
Architecture for a Non-Copyable Disk (NCdisk)

Using a Secret-Protection (SP) SoC Solution
Michael S. Wang and Ruby B. Lee

Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA

Abstract - Piracy of copyrighted digital contents, such as
movies and music is rampant in cyberspace. A piece of digital
material may be repeatedly copied and proliferated
throughout the Internet with ease. We examined both software
and hardware vulnerabilities in existing digital copy-protection
methods. As a result, we propose a non-copyable disk (NCdisk)
that makes it significantly harder for digital contents to be
copied. Any digital content written onto the NCdisk can only
be read through a predefined set of outputs of the NCdisk, and
the original plaintext digital form may never be read out of the
NCdisk. We add a minimal set of components based on the
Secret-Protection (SP) architecture to the existing disk's SoC
chipset to attribute the disk with the non-copyable property.
We further present the security protocol to be used along with
the NCdisk to provide a copy-protected digital movie download
scenario.

I. INTRODUCTION

Today, an immense amount of information exists in
digital form. A large percentage of it is copyrighted contents
that should only be available to authorized users. In such
cases, the user is usually permitted to read (or play) the
contents but should not be allowed to copy and distribute
the contents. Nevertheless, unauthorized copying and
distribution of digital contents occur frequently and is a
major problem for many content providers.

This content-piracy problem is currently a serious
concern for the movie and music industry. Due to the
increasing Internet bandwidth and the emergence of more
powerful portable player devices, the demand for directly
downloading media contents from the Internet to an end-
user's player device is on the rise. A typical copy-protection
method [1] used to prevent the illegal copying of these
media contents is as follows: a content provider installs his
own software onto the user's player device, such as a PC, an
iPod, etc. Then, the provider sends encrypted contents to the
user's device. In order to obtain the keys used to decrypt
and read the encrypted contents, the user must authenticate
with the content provider or with a third party licensing
clearinghouse. Next, the keys are sent to and hidden on the
user's device. Only the content provider's installed software
on that device can find and use the keys to decrypt the
encrypted contents. Hence, this copy-protection method
restricts the copying of contents by sending only encrypted
contents over public networks, hiding keys on the user's
devices, and allowing only the provider's special software to
find and use these keys.

A major weakness with the existing copy-protection
method described above is that the encrypted contents are

sent to various kinds of player devices that do not have
secure processing architectures to hide the decryption keys.
In the underlying processor architectures, machine
instructions, registers, memories and buses are open
resources that can be controlled or accessed by the operating
system (OS), application software and also by malicious
software. Furthermore, since both the application software
and the OS can have bugs and software vulnerabilities,
hackers can use these software weaknesses to find the
hidden decryption keys.

We propose a non-copyable disk (NCdisk), which is a
storage device that automatically encrypts all data written
into it and does not allow the plaintext form of the data to
leave it except through controlled display outputs. We
propose a minimal set of changes to an existing disk
controller System-on-Chip (SoC) to attribute the disk with
the non-copyable property. Our proposal is based on the
Secret-Protection (SP) secure processor architecture
[2][3][4], which provides a secure environment to store
critical secrets and allows only a trusted software module to
access these critical secrets.

II. THREAT MODEL

We assume that the content provider can write a trusted
software module that will be allowed to use and access
critical secrets but cannot leak these secrets out. Further, we
assume that any other software is un-trusted and should not
be allowed to access critical secrets. The attacker is able to
mount software attacks. He can monitor network
transactions and probe external memories and buses. We
assume that physically probing inside a chip, such as a
System-on-Chip (SOC) is more difficult without destroying
functionality, and hence is not in our threat model. We also
do not consider side-channel attacks on a SoC

III. NCDISK CONCEPT

Figure 1 shows a flowchart of the NCdisk concept. The
NCdisk is a data storage device, in which any digital content
written into the device is automatically encrypted using a
key that is generated by the NCisk that never leaves the
NCdisk. All data stored on the NCdisk are in such an
encrypted form, and the stored data can only be read
through a set of predefined outputs, such that the digital
plaintext form of the data never leaves the NCdisk.

Both plaintext data and encrypted data may be written
onto the NCdisk. Each encrypted data is encrypted using a

978-1-4244-2110-7/08/$25.00 C2007 IEEE 1999

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 17:55 from IEEE Xplore. Restrictions apply.

itput Analog Display
'l A(m)

DiTrusted Digital

Display EPMK(M)

secret key, called the Content-provider Media Key (CMK),
which is known only by the content provider and the
NCdisk. The CMK is never actually stored anywhere but is
instead generated using a shared key between the content
provider and the NCdisk. We examine the detailed key
management protocol in Section V. Both the content
provider and the NCdisk must have a secure location to
generate and use the CMK so that it is not revealed to
anyone else. We assume that the content provider has such a

secure location, and we show in Section IV how the NCdisk
achieves this. If the CMK is kept secret, then the plaintext
form of the encrypted data will not be leaked out during the
input phase of the NCdisk.

Either plaintext data or CMK-encrypted data can be
input into the NCdisk. In the former case, it is first
encrypted using the Device Media Key (DMK). In the latter
case, the NCdisk first decrypts the data using the CMK and
then re-encrypts the data using the DMK. The DMK is
generated within the NCdisk and it never leaves the disk.
We discuss in Section IV how to keep the DMK secret from
everyone, including the user of the disk. Note also that each
input data to the NCdisk is encrypted using a different DMK,
as described in detail in Section V. Encrypting all the data
stored on the NCdisk using the DMK protects the storage
phase of the data, by ensuring that the plaintext version of
the digital data never resides on the disk.

Any data stored on the NCdisk can only be read out of
the disk through a pre-defined set of output channels. An
encrypted digital data can be decrypted and converted to an

analog format, which can then be sent out of the NCdisk.
Alternatively, an encrypted digital data can be decrypted
using the DMK and re-encrypted using a Player Media Key
(PMK), which is only known by a trusted digital display and
the NCdisk. Both the trusted digital display and the NCdisk
must have a secure location to generate and use the PMK so

that it is not revealed to anyone else. The PMK-encrypted
data is sent out of the NCdisk. Third, if the NCdisk has an

integrated display, such as a built-in LCD screen like in the
iPod devices, then the NCdisk may decrypt the stored data
and send the digital streaming data to the integrated display.
It is assumed that it is hard for a casual attacker to siphon
off information on the internal link connecting the NCdisk
and its integrated display. Note that this integrated display is
not foolproof against more dedicated attackers. Nevertheless,
this integrated display raises the bar against possible attacks
to siphon off information. In all three pre-defined output
channels, the (high-quality) plaintext version of the digital
data never leaves the NCdisk in the output phase of the

NCdisk. To summarize, the NCdisk ensures that no one, not
even the legitimate user of the NCdisk, can obtain a copy of
the digital plaintext version of the data stored on the disk.

The NCdisk addresses some of the weaknesses of
existing copy-protection methods. Instead of sending
copyrighted movie or music contents to insecure PCs or
portable media players, a content provider can instead send
these contents to a user's NCdisk. In a way, the NCdisk
functions like a book in that only those people who have
physical possession of the NCdisk can view the contents
stored on it. Just as it would be very inconvenient for a
person to copy and distribute the book, a user would have a
very difficult time trying to copy the original digital
plaintext data stored on the NCdisk. However, unlike a book,
the NCdisk provides the convenience of directly
downloading and viewing copyrighted digital contents
without the need to physically travel to a store. Also, an
NCdisk can store many items of digital content.

IV. NCDISK SP-BASED SOC ARCHITECTURE

The NCdisk concept ultimately boils down to achieving
two goals. The first goal is to enable the NCdisk to be able
to store secret keys and ensure that these keys never leak out
of the NCdisk. The second goal is to fully predefine how
data can be read out of the NCdisk such that the original
digital plaintext data is never leaked out. We do not achieve
these two goals by redesigning a completely new disk
architecture from scratch. Instead, we only need to be
concerned with the disk controller components, which
control how data is written in or read out of a disk. We
achieve these two goals by implementing a SoC consisting
of existing disk controller components, plus a minimal set of
additions. This new SoC can then be connected to the rest of
the existing disk components to turn an existing disk [5] into
an NCdisk (see Figure 2.)

The existing disk controller components in the SoC
include a disk controller processor, a read/write buffer

Extended TSM SW Output to Output to ROM
TrustedI I

&Content oDigital 1/0 Analog integrated TSM Software

*Poider Keys///, ,

Non-volatile Register

New Outputs New Cheacsked Encrypted Existing

Fig 2. SP SoC for NCdisk (not drawn to scale)

control, and some RAM and ROM memory. The additions
are divided into two types. The first type of additions comes

from the Secret-Protection (SP) architecture[2] [3] [4], which

2000

Input Ett'(n) Dip(my)Plaintext (im) -i
A

Encrypted
Text ECMK(m) _ P

[A SP-enhanced Disk Controller SoC

Fig 1. NCdisk Concept

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 17:55 from IEEE Xplore. Restrictions apply.

provides a secure environment for a set of trusted software
to access critical secrets, while preventing these secrets from
leaking out of the SoC. The SP additions include new SP
registers and hardware support for new SP instructions.
Also, portions of the RAM and ROM are dedicated for SP
software. The second type of additions is the output
interface. There are three different output interfaces, which
encompass the predefined set of outputs. Below, we
examine how this SP SoC achieves the two goals of the
NCdisk.

A. Storing and Protecting Keys

The SP-based SoC stores keys in two places. First, the
SoC stores a 128-bit key called the device key in a non-
volatile on-chip register. All NCdisks are manufactured with
an empty device key register, and after deployment, each
NCdisk self-generates its own device key. This device key
will never leave the NCdisk. Second, user and content
provider keys can all be stored off-chip, encrypted with the
device key. Since the protection of the off-chip keys hinge
on the protection of the device key, we focus on efforts to
protect this on-chip device key.

The Trusted Software Module (TSM) of the SP
architecture plays an important role in protecting the device
key. TSM ensures that no software can access the device
key register. Instead, only the TSM software stored in the
on-chip ROM can get a key that is derived from the device
key. Table 1 contains SP instructions used for protecting the

SP Instruction Description
Begin_TSM Begins execution of the TSM
(on-chip ROM) (First enables access of TSM

scratchpad memory)
End_TSM Ends execution of the TSM
(TSM only) (First disables access of TSM

scratchpad memory)
SecureMem_Set Sets the StartAddr and
(TSM only) EndAddr registers to define

the TSM scratchpad memory
DK_Derive_Key Derive a new encryption key
(TSM only) using the device key and an

input key id
Table 1. SP Instructions for NCdisk

TSM and its execution.
The SP instruction Begin_TSM turns on the Concealed

Execution Mode (CEM) status bit register, while the
End_TSM instruction turns off the CEM status bit register.
The Begin_TSM instruction can only be invoked by
programs stored on the on-chip TSM ROM. Also, the other
SP instructions, such as End_TSM, SecureMem_Set, and
DK_Derive_Key may only be invoked when the CEM
status bit is turned on. This implies that the TSM software
stored in ROM can execute the SP instructions only after the
Begin_TSM instruction is invoked first. Further, this TSM
ROM code can call more complicated TSM code that is
stored off-chip. This extended TSM code must be integrity-

checked before it is run. Note that since all TSM software
must start off with the Begin_TSM instructions, which can
only be invoked from the ROM, no other external software
can call the DK_Derive_Key instruction to derive an
encryption key using the device key. The DK_Derive_Key
is the only instruction that can use the device key. Even this
instruction cannot read out the value of the device key to
register or memory. Instead, it can only use the device key
to derive different encryption keys for different files stored
on the NCdisk. Finally, to ensure that no non-TSM software
may run during CEM, we disable interrupts during CEM
mode.

Simply disallowing non-TSM software to access the
device key register is not enough to prevent the register
content from leaking out of the SoC. The run-time data
generated by the TSM software in ROM must not be leaked
out of the SoC because this data may include information
that can reveal the device key. Similar to the sensor-mode
SP architecture [4], we propose to dedicate a portion of
RAM as TSM scratchpad memory. This scratchpad memory
can only be accessed when the CEM status bit is on. We
propose a new SP instruction called SecureMem_Set, which
can set the start and end addresses of the scratchpad
memory. The start address and end address are stored in the
new 32-bit StartAddr and EndAddr registers. The
SecureMem_Set instruction can change the values of these
registers. When the SoC is in the CEM mode, the memory
location between the StartAddr and EndAddr becomes
accessible to the TSM software, which is the only software
that can run during the CEM mode. However, when the SoC
is not in the CEM mode, this scratchpad memory will not be
accessible by any instructions. The purpose of having a
flexible TSM scratchpad memory is to give the TSM
software programmer the ability to decide how to allocate
the RAM between TSM trusted access and general access
areas.

Further, not allowing any software to directly access the
device key and preventing the run-time data of the TSM
software from leaking out of the SoC still does not ensure
that the device key will not leak out of the SoC. The TSM
software must be carefully written to ensure that this trusted
software does not send any infomation that can be used to
detect bits of this key, out of the SoC. The TSM software
for the NCdisk contains a fixed set of API functions (see
Table 2). An external control can only use the NCdisk by
calling one of these predefined functions. None of these API
functions will output the device key from the SoC.

API Function Description

TSM_Write Write data into NCdisk

TSM_Read_Analog Output to analog channel

TSM_Read_Trusted Output to trusted display

TSM_Read_Integrated Output to integrated display

Table 2. TSM API

2001

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 17:55 from IEEE Xplore. Restrictions apply.

B. Controlled Predefined Output

The second goal of the NCdisk is to predefine how data
can be read out of the NCdisk such that the original digital
plaintext data is never leaked out. This goal is achieved
using the TSM API functions. There are three API functions
for reading data out. Each API function reads data out
through a different output interface on the SoC. This goal is
achieved since these three API functions provide the only
way for external control to read data out of the NCdisk and
none of these API functions will leak out the original digital
plaintext data.

The TSM_Read_Analog function decrypts the stored
data, converts it into an analog format through the D/A
converter, and sends it out of the NCdisk. This API function
performs the analog conversion immediately after the
decryption, and since interrupts are disabled, the plaintext
digital data (e.g., high fidelity movie) will not leak out.

The TSM_Read_Trusted function decrypts the stored
data with the DMK, re-encrypts it with the PMK, and sends
encrypted digital data out of the NCDisk. Each data has its
own DMK, and each trusted display may have its own PMK.
The DMKs, CMKs, and PMKs are never stored anywhere.
Instead, they are deleted right after encryption and re-
derived upon decryption by a shared key or device key by
the trusted software.

Finally, the TSM_Read_Integrated function decrypts
the stored data and sends it to an integrated display through
the integrated display interface. Since the display is
integrated with the NCdisk, we assume that it is much
harder for an attacker to siphon off the data on the internal
link connecting the integrated display to the NCdisk.

V. NCDISK SECURITY PROTOCOL

Before presenting the NCdisk security protocol, we first
examine an online movie download scenario for using the
NCdisk, as shown in Figure 3.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

I NCDisk 1 _

integrated IDisplayI
Display s

I Secure
* Internet Direct
* I I * I Channel

Fig 3. Online Movie Download Scenario using NCdisk

At stage 1, a content provider has a database of movies.
The content provider sends the movies in encrypted form to
its users through the public Internet (insecure) at stage 2. At
stage 3, the users receive this encrypted movie. In existing
DRM systems, users store these encrypted movies, along

with the decryption keys on their PC or portable media
players, which typically do not provide adequate protection
for these keys. As a result, these movies may be easily
copied and proliferated through the Internet. However, if the
users store these movies onto their NCdisk, then those
movies will not be easily copied in their original high-
quality digital plaintext form. Instead, the movies can only
be viewed through the NCdisk and one of three pre-defined
type of outputs. The NCdisk can provide both security for
the content providers and convenience for the users. The
NCdisk can be used to replace the current DVD-by-mail
rental services such as NetflixTm and BlockbusterTM. These
service providers currently mail millions of DVDs to all
their users each week. Instead, these service providers could
mail to each user a single NCdisk. Using this NCdisk, the
users can download their desired movies without having to
wait for DVDs by mail, and the content providers will have
the assurance that their movies cannot be mass copied in
their original plaintext digital form.

We present a security protocol to use along with the
NCdisk for an online movie download application, as shown
in Table 3. When the NCdisk is manufactured, it is
completely empty. It has no movies stored on it, and its SoC
registers and memory are void of keys and software. The
manufacturer ships these blank NCdisks to the movie
content provider, who is the trusted party in our model. The
5 paragraphs below refer to parts (a) through (e) in Table 3.

The content provider installs an initialization software
on the NCdisk that will self generate a random device key
and store it in the device key register, load up the trusted
TSM software, write in a unique serial number (SN)
identifying the NCdisk, and load up the shared key that the
content provider shares with the NCdisk. Afterwards, the
content provider can remove the initialization software.
Note that since the device key and TSM software are in
ROM (write-once Flash) memory, no one can re-program
the NCdisk in the future. This prevents an attacker from
tampering with the NCdisk. After the NCdisk is initialized,
it can be deployed to users.

When a user connects the NCdisk Dj to the content
provider through the Internet, the content provider can read
off the SN on Dj. The content provider has a database that
associates each SN with the corresponding key that it shares
with that Dj. Using this shared key, the content provider can
securely send movie contents to Dj.

Further, the content provider builds a movie database,
where each movie M' is encrypted using a different movie
encryption key CMK'. These movies and their keys are
assumed to be stored in a secure location on the content
provider's server.

A particular movie M' is sent to numerous NCdisks.
The content provider prepares a different bundle for each
NCdisk Dj. The bundle consists of three components. The
first component is the encrypted movie, which is encrypted
with the movie encryption key CMK'. The second
component is the encrypted CMK'. For different Dj, the
CMK' is encrypted using a different key K'J. This key is

2002

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 17:55 from IEEE Xplore. Restrictions apply.

always derived upon use and immediately deleted c. C derives a key K'1 = MACCDKj(MID'J)
afterwards. Only the content provider and the NCdisk can d. C encrypts CMK' with K'J
re-derive K'J. The third component is a random value MID'J e. C sends the bundle for M' to Dj:
that identifies that particular movie M' and that particular { E i (M'), EKi (CMK'), MID'.
NCdisk Dj. This value plays a role in re-deriving K1, but it
is only useful to the content provider and the NCdisk. (e) Dj processes bundle before storing

When an NCdisk receives a movie bundle, it re-derives 1. Dj first decrypts the bundle to obtain plaintext M':

K', and uses K', to obtain the original movie encryption key a. Dj re-derves K' = MACcDKJ(MID,)
CMK', which can be used to obtain the plaintext movie M'. b. Dj decrypts CMK' = DK, (EKi (CMK'))
Next, the NCdisk re-encrypts M' using a new movie
encryption key DMK,, which is derived using the NCdisk's c. Dj decrypts M = DCMKi (ECMKi (M'))
unique device key, Dj. At this point, no one can copy the 2. Dj then re-encrypts M' for storage

original digital plaintext movie from the NCdisk. Using the a. Dj generates a random ID'J identifying M' and Dj
predefined API functions, the NCdisk provides a set of b. Dj uses device key DKj and ID'J to derive a new

controlled outputs to ensure that the original digital plaintext movie encryption key:
movie does not leak out during the output phase. DMK'J = MACDKj(ID')

c. Dj encrypts M' with DMK'J
C: content provider, D: NCdisk, SN: serial number, d. Dj throws away DMK'J
M: movie content; i: ithmovie, j: jth NCdisk. e. Dj stores M' bundle, which is now non-copyable
Manufacturer provides a blank Dj {E (M') ID' }

Manufacturer builds a blank NCdisk Dj that does not DMKJ J
have any software or keys stored inside. Table 3. NCdisk Security Protocol
(a) Manufacturer sends Dj to C for initialization
1. C loads secure installation SW into NCdisk RAM.
2. The initialization SW generates a random device key VI. CONCLUSION AND FUTURE WORK
DKj and writes DKj into the device key register, which
is a non-volatile register (or write-once Flash memory). We a novel Non-Copyable, NCdisk, concept

3. The initialization SW loads TSM SW into the write- to prevent copying of the digital content stored in a disk.

once memory area. Further, the initialization SW The NCdisk concept boils down to implementing two
generates a keyed hash of the extended TSM SW and design goals: protecting secrets and providing output control.
stores this extended TSM SW and its keyed hash in the We achieve these two goals by implementing a Secret
off-chip data storage area. Protection (SP-based) SoC architecture that can be added to

4. The initialization SW stores a unique SN into the write- existing disk architecture to turn that disk into an NCdisk.
once memory area. Further, we design a security protocol that can be used along

5. The initialization SW generates a random key CDKj, with the NCdisk to provide security and convenience for the
which it shares with Dj. It encrypts CDKj using the online movie download application. This paper also
device key and stores it in the off-chip storage area. illustrates the use of SP architecture in novel applications

6. Finally, C removes the initialization SW, disables the such as NCdisk. A future goal of this project is to extend
writing of the on-chip Flash memory, and the NCdisk the NCdisk architecture and security protocol to support
is fully initialized. multiple content providers. Future research also includes

(b) C distributes Dj to user j extending the NCdisk to other applications besides online
1. User j buys Dj from a store, or C sends Dj to user ~j. movie download, using the NCdisk to provide greater copy-
2. User j connects Dj online to C' s website protection and privacy-protection for sensitive data.

3. C reads SN from Dj. C has a database that associates
each SN with a CDKj, which C shares with Dj. Using REFERENCES

CDKj, C securely sends data to Dj. [1] "Architecture of Windows Media Rights Manager", Microsoft

(c) C builds a movie database Corporation, May 2004. http:llwww.microsoft.com/windows/win
1. C generates a random movie encryption key CMK' for dowsmedia/howto/articles/drmarchitecture.aspx

each movie M'. [2] R.Lee et al., "Architecture for protecting critical secrets in

2. C encrypts movie M' with CMK'. microprocessors," 32nd International Symposium on Computer
3. C saves ECM (mi) and CMK' in movie database.

Architecture (ISCA 2005), pp. 2-13, June 2005.
3 C savesECMKT (M ') and CMK In movse database [3] Jeffrey S Dwoskin, Ruby B. Lee, "Hardware-rooted Trust for Secure

4. C periodically re-encrypts M' with a new CMK' Key Management and Transient Trust", ACM Conference on
id) C preparesM'to send toDj Computer and Communications Security, pp. 389-400, October 2007.

(d) prepares M' to send to DJ [4] Jeffrey Dwoskin, Dahai Xu, Jianwei Huang, Mung Chiang, Ruby Lee,

1. For a given M', C prepares a different M' bundle for "Secure Key Management Architecture Against Sensor-node

each Dj as follows: Fabrication Attacks", IEEE GlobeCom 2007, November 2007.

a. C searches up the CDKj that it shares with Dj [5] James Jeppesen et al., "Hard Disk Controller: the Disk Driver's Bain
... . ~ . and Body", 0-7695- 1200-3/01, 2001 IEEE.h nanorato e 4TTn1 .Sn..A 41 an;A

2003

D. C. generatl s a iVIlllj1icelntIyinlg lvi anca L)J

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 17:55 from IEEE Xplore. Restrictions apply.

