matter since
there is explicit information flow from number to digit.

Note particularly that in this program, the dst[] array will only get tagged
through implicit information flow since sprintf() prints out the decimal charac-
ters based on comparisons of the integer arguments. In summary, a perfect DIFT
system would tag a total of (337 + 1 + 126 + 1 =) 465 64-bit words, including the
original tag source src[]. The actual number may be a little higher due to some
temporary variables used in the library function sprintf().

To establish bounds for comparison with our mitigation techniques, we first look
at how the baseline DIFT system which is not tracking control dependency, and the
naïve DIFT system which tags everything after the tagged branch instruction perform,
using this π-calculation example program. Before the start of every experiment, we
clear all the leftover tags in the system, and we initialize the tags for the sensitive
data (src[] in the π-calculation program). We let the program run until completion
and then take a snapshot of the system to count the number of memory locations
that are tagged. The granularity of the tags is one tag per 64-bit word. In other
words, we consider the memory location as tagged even if only one byte within the
64-bit word is tagged.

Basically the baseline DIFT system and the naïve DIFT system set up the lower
and upper bounds for the false positives and false negatives performance of our mit-
igation techniques. The second and third rows of Table 6.2 summarize the results
for the baseline and naïve DIFT system. The baseline DIFT system does not track
control dependencies, resulting in the entire dst[] array being untagged; whereas the
naïve DIFT system, although exhibiting no false-negatives, produces more than 6X

91

3: 104f8: 10 80 00 28 b 10598
4: 104fc: 01 00 00 00 nop
5: 10500: c6 07 bf e4 ld number, %g3
6: 10504: 85 38 e0 1f sra %g3, 0x1f, %g2
7: 10508: 81 80 a0 00 mov %g2, %y
8: 10518: 82 78 e0 0a sdiv %g3, 0xa, %g1
9: 1051c: 82 00 40 01 add %g1, %g1, %g1

10: 10520: 85 28 60 02 sll %g1, 2, %g2
11: 10524: 82 00 40 02 add %g1, %g2, %g1
12: 10528: 82 20 c0 01 sub %g3, %g1, %g1
13: 1052c: c2 27 bf e8 st %g1, digit ; explicit information flow

; from number to digit
14: 10530: c2 07 bf e4 ld number, %g1
15: 10534: 85 38 60 1f sra %g1, 0x1f, %g2
16: 10538: 81 80 a0 00 mov %g2, %y
17: 10548: 82 78 60 0a sdiv %g1, 0xa, %g1
18: 1054c: c2 27 bf e4 st %g1, number
19: 10550: c2 07 bf e8 ld digit, %g1
20: 10554: c2 27 bf dc st %g1, digit
21: 10558: c4 07 bf dc ld digit, %g2
22: 1055c: 80 a0 a0 00 cmp %g2, 0 ; test if digit = 0
23: 10560: 02 80 00 08 be 10580 ; tagged branch
24: 10564: 01 00 00 00 nop
25: 10568: c2 07 bf dc ld digit, %g1
26: 1056c: 80 a0 60 01 cmp %g1, 1 ; test if digit = 1
27: 10570: 02 80 00 08 be 10590 ; tagged branch
28: 10574: 01 00 00 00 nop

. ; test if digit = 2, 3, etc.
29: 10578: 10 80 00 08 b 10598
30: 1057c: 01 00 00 00 nop
31: 10580: 82 10 20 30 mov 0x30, %g1
32: 10584: c2 2f bf ef stb %g1, character ; character = ’0’
33: 10588: 10 80 00 04 b 10598
34: 1058c: 01 00 00 00 nop
35: 10590: 82 10 20 31 mov 0x31, %g1
36: 10594: c2 2f bf ef stb %g1, character ; character = ’1’
37: 10588: 10 80 00 04 b 10598
38: 1058c: 01 00 00 00 nop

. ; character = ’2’, ’3’, etc.
39: 10598: c2 07 bf e4 ld number, %g1
40: 1059c: 80 a0 60 00 cmp %g1, 0 ; check end of while loop
41: 105a0: 12 bf ff d8 bne 10500 ; tagged branch

Figure 6.11: The disassembled SPARC assembly instructions for the core function
of sprintf() in Figure 6.10. Line 39-41 checks for the condition in the outer while
loop. Line 5-18 calculate number and digit. Line 21-28 test digit for the sensitive
switch statement and line 31-38 assign the value for character.

92

 #39 ld number, %g1
 #40 cmp %g1, 0
 #41 bne #5

 #5 ld number, %g3
 …
 #21 ld digit, %g2
 #22 cmp %g2, 0
 #23 be #31
 #24 nop

 #25 ld digit, %g1
 #26 cmp %g1, 1
 #27 be #35
 #28 nop

 #35 mov ‘1’, %g1
 #36 stb %g1, character
 #37 b #39
 #38 nop

 #31 mov ‘0’, %g1
 #32 stb %g1, character
 #33 b #39
 #34 nop

 mov ‘2’, %g1
 stb %g1, character
 b #39
 nop

 ld digit, %g1
 cmp %g1, 2
 be
 nop

 #29 b #39
 #30 nop

 . . .

 ld digit, %g1
 cmp %g1, 9
 be
 nop

 mov ‘9’, %g1
 stb %g1, character
 b #39
 nop

Figure 6.12: The control flow graph of the core function of sprintf(). Each block
has its corresponding line numbers from Figure 6.11. Note that in this particular
example, an ideal FLOW_MAX value would be 3, to cover the sequence of nop,
move and stb instructions after the tagged branches (be) in line 23 and 27.

93

Table 6.2: False positive and false negative performances of DIFT systems with im-
plicit informal flow support. Lines 2 and 3 show the lower and upper bounds given by
the baseline DIFT (no tracking for control dependency) and the naïve DIFT system
(constant tracking for control dependency), for running the π-calculation program.
Each experiment is repeated 10 times and the average values are reported. We pick
the zero-false-negative and balanced values from the FLOW_MAX technique when
FLOW_MAX is equal to 4 and 3, respectively. (see Figure 6.14) and the register
file tags save/restore technique when FLOW_MAX is equal to 5 (see Figure 6.17).

Tagged words FP FN Notes

Optimal 465 0 0

Baseline DIFT 339.1 2.1 126

Naïve DIFT 3154.4 2691.4 0

FLOW_MAX w/ zero false negatives 1720.6 1248.6 0 See Fig. 6.14

FLOW_MAX balanced 520.3 100.2 44.2 See Fig. 6.14

FLOW_MAX w/ Static binary analysis 485 20 0

FLOW_MAX w/ Save/Restore optimal 473.3 8.3 0 See Fig. 6.17

the number of tagged words when comparing to the ideal or perfect DIFT system
with 465 tagged words, shown in the first row of Table 6.2. The next four rows show
the performance of the mitigation techniques we propose, which we discuss below.

6.4.1 Tunable Propagation

We first describe the implementation and cost for the tunable propagation for control
dependency. As pointed out at the end of Section 6.3.1, this mitigation technique
requires one additional count-down counter and two additional registers to store the
values of FLOW_MAX and Tpc. Figure 6.13 depicts the additional components
needed for this mitigation technique and its connections to the baseline DIFT system.

Figure 6.14 shows the false positives and false negatives analysis of running the
π-calculation program using the tunable FLOW_MAX technique. The columns
represent the number of tagged (non-zero tag value) words when FLOW_MAX
is set to the values on the x-axis. The dashed line in Figure 6.14 represents the
expected number of tagged 64-bit words in the system that would be achieved by
an ideal DIFT system, which is 465 as described previously. In other words, we can
expect false-negatives if the total tagged words in the system are below this number
and false-positives otherwise.

The bars for the total tagged words in Figure 6.14 are further broken down into
different categories that indicate which level of the software hierarchy is responsible for
writing to the tagged memory location. For example, “OS” means that the operating

94

Register
File

Tags

Tag
Op

0

Tpc Tpc_CNT

FLOW_MAX

Figure 6.13: The additional components (in stripes) for the tunable propagation of
the baseline DIFT system.

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 8 13 20 30 50 100 200

Ta
g

g
e

d
 6

4
-b

it
 w

o
rd

s

FLOW_MAX

User/OS/HV

User/OS

OS

User

False Positive

False Negative

Ideal

Figure 6.14: False positives and false negatives analysis after running the π-calculation
program. The contributions from the hypervisor (HV), User/HV and OS/HV are all
zeroes and not plotted on the graph. The x-axis denotes different settings of the
FLOW_MAX values and the y-axis shows the number of tagged 64-bit words in the
system. Note that the x-axis is not in linear scale.

system wrote to that memory location with tagged data and “User/OS” means that
both the userspace programs and the operating system have written tagged data to
the same memory location.

Figure 6.14 shows that for this particular program, the setting of FLOW_MAX =
3 gives the good balance between false-positives (20%) and false negatives (9%),
if the system permits leakage of information below a certain threshold. When
FLOW_MAX is set to 4 or greater, there are no more false-negatives, but false-

95

positives begin to rise sharply (5th and 4th rows of Table 6.2), and continues to
increase until it stabilizes at around 3000 tagged words. Note that most of the in-
crease in false positives is for words touched by both the user and the OS, indicating
more reductions of false-positives can be achieved by analyzing the OS-contributing
factor and employing OS-specific tag clearing techniques, which we will discuss in
more detail in Section 6.4.3. At large FLOW_MAX values, the false-positives is
about six times more than the ideal value, which would render the system impractical,
since users would most likely turn off any security feature that annoys them too often
or simply click yes whenever there is a security warning [68]. Therefore, it is very
important to determine the value for FLOW_MAX to ensure maximum security
(no false negatives) with minimal interruptions (small false positives). Depending on
the security and usability requirements of the system, the value of FLOW_MAX
can be correspondingly adjusted.

6.4.2 Static Binary Analysis and Instrumentation

This section covers both of the Sections 6.3.2 and 6.3.3, since both techniques leverage
the information from static binary analysis to instrument the program, although one
focuses on reducing false-positives and the other on eliminating false-negatives. Our
binary analysis is implemented on the BitBlaze [87] platform.

Applying Algorithm 4 to the π-calculation program and running the program on
the same hardware DIFT infrastructure gives the total tagged 64-bit words of 485
which includes 20 false-positives and no false-negatives, compared to the ideal value
of 465. This shows that with the assistance of static binary analysis, we can achieve
a practical information flow tracking system with no false-negatives and a low false-
positive percentage of 4.3%, for this particular program (Table 6.2).

Although no source code is needed since the analysis is done on binaries, this
technique requires doing a pre-execution static analysis and adding instructions to
the executable binary code. The advantage though is that there need be no guess-
ing of the value of FLOW_MAX, since it is set to cover the scope of the sensitive
conditional, and the variables on the untaken path are also tagged sensitive when nec-
essary. Covering the scope is necessary for “soundness” since the application program
could be interrupted for an arbitrary number of instructions, and FLOW_MAX
could count down to zero executing OS instructions, before execution returns to the
application program. Without this immediate post-dominator scoping, there could
be false negatives. The same scoping technique also prevents unnecessary false posi-
tives when guessing to set the FLOW_MAX to a large number for high security –
since the clearing of Tpc and setting FLOW_MAX back to zero at the immediate
post-dominator, also reduces unnecessary propagation beyond the scope of the tagged
conditional. Covering the untaken path is necessary to ensure no false negatives for
dynamic implicit information flow tracking, where only one path of a conditional
branch can be taken during execution.

96

0

50000

100000

150000

200000

250000

tl
0

_
s0

n

e
tr

ap
_s

av
e

ru
n

_
ti

m
e

r_
so

ft
ir

q

sc
h

e
d

u
le

e
n

q
u

e
u

e
_

h
rt

im
e

r

sc
h

e
d

u
le

r_
ti

ck

m
se

cs
_

to
_

jif
fi

e
s

g
e

tn
st

im
e

o
fd

ay

h
rt

im
e

r_
in

te
rr

u
p

t

n
tp

_
u

p
d

at
e

_
fr

e
q

u
e

n
cy

ti
m

e
r_

in
te

rr
u

p
t

ru
n

_w
o

rk
q

u
e

u
e

in
te

rn
al

_
ad

d
_

ti
m

e
r

d
o

_
sy

si
n

fo

re
ca

lc
_

ta
sk

_
p

ri
o

ta
sk

_
ru

n
n

in
g

_t
ic

k

_
sp

in
_

lo
ck

_
b

h

in
se

rt
_

w
o

rk

_
_

d
o

_
so

ft
ir

q

h
rt

im
e

r_
fo

rw
ar

d

_
_

re
m

o
ve

_
h

rt
im

e
r

cl
o

ck
e

ve
n

ts
_

p
ro

g
ra

m
…

ti
ck

_
sc

h
e

d
_

ti
m

e
r

rb
_

in
se

rt
_

co
lo

r

rb
_

e
ra

se

ac
co

u
n

t_
sy

st
e

m
_

ti
m

e

ru
n

_
p

o
si

x
_c

p
u

_
ti

m
e

rs

ra
is

e
_

so
ft

ir
q

e
n

q
u

e
u

e
_

ta
sk

w
ak

e
_

b
it

_
fu

n
ct

io
n

Ta
g

g
e

d
 v

al
u

e
 c

o
n

tr
ib

u
ti

o
n

s
co

u
n

t

Linux Operating System Function Name (sorted by the count values)

Figure 6.15: The Linux operating system functions that contribute to the tagged
values in the system. Each write of a tagged 64-bit word to the memory by the
operating system is counted as one contribution. The list is sorted by the amount of
contribution from the various operating system functions.

6.4.3 Tag Register Save/Restore

If we analyze the trend given in Figure 6.14, we see that as the FLOW_MAX
value increases, the amount of tagged value contribution from the operating system
significantly increases as well. This is due to the fact that once false positives have
entered the memory space of the operating system, they propagate further among
other operating system components as well. We took one of the runs of our experiment
and instrumented the simulation to keep a record of the program counters (PC) within
the operating system that contributed to the tagged values and cross referenced the
PC addresses with the operating system functions to figure out which modules of
the operating system are the major contributors and which modules are the “entry
points” of these tagged values into the rest of the operating system. Our analysis is
done on the Ubuntu 7.10 with a Linux kernel version of 2.6.22-15-sparc64.

Figure 6.15 shows the distribution of the functions within the operating system
that actually contribute to the total tagged values in the system and we find that
the top 10 contributing functions within the OS cover more than 75% of the total
tagged values within the system. We then look further into the details of these top
10 functions, as listed in Table 6.3 with their contribution percentage and a brief
description of their functions within the operating system. From the table we gather
that tagged values escape from the userspace into the OS space through three main
avenues: (1) register spill/fill routines, (2) trap save routine for preparing the entry
into the kernel and (3) timer interrupt routines.

97

Table 6.3: Brief descriptions of the top 10 operating system functions with the highest
tagged value contributions, along with their corresponding frequency of occurrences
represented as the percentage of the total aggregate count in Figure 6.15.

Function name % Description

tl0_s0n 31.9 Register spills.

etrap_save 10.2 Preparing for entry into the kernel.

run_timer_softirq 6.1 This function runs timers and the timer-tq in
bottom half context.

schedule 6.0 The main scheduler function.

enqueue_hrtimer 4.9 Internal function to (re)start a timer.

scheduler_tick 4.2 This function gets called by the timer code.

msecs_to_jiffies 4.2 Conversion of time units.

getnstimeofday 3.5 Returns the time of day in a timespec.

hrtimer_interrupt 3.5 High resolution timer interrupt.

ntp_update_frequency 2.2 Updates ticks within the system.

Sum 78.9

These three main avenues belong to the asynchronous privilege level change cate-
gory, since they are mainly caused by program side-effects, e.g., page faults or limited
amount of hardware register windows8. We implement the register file tags save/re-
store to save the values of the register file tags and zero the tags before the control
is transferred to these routines. Subsequently when these routines finish execution
and before the control is transferred back to the interrupted application, the hard-
ware save/restore mechanism then restores the register file tags for the particular
application, in a similar fashion to a context switch.

Figure 6.16 depicts the additional components needed to perform register file tags
save/restore on top of the baseline DIFT system. We use the program counter (pc)
to look up the Save/Restore table that points to the memory location pre-assigned
to save the register file tags. The value of pc or pc+4 is used depending on whether
or not the interrupted instruction is re-executed or not. Likewise, the table is looked
up by the hardware to find the saved register file tags when the values are restored
upon resuming the application program.

To show the effectiveness of reducing the amount of false positives in the system
by the register file tags save/restore mitigation technique, we combine the tunable

8Register spill/fill can be caused synchronously (intentionally) by applications, e.g., through
recursive or nested function calls. However, it is not deterministic when spill/fill occurs and it
varies for different processor architectures. The trap save routines exclude the ones triggered by the
application, e.g., system call traps.

98

Register
File

Tags
Store
Buffer
Tags

L1
Tag

Cache

L2
Tag

Cache

Tag
Op

0

L1
D-Cache

pc(+4)

Save/
Restore

Table

Figure 6.16: Additional DIFT components for register file tags save/restore (in
stripes) to address tag pollution in the OS space.

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 8 13 20 30 50 100 200

Ta
g

g
e

d
 6

4
-b

it
 w

o
rd

s

FLOW_MAX

User/OS/HV

User/OS

OS

User

Ideal

False Positive

False Negative

Figure 6.17: False positives and false negatives analysis after running the π-calculation
program, with the register file tags save/restore mechanism. Note again that the x-
axis is not in linear scale.

propagation mechanism (Section 6.3.1) with the save/restore mechanism and run the
same π-calculation program. Figure 6.17 shows the same statistics collected as shown
before in Figure 6.14. We can see the reduction of total tagged words by nearly
4X, when compared to the naïve DIFT (tunable propagation) solution (Table 6.2).
This greatly increases the practicality and usability of the simple tunable propagation
technique, without requiring any static analysis, and instrumentation additions to the
application binary.

99

6.5 Discussion
We first discuss the relation of our implicit information flow solutions with the
DataSafe architecture (Chapter 5), using the π example as an illustration, and then
we compare the some interesting characteristics between static and dynamic IFT
systems.

6.5.1 DIFT and DataSafe Architecture

Tracing the assembly instructions (Figure 6.11) and the control flow graph (Fig-
ure 6.12) of the core function of sprintf() that exhibits implicit information flow
shows that our proposed mechanisms in Chapter 6 is able to track these implicit in-
formation flow correctly, without any false-negatives. We now complete the picture
by showing how the DataSafe architecture can prevent the tagged data from being
output by the application.

The sprintf() function on line 5 in Figure 6.8 writes the tagged bytes to the
destination array (dst[]), which is ultimately written to the screen by the printf()
function on line 6. The printf() function recognizes that it is writing a string of
bytes, and calls the write(1, dst, len) system call, where len denotes the length
of the string. In our π program example, the length of the string is 1001, the number
of digits of the calculation. Since this system call is a synchronous system call, the
save/restore mechanism will not be triggered and the tag of the destination buffer dst
will propagate into the operating system space. In the operating system, the write
system call copies the tagged data in the dst buffer and writes them to the memory
location that is mapped to the frame buffer of the display device. The DataSafe
hardware’s output control circuitry (Section 5.2.6) will check the tag value of the data
to see if the data is allowed to be copied to the frame buffer of the display (mapped
in memory range 0x1F10000000 to 0x1F10000050 in our 64-bit Legion simulation
infrastructure, see Section 5.3.2) and disallow the data copy if the policy prohibits it.
Note also that our implicit information flow mechanisms enable tag propagation across
applications, library and the operating system (the π-program, sprintf() library
function, and the write() system call), thus confirming that DataSafe’s hardware
tracking transcends program and system boundaries.

6.5.2 Static vs. Dynamic

In this chapter, we have thus far focused on the dynamic aspect of information flow
tracking, and also on adopting and adapting the benefits of static IFT techniques
dynamically. However, there is one remaining piece that is worth mentioning as
interesting future research, and we dedicate this section to discussing some details of
it.

Although from our discussion of prior work in IFT techniques in Section 6.2, it
seems that static techniques have the positive edge against DIFT since DIFT in theory
cannot deal with implicit information flows without being overly restrictive. However,
pure static techniques suffer from a major disadvantage – static policy, in addition

100

to requiring access to the source code. RIFLE [94] made a similar observation that
static techniques allow the programmer to specify the policy, whereas in real life we
would like to let the users of the programs and the owners of the data to specify their
own policy.

Another issue with static techniques is static labeling. Since the static techniques,
such as the language-based information flow tracking [81], perform type-checking (or
label-checking) on the static program source code, the labels to be checked must
be known before the program is actually run. However, in real world situations,
each instance of the same program may have to deal with data of different security
levels. Zheng and Myers [103] introduced the concept of dynamic security labels into
static information flow tracking to allow the security labels to be assigned or changed
dynamically, thereby allowing for a more realistic usage scenario. They designed a new
language that incorporates the concept of dynamic labels and allows the programmers
to test for these dynamic labels before performing security-sensitive operations, and
they implement the ideas in the Jif language [8]. Jif extends the Java language with
static information flow control, supporting this dynamic labeling mechanism.

Below is an example program from [103] in Jif language that demonstrates how a
program in Jif controls information flow:

1: final label{L} x;
2: Channel{*x} c;
3: int{H} y;
4: switch label(y) {
5: case (int{*x} z) c.send(z);
6: else throw new UnsafeTransfer();
7: }

The final keyword prevents assignments from changing the meaning of types and
the variable x is declared as of type label, to be used as a label for other values. x in
this example has a security level low (L) in a Multi-Level Security (MLS) system. *x
dereferences the label value of x; therefore the channel c has the same security level
as x. switch label is a statement in Jif that does the dynamic label testing. In this
example, the case will not be executed since the label value of x is at not as restrictive
as the label value of y, which is assigned high (H) at line 3. If otherwise, the value of
y is assigned to z and the channel can send out the value. Having understood how
dynamic labeling is done in the static language-based information flow tracking, we
discuss the variations of IFT schemes and look at the research opportunities.

The technique we presented in Section 6.3.2 and 6.3.3 demonstrate a synergistic
approach between static and dynamic IFT analysis – using the information obtained
from static analysis to transform the program into a dynamically-enforceable program.
However, once a piece of data is tagged or labeled, there is no mechanism to change the
tag dynamically. Therefore, it is of future research value to investigate the interactions
between the dynamic labeling schemes [103] and the hardware tagging mechanism.
For example, if the hardware can dynamically reconfigure to interpret the same tag

101

value differently to enforce a different policy, a piece of sensitive data can be kept
open under different user sessions, reducing the setup and termination overhead.

6.6 Summary
In this chapter, we reviewed and categorized the various kinds of information flows
within a computer system, whether explicit or implicit. We briefly discussed the
advantages and disadvantages of static and dynamic information flow tracking systems
and showed how to practically adopt the static techniques dynamically, to achieve an
information tracking system that is both secure against implicit information flow
due to conditional execution, yet incurs minimal runtime performance overhead. We
proposed three simple yet effective techniques to address both the false-positives and
false-negatives performances of a DIFT system, i.e., tunable propagation counter,
static binary analysis and register file tags save/restore mechanisms. The chapter
ends with a discussion of future research ideas to make the hardware tagging technique
more flexible in terms of tag representation and dynamic tag values.

Table 6.4 summarizes the comparison of our information flow tracking techniques
to various prior work discussed throughout the chapter. The first three columns look
at whether or not the techniques require access to the source code and whether or not
they address the implicit information flow problem arising from control dependence
and the untaken paths in a dynamic program execution, which we address in this
chapter. These are important features in today’s computing environment. In the
next four columns we examine other forms of implicit information flows, i.e., pointer
indirection, timing, termination and other side-channels, which are difficult to solve
and provide a rich opportunity of future research. These other types of implicit
information flow and side-channel attacks are not in our threat model for this the-
sis. Finally we distinguish pure software techniques from hardware-based techniques.
Note that of the techniques that have no access to source code, there are binary trans-
lation techniques and hardware techniques. Our solutions are much faster than those
using binary translation like LIFT and DTA++, since it takes about 8-20 instruc-
tions to emulate a tag propagation operation per instruction with binary translation.
The performance overhead is around 1.5X even with parallel execution of the binary
translation [70], whereas we have essentially no execution-time overhead due to par-
allel hardware tag paths, as shown in Figure 6.3. Compared to solutions requiring
hardware changes, we cover implicit information flow, which Raksha does not, and
we require much less hardware and software changes than GLIFT, thus being more
easily deployable.

102

D
oe
s
no

t
re
qu

ir
e

so
ur
ce

co
de

C
on

tr
ol

de
pe

nd
en

ce
U
nt
ak

en
pa

th
P
oi
nt
er

in
di
re
ct
io
n

T
im

in
g

de
pe

nd
en

ce
T
er
m
in
at
io
n

ch
an

ne
l

O
th
er

si
de

-c
ha

nn
el

D
oe
s
no

t
re
qu

ir
e
ne

w
ha

rd
w
ar
e

Fe
nt
on

[4
4]

7

3

(s
pe

ci
al

re
tu
rn

in
st
ru
ct
io
n)

7
7

7
7

7
3

La
ng

ua
ge
-

ba
se
d
[8
1]

7
3

3
3

3
3

3
3

H
iS
ta
r
[1
01

]
7

7
7

7
3

3
3

3

G
LI
F
T

[9
2]

7

3

(p
re
di
ca
te

ar
ch
it
ec
tu
re
)

3

(p
re
di
ca
te

ar
ch
it
ec
tu
re
)

3

(m
em

or
y

bo
un

ds
)

7
7

7
7

R
IF

LE
[9
4]

3
3

?
(u
nc

le
ar

fr
om

th
e
pa

pe
r)

7
7

(M
en
ti
on

ed
bu

t
no

t
ad

dr
es
se
d)

7
7

LI
F
T

[7
7]

3
7

7
7

7
7

7
3

E
ge
le

et
al
.[
41

]
3

3

(s
co
pe

of
br
an

ch
)

7
3

7
7

7
3

P
an

or
am

a
[9
9]

3

7

(e
xc
ep
t
fo
r

ke
yb

oa
rd

in
pu

t)

7
3

7
7

7
3

D
T
A
+
+

[5
5]

3

3

(s
ta
ti
c

an
al
ys
is
)

3

(b
in
ar
y

in
st
ru
m
en
ta
-

ti
on

)

7
7

7
7

3

T
hi
s
th
es
is

3

3

(s
ta
ti
c

an
al
ys
is
)

3

(b
in
ar
y

in
st
ru
m
en
ta
-

ti
on

)

7

7

(p
ar
ti
al
ly

m
it
ig
at
ed

)

7

(p
ar
ti
al
ly

m
it
ig
at
ed

)
7

7

Ta
bl
e
6.
4:

C
om

pa
ri
so
n
of

va
ri
ou

s
in
fo
rm

at
io
n
flo

w
tr
ac
ki
ng

te
ch
ni
qu

es
.

103

Chapter 7

Conclusion and Future Work

This thesis explores the security architectures that focus on the protection of data
confidentiality and the data-specific policies, such that it is possible to realize the
concept of self-protecting data. It is of paramount importance today, especially with
the shift of the computing paradigm toward ubiquitous computing, where data can
be stored, accessed and processed anywhere, anytime using virtually any application
that is available.

In Chapter 4 of this thesis, we leverage the SP security architecture [37, 60], which
provides a simple yet flexible software-hardware mechanism for protecting a Trusted
Software Module (TSM). This enables us to build applications to express and enforce
different security policies, without depending on the operating system which may
contain vulnerabilities or be malicious. We demonstrated the implementation of an
originator-controlled (ORCON) distributed information sharing policy for documents.
Such an access control policy is difficult to achieve with only MAC or DAC mecha-
nisms. Our modified vi application is a proof-of-concept of the effectiveness of the SP
hardware-software architecture. Furthermore, to enable such data protection policy
for arbitrary applications, we developed a general methodology for trust-partitioning
an application, which is useful not only for our information sharing policy, but more
generally for separating out the security-critical parts of an application.

Chapter 5 takes a step further to see how we can achieve similar data protec-
tion, without needing to partition an application into trusted and untrusted parts,
which would have to be done for each application. We want to protect legacy code as
well. We indeed achieve this by enabling owners of sensitive data to define a security
policy for their encrypted data, then allowing authorized users and unmodified third-
party applications to decrypt and use this data, with the assurance that the data’s
confidentiality policy will be enforced. Furthermore, DataSafe architecture prevents
illegitimate secondary dissemination of protected data by authorized users by pre-
venting the plaintext data from leaking out of these authorized use sessions. Data
is protected even if transformed and obfuscated, across applications and user-system
boundaries.

Our DataSafe software-hardware architecture uses enhanced dynamic informa-
tion flow tracking (DIFT) mechanisms to persistently track and propagate data in-
use, and to perform nonbypassable output control to prevent leaking of confidential

104

data. Because this is done in hardware, performance overhead is minimal. However,
unlike previous hardware solutions, our software components support flexible secu-
rity policies that bridge the semantic gap between software flexibility and efficient
hardware-enforced policies. In addition, our solution is application-independent, thus
supporting both legacy and new but unvetted applications and, more importantly, it
provides the separation of data protection from applications, which we believe is the
right architectural abstraction.

In Chapter 6, we tackle the problem of implicit information flow. We propose
several alternative solutions, which do not require access to the source code. We
reduce the false positives significantly while ensuring no false negatives, thus making
the system more usable and deployable, without sacrificing security.

7.1 Future Work
There are a number of possible future research directions that can be extended beyond
this thesis. We list a few of the short- and long-term research ideas below:

• As we pointed out in Chapter 3, this thesis assumes that trusted paths exist
between the user input and the microprocessor, and between the microprocessor
and the display. Nevertheless, it is interesting to explore how to incorporate
these peripheral devices into the trusted computing base and how to construct
the architecture such that the hardware policy checking (Chapter 5) can be
delegated to the devices, if the devices also recognize the policy tags of the data.
This is of particular interest in light of the rapid development of System-on-Chip
(SoC) computing devices where most of the system functionalities are integrated
on-chip. If the hardware policy enforcement mechanism can be extended to
other components on the same chip, then it is possible to achieve system-level
policy enforcement, as opposed to the processor-level enforcement in Chapter 5.

• Once we have the data confidentiality protections proposed in this thesis, the
natural next step is to extend the data confidentiality protection across ma-
chines. This is different from the current protection where data traveling be-
tween machines are encrypted and thus protected. However, we would like to
specify conditions where data are safe to travel between computing devices un-
encrypted, e.g., through the use of remote attestation to verify the authenticity
of the connected device before sending out plaintext through secure communi-
cation channels.

105

Bibliography

[1] A Small C Program for Calculating 1000 Digits of π. http://www.boo.net/

~jasonp/pigjerr.
[2] Adobe Acrobat Family. http://www.adobe.com/products/acrobat.
[3] Advanced Access Content System (AACS). http://www.aacsla.com/home.
[4] Automatic Key-Finding for AES. https://citp.princeton.edu/memory-content/

src/aeskeyfind-1.0.tar.gz.
[5] Automatic Key-Finding for RSA. https://citp.princeton.edu/memory-content/

src/rsakeyfind-1.0.tar.gz.
[6] Content Scramble System (CSS). http://www.dvdcca.org/css/.
[7] eCryptfs: Enterprise Cryptographic Filesystem. https://launchpad.net/

ecryptfs.
[8] Jif: Java + Information Flow. http://www.cs.cornell.edu/jif/.
[9] Mandatory Access Control of FreeBSD. http://www.freebsd.org/doc/handbook/

mac.html.
[10] OpenSSL: The Open Source Toolkit for SSL/TLS. https://www.openssl.org/.
[11] RubyForge: Home for Open Source Ruby Projects. https://rubyforge.org/.
[12] Secure Information Sharing Architecture (SISA) Alliance. http://www.

sisaalliance.com/.
[13] Security-Enhanced Linux. http://www.nsa.gov/research/selinux/index.shtml.
[14] The Traditional vi. http://ex-vi.sourceforge.net/.
[15] Xen Security Advisory 7 (CVE-2012-0217) - PV Privilege Escalation, 2012.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0217.
[16] Mohammed I. Al-Saleh and Jedidiah R. Crandall. On Information Flow for

intrusion Detection: What If Accurate Full-System Dynamic Information Flow
Tracking Was Possible? In Proceedings of the 19th Workshop on New Security
Paradigms, pages 17–32, 2010.

[17] Ross J. Anderson and Markus G. Kuhn. Low Cost Attacks on Tamper Resistant
Devices. In Proceedings of the 5th International Workshop on Security Protocols,
pages 125–136, 1998.

[18] David Brumley, Juan Caballero, Zhenkai Liang, James Newsome, and Dawn
Song. Towards Automatic Discovery of Deviations in Binary Implementations
with Applications to Error Detection and Fingerprint Generation. In Proceed-
ings of 16th USENIX Security Symposium, pages 15:1–15:16, 2007.

[19] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for
Large Groups (Extended Abstract). In Proceedings of the 17th Annual Interna-

106

tional Cryptology Conference on Advances in Cryptology, pages 410–424, 1997.
[20] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. Anti-Taint-Analysis: Prac-

tical Evasion Techniques Against Information Flow Based Malware Defense.
Technical report, Secure Systems Lab at Stony Brook University, 2007.

[21] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. On the Limits of Information
Flow Techniques for Malware Analysis and Containment. In Proceedings of
the 5th international Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 143–163, 2008.

[22] David Challener, Kent Yoder, Ryan Catherman, and David Safford. A Practical
Guide to Trusted Computing, chapter 15, pages 271–276. IBM Press, 2008.

[23] David Champagne. Scalable Security Architecture for Trusted Software. Phd
thesis, Princeton University, 2010.

[24] David Champagne, Reouven Elbaz, and Ruby B. Lee. The Reduced Address
Space (RAS) for Application Memory Authentication. In Proceedings of the
11th International Conference on Information Security, pages 47–63, 2008.

[25] David Champagne and Ruby B. Lee. Scalable Architectural Support for Trusted
Software. In Proceedings of the 16th IEEE International Symposium on High
Performance Computer Architecture, pages 1–12, 2010.

[26] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
Proceedings of the 4th International Workshop on Cryptographic Hardware and
Embedded Systems, pages 13–28, 2003.

[27] David Chaum and Eugène Van Heyst. Group Signatures. In Proceedings of the
10th Annual International Conference on Theory and Application of Crypto-
graphic Techniques, pages 257–265, 1991.

[28] Lidong Chen and Torben P. Pedersen. New Group Signature Schemes. In Pro-
ceedings of the 13th Annual International Conference on Theory and Application
of Cryptographic Techniques, pages 171–181, 1994.

[29] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam,
Carl A. Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Over-
shadow: A Virtualization-Based Approach to Retrofitting Protection in Com-
modity Operating Systems. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 2–13, 2008.

[30] Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. A Software-
Hardware Architecture for Self-Protecting Data. In Proceedings of the 19th
ACM Conference on Computer and Communications Security, 2012.

[31] Yu-Yuan Chen and Ruby B. Lee. Hardware-Assisted Application-Level Access
Control. In Proceedings of the 12th International Conference on Information
Security, pages 363–378, 2009.

[32] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen, Ed-
ward XueJun Wu, and Dawn Song. MACE: Model-Inference-Assisted Concolic
Exploration for Protocol and Vulnerability Discovery. In Proceedings of the 20th
USENIX Security Symposium, pages 139–154, 2011.

[33] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosen-
blum. Understanding Data Lifetime Via Whole System Simulation. In Proceed-

107

ings of the 13th USENIX Security Symposium, pages 321–336, 2004.
[34] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a Flexible

Information Flow Architecture for Software Security. In Proceedings of the
ACM/IEEE International Symposium on Computer Architecture, pages 482–
493, 2007.

[35] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel
Winandy. Privilege Escalation Attacks on Android. In Proceedings of the 13th
International Conference on Information Security, pages 346–360, 2011.

[36] Jeffrey S. Dwoskin, Mahadevan Gomathisankaran, Yu-Yuan Chen, and Ruby B.
Lee. A Framework for Testing Hardware-Software Security Architectures. In
Proceedings of the 26th Annual Computer Security Applications Conference,
pages 387–397, 2010.

[37] Jeffrey S. Dwoskin and Ruby B. Lee. Hardware-Rooted Trust for Secure Key
Management and Transient Trust. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, pages 389–400, 2007.

[38] Jeffrey S. Dwoskin, Dahai Xu, Jianwei Huang, Mung Chiang, and Ruby B.
Lee. Secure Key Management Architecture Against Sensor-Node Fabrication
Attacks. In Proceedings of the 50th Annual IEEE Global Telecommunications
Conference, pages 166–171, 2007.

[39] Petros Efstathopoulos and Eddie Kohler. Manageable Fine-Grained Information
Flow. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference
on Computer Systems, pages 301–313, 2008.

[40] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.
Labels and Event Processes in the Asbestos Operating System. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles, pages 17–30,
2005.

[41] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song.
Dynamic Spyware Analysis. In Proceeding of the USENIX Annual Technical
Conference, pages 18:1–18:14, 2007.

[42] Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B. Lee, Nachiketh
Potlapally, and Lionel Torres. Transactions on Computational Science IV. chap-
ter Hardware Mechanisms for Memory Authentication: A Survey of Existing
Techniques and Engines, pages 1–22. 2009.

[43] Jeremy Epstein. Fifteen Years after TX: A Look Back at High Assurance Multi-
Level Secure Windowing. In Proceedings of the 22nd Annual Computer Security
Applications Conference, pages 301–320, 2006.

[44] J. S. Fenton. Memoryless Subsystems. The Computer Journal, 17(2):143–147,
February 1974.

[45] Bryan Ford and Russ Cox. Vx32: Lightweight User-Level Sandboxing on the
x86. In Proceedings of the USENIX Annual Technical Conference, pages 293–
306, 2008.

[46] B. Gassend, G.E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and
Hash Trees for Efficient Memory Integrity Verification. In Proceedings of the 9th
IEEE International Symposium on High Performance Computer Architecture,

108

pages 295–306, 2003.
[47] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford

University, 2009.
[48] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption & How to Play

Mental Poker Keeping Secret All Partial Information. In Proceedings of the 14th
annual ACM Symposium on Theory of Computing, pages 365–377, 1982.

[49] Richard Graubart. On The Need for A Third Form of Access Control. In 12th
National Computer Security Conference Proceedings, pages 296–303, 1989.

[50] Peter Gutmann. Secure Deletion of Data From Magnetic and Solid-State Mem-
ory. In Proceedings of the 6th Conference on USENIX Security Symposium,
pages 77–89, 1996.

[51] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and
Edward W. Felten. Lest We Remember: Cold Boot Attacks on Encryption
Keys. In Proceedings of the 17th Conference on USENIX Security Symposium,
pages 45–60, 2008.

[52] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 1:
Basic Architecture. http://www.intel.com/Assets/PDF/manual/253665.pdf.

[53] Intel. Isolated Execution. http://software.intel.com/en-us/articles/

isolated-execution/.
[54] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Ad-

dition of a Small Fully-Associative Cache and Prefetch Buffers. In Proceedings
of the 17th Annual International Symposium on Computer Architecture, pages
364–373, 1990.

[55] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation. In
Proceedings of the Network and Distributed System Security Symposium, 2011.

[56] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Group Encryption. In
Proceedings of the 13th International Conference on Theory and Application of
Cryptology and Information Security, pages 181–199. 2007.

[57] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analy-
sis. In Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, pages 388–397, 1999.

[58] Ulrich Kohl, Jeffrey Lotspiech, and Stefan Nusser. Security for the Digital
Library – Protectiong Documents Rather Than Channels. In Proceedings of
the 9th International Workshop on Database and Expert Systems Applications,
page 316.

[59] Abhishek Kumar. Discovering Passwords in the Memory, 2003. White Paper,
Paladion Networks.

[60] Ruby B. Lee, Peter C. S. Kwan, John P. McGregor, Jeffrey Dwoskin, and
Zhenghong Wang. Architecture for Protecting Critical Secrets in Microproces-
sors. In Proceedings of the 32nd Annual International Symposium on Computer
Architecture, pages 2–13, 2005.

[61] John Leyden. Blu-ray DRM Defeated: Copy-protection Cracked Again, 2007.
http://www.theregister.co.uk/2007/01/23/blu-ray_drm_cracked/.

109

[62] Zhenkai Liang, V. N. Venkatakrishnan, and R. Sekar. Isolated Program Execu-
tion: An Application Transparent Approach for Executing Untrusted Programs.
In Proceedings of the 19th Annual Computer Security Applications Conference,
pages 182–191, 2003.

[63] David Lie, Chandramohan A. Thekkath, and Mark Horowitz. Implementing an
Untrusted Operating System on Trusted Hardware. In Proceedings of the 19th
ACM symposium on Operating systems principles, pages 178–192, 2003.

[64] Enrico Lovat and Alexander Pretschner. Data-Centric Multi-Layer Usage Con-
trol Enforcement: A Social Network Example. In Proceedings of the 16th ACM
Symposium on Access Control Models and Technologies, pages 151–152, 2011.

[65] C. J. McCollum, J. R. Messing, and L. Notargiacomo. Beyond the Pale of MAC
and DAC – Defining New Forms of Access Control. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 190–200, 1990.

[66] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,
Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB Reduction and At-
testation. In Proceedings of the 31st IEEE Symposium on Security and Privacy,
pages 143–158, 2010.

[67] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and
Hiroshi Isozaki. Flicker: An Execution Infrastructure for TCB Minimization. In
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems, pages 315–328, 2008.

[68] Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov. Do Windows Users
Follow the Principle of Least Privilege? Investigating User Account Control
Practices. In Proceedings of the 6th Symposium on Usable Privacy and Security,
pages 1–13, 2010.

[69] Microsoft Security Bulletin MS12-042. Vulnerabilities in Windows Kernel
Could Allow Elevation of Privilege, 2012. http://technet.microsoft.com/en-us/
security/bulletin/MS12-042.

[70] Vijay Nagarajan, Ho-Seop Kim, Youfeng Wu, and Rajiv Gupta. Dynamic In-
formation Flow Tracking on Multicores. In Proceedings of the Workshop on
Interaction Between Compilers and Computer Architectures, 2008.

[71] Kenneth Ocheltree, Steven Millman, David Hobbs, Martin Mcdonnell, Jason
Nieh, and Ricardo Baratto. Net2Display: A Proposed VESA Standard for
Remoting Displays and I/O Devices over Networks. In Proceedings of the 2006
Americas Display Engineering and Applications Conference, 2006.

[72] Oracle. Solaris Operating System Source Code Guidelines. http://goo.gl/Ftwkc.
[73] Jaehong Park and Ravi Sandhu. Towards Usage Control Models: Beyond Tra-

ditional Access Control. In Proceedings of the 7th ACM Symposium on Access
Control Models and Technologies, pages 57–64, 2002.

[74] Jaehong Park and Ravi Sandhu. The UCONABC Usage Control Model. ACM
Trans. Inf. Syst. Secur., 7(1):128–174, 2004.

[75] Cole Petrochko. DHC: EHR Data Target for Identity Thieves, 2011. http:

//www.medpagetoday.com/PracticeManagement/InformationTechnology/30074.
[76] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter. Mechanisms

for Usage Control. In Proceedings of the 3rd ACM Symposium on Information,
110

Computer and Communications Security, pages 240–244, 2008.
[77] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and

Youfeng Wu. LIFT: A Low-Overhead Practical Information Flow Tracking
System for Detecting Security Attacks. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 135–148,
2006.

[78] Reuters. Path Fumble Highlights Internet Privacy Concerns. http://goo.gl/

vonKy.
[79] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Us-

ing Address Independent Seed Encryption and Bonsai Merkle Trees to Make
Secure Processors OS- and Performance-Friendly. In Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 183–
196, 2007.

[80] Joanna Rutkowska. The MS-DOS Security Model. http://theinvisiblethings.
blogspot.com/2010/08/ms-dos-security-model.html.

[81] A. Sabelfeld and A.C. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

[82] Arijit Saha and Nilotpal Manna. Digital Principles and Logic Design. Jones
and Bartlett Publishers, Inc., 1st edition, 2007.

[83] W. Shi, J.B. Fryman, G. Gu, H.-H.S. Lee, Y. Zhang, and J. Yang. InfoS-
hield: A Security Architecture for Protecting Information Usage in Memory. In
Proceedings of the 12th IEEE International Symposium on High Performance
Computer Architecture, pages 222–231, 2006.

[84] Arrvindh Shriraman and Sandhya Dwarkadas. Sentry: Light-Weight Auxil-
iary Memory Access Control. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, pages 407–418, 2010.

[85] Lenin Singaravelu, Calton Pu, Hermann Härtig, and Christian Helmuth. Re-
ducing TCB Complexity for Security-Sensitive Applications: Three Case Stud-
ies. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems, pages 161–174, 2006.

[86] Asia Slowinska and Herbert Bos. Pointless Tainting? Evaluating the Practi-
cality of Pointer Tainting. In Proceedings of the 4th ACM SIGOPS/EuroSys
European Conference on Computer Systems, pages 61–74, 2009.

[87] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, Newso James, Pongsin Poosankam, and Prateek Saxena.
BitBlaze: A New Approach to Computer Security via Binary Analysis. In Pro-
ceedings of the 4th International Conference on Information Systems Security.
Keynote invited paper, pages 1–25, 2008.

[88] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srini-
vas Devadas. AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing. In Proceedings of the 17th Annual International Conference on
Supercomputing, pages 160–171, 2003.

[89] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
Program Execution Via Dynamic Information Flow Tracking. In Proceedings
of the 11th International Conference on Architectural Support for Programming

111

Languages and Operating Systems, pages 85–96, 2004.
[90] Sun Microsystems. OpenSPARC T1 Microarchitecture Specification, 2006.
[91] Alexander Tereshkin. Evil Maid Goes After PGP Whole Disk Encryption. In

Proceedings of the 3rd International Conference on Security of Information and
Networks, page 2, 2010.

[92] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Fred-
eric T. Chong, and Timothy Sherwood. Complete Information Flow Tracking
From the Gates Up. In Proceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
109–120, 2009.

[93] Trusted Computing Group. Trusted Platform Module. https://www.

trustedcomputinggroup.org/home.
[94] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guil-

herme Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani, and
David I. August. RIFLE: An Architectural Framework for User-Centric
Information-Flow Security. In Proceedings of the 37th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 243–254, 2004.

[95] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
Homomorphic Encryption Over the Integers. In Proceedings of the 29th Annual
International Conference on Theory and Applications of Cryptographic Tech-
niques, pages 24–43, 2010.

[96] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn, Cliff
Frey, David Ziegler, Frans Kaashoek, Robert Morris, and David Mazières. La-
bels and Event Processes in the Asbestos Operating System. ACM Trans.
Comput. Syst., 25, December 2007.

[97] M.S. Wang and R.B. Lee. Architecture for a Non-Copyable Disk (NCdisk)
Using a Secret-Protection (SP) SoC Solution. In Proceedings of the 41st IEEE
Asilomar Conference on Signals, Systems and Computers, pages 1999–2003,
2007.

[98] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian Memory Pro-
tection. In Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 304–316,
2002.

[99] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: Capturing System-Wide Information Flow for Malware Detection
and Analysis. In Proceedings of the 14th ACM Conference on Computer and
Communications Security, pages 116–127, 2007.

[100] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox. TightLip: Keep-
ing Applications from Spilling the Beans. In Proceedings of the 4th USENIX
Symposium on Networked Systems Design and Implementation, 2007.

[101] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making Information Flow Explicit in HiStar. In Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementation, pages 263–278, 2006.

[102] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park. For-
mal Model and Policy Specification of Usage Control. ACM Trans. Inf. Syst.

112

Secur., 8(4):351–387, 2005.
[103] Lantian Zheng and Andrew C. Myers. Dynamic Security Labels and Static

Information Flow Control. Int. J. Inf. Secur., 6:67–84, March 2007.

113

Appendix A

List of File Access Application
Programming Interfaces (APIs) in C
and Ruby Language

A.1 File Access APIs in C

Function Description

fopen Opens a file

freopen Opens a different file with an existing stream

File fflush Synchronizes an output stream with the actual file

Access fclose Closes a file

setbuf Sets the buffer for a file stream

setvbuf Sets the buffer and its size for a file stream

Direct fread Reads from a file

I/O fwrite Writes to a file

fgetc Reads a byte from a file stream

Unformatted fgets Reads a byte string from a file stream

I/O fputc Writes a byte to a file stream

fputs Writes a byte string to a file stream

ungetc Puts a byte back into a file stream

fscanf Reads formatted byte input from a file stream

vfscanf Reads formatted input byte from a file stream using vari-
able argument list

Formatted fprintf Prints formatted byte output to a file stream

114

I/O vfprintf Prints formatted byte output to a file stream using
vsprintf variable argument list

ftell Returns the current file position indicator

fgetpos Gets the file position indicator

File fseek Moves the file position indicator to a specific location in
a file

Positioning fsetpos Moves the file position indicator to a specific location in
a file

rewind Moves the file position indicator to the beginning in a file

Error feof Checks for the end-of-file

Handling ferror Checks for a file error

Operations remove Erases a file

on Files rename Renames a file

We need to redirect File Positioning APIs since the encrypted file may have a different
size from the decrypted file. Therefore the redirection mechanism needs to keep track
of the file positions of the DataSafe-protected files, similarly for the Error Handling
APIs. Other file access APIs need not be redirected for DataSafe-protected file. For
example, the tmpfile function that returns a pointer to a temporary file needs not
be redirected since DataSafe-protected file will not be a temporary file. Overall, out
of all 68 File Access APIs in C, 27 of them need to be redirected, as shown in the
above table.

A.2 File Access APIs in Ruby

Class Method
Type

Function Description

foreach(){block} Executes the block for every line in the file

new Returns a new IO object

open A synonym for new

open(){block} Like open, except that the IO object will auto-
matically be closed when the block terminates

IO Public
Class
Methods

read Opens the file, optionally seeks to the given off-
set, then returns length bytes (defaulting to the
rest of the file)

readlines Reads the entire file specified by name as indi-
vidual lines, and returns those lines in an array

115

sysopen Opens the given path, returning the underlying
file descriptor

bytes Returns an enumerator that gives each byte in a
file

each_char{block} Calls the given block once for each character in
a file, passing the character as an argument

close Closes a file and flushes any pending writes to
the operating system

each Executes the block for every line in a file
each_line

each_byte Calls the given block once for each byte in a file

each_char Calls the given block once for each character in
a file

eof Returns true if at end of file
eof?

flush Flushes any buffered data within a file to the
underlying operating system

fsync Immediately writes all buffered data in a file to
disk

getc Gets the next 8-bit byte from a file

Public gets Reads the next line from a file

IO Instance lineno Returns the current line number in a file

Methods lines Returns an enumerator that gives each line in a
file

pos Returns the current offset (in bytes) of a file
tell

pos = Seeks to the given position (in bytes) in a file

print Writes the given object(s) to a file

printf Formats and writes to a file

putc Writes the character to a file

puts Writes each element on a new line to a file

read Reads at most length bytes from a file

read_nonblock Reads at most maxlen bytes from a file using
read(2) system call after O_NONBLOCK is set for
the underlying file descriptor

116

readchar Reads a character as with getc

readline Reads a line as with gets

readlines Reads all of the lines in a file, and returns them
in an array

readpartial Reads at most maxlen bytes from the file

reopen Reassociates a stream with the another stream

rewind Positions to the beginning of a file, resetting
lineno to zero

seek Seeks to a given offset in the file

IO Public
Instance
Methods

sysread Reads integer bytes from a file using a low-level
read and returns them as a string

sysseek Seeks to a given offset in a file

syswrite Writes the given string to a file using a low-level
write

ungetc Pushes back one character onto a file

write Write a given string to a file

write_nonblock Write a given string to a file using write(2) sys-
tem call after O_NONBLOCK is set for the underly-
ing file descriptor

new Opens the file and returns a new File object

Public rename Renames the given file to the new name

Class truncate Truncates the file

File Methods delete Deletes the files
unlink

Public
Instance
Methods

flock Locks or unlocks a file

truncate Truncates the file

Out of all 67 public methods in the IO class in Ruby 1.8.7, we need to redirect 44 of
them, whereas, we need to redirect 7 out of 61 public methods in the File class, as
listed in the above table.

117

