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Abstract

Rocket Chip is an open-source Sysem-on-Chip design generator that emits synthesizable
RTL. It leverages the Chisel hardware construction language to compose a library of sophis-
ticated generators for cores, caches, and interconnects into an integrated SoC. Rocket Chip
generates general-purpose processor cores that use the open RISC-V ISA, and provides both
an in-order core generator (Rocket) and an out-of-order core generator (BOOM). For SoC de-
signers interested in utilizing heterogeneous specialization for added efficiency gains, Rocket
Chip supports the integration of custom accelerators in the form of instruction set extensions,
coprocessors, or fully independent novel cores. Rocket Chip has been taped out (manufactured)
eleven times, and yielded functional silicon prototypes capable of booting Linux.

1 Introduction

Systems-on-chip (SoC) leverage integration and customization to deliver improved efficiency. Rocket
Chip is an open-source SoC generator developed at UC Berkeley suitable for research and industrial
purposes. Rather than being a single instance of an SoC design, Rocket Chip is a design generator,
capable of producing many design instances from a single high-level source. It produces design
instances consisting of synthesizable RTL, and multiple functional silicon prototypes have been
manufactured. Extensive parameterization makes it flexible, enabling easy customization for a
particular application. By changing a single configuration, a user can generate SoCs ranging in
size from embedded microcontrollers to multi-core server chips. Rocket Chip is open-source and
available under a BSD license on Github1. For increased modularity, many of the component
libraries of Rocket Chip are available as independent repositories, and we use git submodules to
track compatible versions. Rocket Chip is stable enough to produce working silicon prototypes,
and we continue to expand the space of designs it can express with new functionality. This report
briefly catalogues the Rocket Chip features available as of April 2016.

1https://github.com/ucb-bar/rocket-chip
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2 Background

Rocket Chip is based on the RISC-V Instruction Set Architecture (ISA) [11]. RISC-V is an ISA
developed at UC Berkeley and designed from the ground up to be clean, microarchitecture-agnostic
and highly extensible. Most importantly, RISC-V is free and open, which allows it to be used in both
commercial and open-source settings [2]. It is under the governance of the RISC-V Foundation2

and is intended to become an industry standard.
Using RISC-V as an ISA removes potential licensing restrictions from Rocket Chip and allows

the same ISA and infrastructure to be used for a wide range of cores, from high-performance
out-of-order designs (Section 5) to small embedded processors (Section 6). RISC-V is flexible due
to its modular design, which features a common base of roughly 40 integer instructions (I) that
all cores must implement, with ample opcode space left over to support optional extensions, of
which the most canonical have already been standardized. Existing extensions include multiply
and divide (M), atomics (A), single-precision (F) and double-precision (D) floating point. These
common extensions (IMAFD) are collected into the (G) extension that provides a general-purpose,
scalar instruction set. RISC-V provides 32-bit, 64-bit, and 128-bit address modes. A compressed
(C) extension provides 16-bit instruction formats to reduce static code size. Opcode space is also
reserved for non-standard extensions, so designers can easily add new features to their processors
that will not conflict with existing software compiled to the standard. RISC-V’s User-level ISA is
frozen and described in the official RISC-V Instruction Set Manual [11]. The privileged ISA and
platform specification are currently under review, with draft specifications available [10].

A large and growing software ecosystem is available for RISC-V. This includes the GCC and
LLVM compilers (and their supporting infrastructure such as binutils and glibc), ports of the
Linux and FreeBSD operating systems and a wide range of software through the Yocto Project’s
Linux distribution generator, poky. Software simulation is available through QEMU and Spike
(homegrown functional simulator).

Rocket Chip itself is implemented in Chisel3, an open-source hardware construction language
embedded in Scala [3]. While Chisel describes synthesizable circuits directly—and so more closely
resembles traditional hardware description languages like Verilog than high-level synthesis systems—
it makes the full Scala programming language available for circuit generation, enabling functional
and object-oriented descriptions of circuits. Chisel also has additional features not found in Verilog,
such as a rich type system with support for structured data, width inference for wires, high-level
descriptions of state machines, and bulk wiring operations. Chisel generates synthesizable Verilog
code that is compatible FPGA and ASIC design tools. Chisel can also generate a fast, cycle-accurate
RTL simulator implemented in C++, which is functionally equivalent to but significantly faster
than commercial Verilog simulators and can be used to simulate an entire Rocket Chip instance.

3 Rocket Chip Generator

The Rocket Chip generator is written in Chisel and constructs a RISC-V-based platform. The
generator consists of a collection of parameterized chip-building libraries that we can use to generate
different SoC variants. By standardizing the interfaces that connect different libraries’ generators
to one another, we have created a plug-and-play environment in which it is trivial to swap out

2http://riscv.org
3http://chisel.eecs.berkeley.edu
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Figure 1: The Rocket Chip generator consists of the following sub-components: A) Core generator
B) Cache generator C) RoCC-compatible coprocessor generator D) Tile generator E) TileLink
generator F) Peripherals

substantial design components simply by changing configuration files, leaving the hardware source
code untouched. We can also both test the output of individual generators as well as perform
integration tests on the whole design. The tests, too, are parameterized so as to provide maximal
coverage.

Figure 1 is an example of a Rocket Chip instance. It features two tiles attached to a 4-bank L2
cache that is itself connected to the external I/O and memory systems with an AXI interconnect [1].
Within Tile 1 is an out-of-order BOOM core with an FPU, L1 instruction and data caches, and an
accelerator implementing the RoCC interface (Section 4). Tile 2 is similar, but it uses a different
core, Rocket, and has different L1 data cache parameters. In general, Rocket Chip is a library of
generators that can be parameterized and composed into a wide variety of SoC designs. Here is a
summary of the current capabilities of the generators and interfaces:

• Core: The Rocket scalar core generator and BOOM out-of-order superscalar core genera-
tor, both of which can include an optional FPU, configurable functional unit pipelines, and
customizable branch predictors.

• Caches: A family of cache and TLB generators with configurable sizes, associativities, and
replacement policies.

• RoCC: The Rocket Custom Coprocessor interface, a template for application-specific copro-
cessors which may expose their own parameters.

• Tile: A tile-generator template for cache-coherent tiles. The number and type of cores and
accelerators are configurable, as is the organization of private caches.
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• TileLink: A generator for networks of cache coherent agents and the associated cache con-
trollers. Configuration options include the number of tiles, the coherence policy, the presence
of shared backing storage, and the implementation of underlying physical networks.

• Peripherals: Generators for AMBA-compatible buses (AXI, AHB-Lite, and APB) and a
variety of converters and controllers, including the Z-scale processor.

To support diverse workloads and to improve energy efficiency, Rocket Chip supports hetero-
geneity. Not only can the SoC be composed of different tiles, but there is also support for adding
custom accelerators. Rocket Chip supports three mechanisms for integrating accelerators, depend-
ing on how tightly coupled the accelerator is to the core. The easiest and most tightly coupled
option is to expose the accelerator by extending RISC-V and attaching the accelerator directly
to the core’s pipeline. For more decoupling, the accelerator can act as a coprocessor and receive
commands and data from the processor via the RoCC interface. Fully decoupled accelerators can
be instantiated in their own tiles and connect coherently to the memory system using TileLink.
Furthermore, these techniques can be combined, as in the case of the Hwacha vector-thread ac-
celerator [6], which receives commands via RoCC, but directly attaches to TileLink to bypass the
processor’s L1 data cache to obtain greater memory bandwidth.

4 Rocket Core
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Figure 2: The Rocket core pipeline.

Rocket is a 5-stage in-order scalar core generator that implements the RV32G and RV64G
ISAs4. It has an MMU that supports page-based virtual memory, a non-blocking data cache, and
a front-end with branch prediction. Branch prediction is configurable and provided by a branch
target buffer (BTB), branch history table (BHT), and a return address stack (RAS). For floating-
point, Rocket makes use of Berkeley’s Chisel implementations of floating-point units5. Rocket
also supports the RISC-V machine, supervisor, and user privilege levels. A number of parameters
are exposed, including the optional support of some ISA extensions (M, A, F, D), the number of
floating-point pipeline stages, and the cache and TLB sizes.

Rocket can also be thought of as a library of processor components. Several modules originally
designed for Rocket are re-used by other designs, including the functional units, caches, TLBs,
the page table walker, and the privileged architecture implementation (i.e., the control and status
register file).

4https://github.com/ucb-bar/rocket
5https://github.com/ucb-bar/berkeley-hardfloat

4



The Rocket Custom Coprocessor Interface (RoCC) facilitates decoupled communication between
a Rocket processor and attached coprocessors. Many such coprocessors have been implemented,
including crypto units (e.g., SHA36) and vector processing units (e.g., the Hwacha vector-fetch
unit [6]). The RoCC interface accepts coprocessor commands generated by committed instructions
executed by the Rocket core. The commands include the instruction word and the values in up to
two integer registers, and commands may write an integer register in response. The RoCC interface
also allows the attached coprocessor to share the Rocket core’s data cache and page table walker,
and provides a facility for the coprocessor to interrupt the core. These mechanisms are sufficient
to construct coprocessors that participate in a page-based virtual memory system. Finally, RoCC
accelerators may connect to the outer memory system directly over the TileLink interconnect,
providing a high-bandwidth but coherent memory port. The Hwacha vector-fetch unit makes use
of all of these features and has driven the development of RoCC into a sophisticated coprocessor
interface.

5 Berkeley Out-of-Order (BOOM) Core

BOOM is an out-of-order, superscalar RV64G core generator7. The goal of BOOM is to serve as a
baseline implementation for education, research, and industry and to enable in-depth exploration
of out-of-order micro-architecture. An independent specification available elsewhere8 elucidates
BOOM’s design and rationale.

BOOM supports full branch speculation using a BTB, RAS, and a parameterizable backing
predictor. Some of the available backing predictors that can be instantiated include a gshare
predictor and a TAGE-based predictor. BOOM uses an aggressive load/store unit which allows
loads to execute out-of-order with respect to stores and other loads. The load/store unit also
provides store data forwarding to dependent loads. As shown in Figure 1, a BOOM tile is fully
I/O-compatible with a Rocket tile and fits seamlessly into the Rocket Chip memory hierarchy.

BOOM is written in 10k lines of Chisel code. BOOM is able to accomplish this low line count in
part by instantiating many parts from the greater Rocket Chip repository; the front-end, functional
units, page table walkers, caches, and floating point units are all instantiated from the Rocket and
hardfloat repositories. Chisel has also greatly facilitated making BOOM a true core generator - the
functional unit mix is customizable, and the fetch, decode, issue and commit widths of BOOM are
all parameterizable.

6 Z-scale Core

Z-scale is a 32-bit core generator targeting embedded systems and micro-controller applications.
It implements the RV32IM ISA and is designed to interface with AHB-Lite buses, making it plug-
compatible in a manner analogous to the ARM Cortex-M series. Z-scale uses a 3-stage, single-issue
in-order pipeline that supports the machine and user privilege modes. As it interfaces directly with
AHB-Lite buses, it is not a direct replacement for a Rocket (or BOOM) application core and it
does not fit into the Rocket Chip cache coherent memory hierarchy. Z-scale is available both in

6https://github.com/ucb-bar/rocc-template
7https://ucb-bar.github.io/riscv-boom
8https://ccelio.github.io/riscv-boom-doc/
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Figure 3: The Z-scale core pipeline.

Chisel,9 like the rest of Rocket Chip, and also Verilog10.

7 Uncore and TileLink

Rocket Chip includes generators for a shared memory hierarchy of coherent caches interconnected
with on-chip networks. Configuration options include the number of tiles, the coherence policy, the
presence of a shared L2 cache, the number of memory channels, the number of cache banks per
memory channel, and the implementation of the underlying physical networks. These generators are
all based around TileLink, a protocol framework for describing a set of cache coherence transactions
that implement a particular cache coherence policy.

TileLink’s purpose is to orthogonalize the design of the on-chip network and the implemen-
tation of the cache controllers from the design of the coherence protocol itself. This separation
of concerns improves the modularity of the HDL description of the memory hierarchy, while also
making validation and verification of individual memory system components more tractable. Any
cache coherence protocol that conforms to TileLink’s transaction structure can be used interchange-
ably alongside the physical networks and cache controller generators we provide. By supplying a
framework to apply transactional coherence metadata updates throughout the memory hierarchy,
TileLink enables simplified expressions of the coherence policies themselves. Conversely, as long as
newly designed controllers and networks make certain guarantees about their behavior, system-on-
chip designers can be confident that incorporating them into their TileLink-based memory hierarchy
will not introduce coherence-protocol-related deadlocks.

TileLink is designed to be extensible, and supports a growing family of custom cache coherence
policies implemented on top of it. TileLink also codifies a set of transaction types that are common
to all protocols. In particular, it provides a set of transactions to service memory accesses made by
agents that do not themselves have caches containing coherence policy metadata. These built-in
transactions make TileLink a suitable target for the memory interfaces of accelerators, coprocessors
and DMA engines, and allow such agents to automatically participate in a global shared memory
space.

Within the framework provided by TileLink, we provide generators for cache controller state
machines as well as data and metadata memory arrays. By composing different sets of features
using Chisel, we are able to generate outer level caches with reverse-mapped directories as well
as broadcast-based snooping networks. While the extant Rocket Chip uses crossbars to connect
tiles, alternate physical network designs can be plugged into our framework, and we are working to

9https://github.com/ucb-bar/zscale
10https://github.com/ucb-bar/vscale
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interface with designs produced by RapidIO [5] and OpenSoC [4].
To support memory-mapped IO (MMIO), we provide a TileLink interconnect generator. This

generator takes an address map description and uses it to produce a system of routers for directing
MMIO requests to the correct memory-mapped peripheral. Rocket Chip also provides converters
from TileLink to the AXI4, AHB-Lite, and APB protocols in order to allow interfacing with external
third-party peripherals and memory controllers.

8 Supporting Infrastructure

FPGA Support
We have released support for deploying Rocket Chip to a variety of Xilinx Zynq-7000 series

FPGAs, such as the Xilinx ZC706 and ZedBoard11. This capability is primarily used for fast
simulation and typically achieves clockrates of 25-100 MHz depending on the configuration and the
FPGA. We provide infrastructure and documentation for three use cases:

(1) Deploying pre-built images, for users without Vivado licenses who want to try a RISC-V
system on their FPGA

(2) Using existing FPGA infrastructure to deploy a custom SoC generated from Rocket Chip, for
users making changes to the Rocket Chip RTL or configuration

(3) Building up the complete FPGA infrastructure from scratch, for users making involved
changes to I/O or adding additional board support

The current infrastructure makes use of the hardened core inside the Zynq FPGA to provide
support for proxied I/O devices, such as a console and block device.

Memory System Testing
In order to test behaviors in our memory hierarchy which are not easy or efficient to test in

software, we have designed a set of test circuits called GroundTest12. These test circuits fit into the
socket given to CPU tiles and directly drive different kinds of memory traffic to the L2 interconnect.
The simplest test, MemTest, generates writes followed by reads at fixed strides across the address
space. We also have a suite of regression tests which check for specific memory bugs which we have
encountered in the past. This is especially useful for replicating ordering-dependent or timing-
dependent bugs, since these are very difficult or impossible to reproduce in software. Finally, for
more intensive testing, we generate random combinations of different memory operations and record
a trace of the events. We then feed these traces into an external tool called Axe [8] in order to
check for violations of the memory consistency model.

Core Testing
To help stress-test the cores via random testing, we utilize the RISC-V Torture Tester13. Tor-

ture picks randomly from a library of code sequences and stitches them together to form a RISC-V
assembly program. The instructions from each code sequence are interleaved with different code
sequences. Each randomly-generated test program is executed both on the core under test and the

11https://github.com/ucb-bar/fpga-zynq
12https://github.com/ucb-bar/groundtest
13https://github.com/ucb-bar/riscv-torture
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Figure 4: Recent UC Berkeley tapeouts using Rocket Chip.

Spike ISA simulator (RISC-V’s “golden model”). At the end of the test program, the register state
is dumped to memory and the output from the core is compared to the output of Spike. If Torture
finds a test program that exhibits an error, it regenerates smaller versions of the test program until
it can find the smallest test program that still exercises the failure. Torture can be run for hours,
creating new tests, and storing any error-finding programs it finds.

9 Silicon Prototypes

Figure 4 presents a timeline of UC Berkeley RISC-V microprocessor tapeouts that were created us-
ing earlier versions of the Rocket Chip generator. The 28 nm Raven chips combine a 64-bit RISC-V
vector microprocessor with on-chip switched-capacitor DC-DC converters and adaptive clocking.
The 45 nm EOS chips feature a 64-bit dual-core RISC-V vector processor with monolithically-
integrated silicon photonic links [7, 9]. In total, we have taped out four Raven chips on STMicro-
electronics’ 28 nm FD-SOI process, six EOS chips on IBM’s 45 nm SOI process, and one SWERVE
chip on TSMC’s 28 nm process. The Rocket Chip generator successfully served as a shared code
base for these eleven distinct systems; the best ideas from each design were incorporated back
into the code base, ensuring maximal re-use even though the three distinct families of chips were
specialized differently to evaluate distinct research ideas.
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