
Record-Replay Architecture as a General Security Framework

Yasser Shalabi, Mengjia Yan, Nima Honarmand,† Ruby B. Lee,‡ and Josep Torrellas
University of Illinois at Urbana-Champaign †Stony Brook University ‡Princeton University

http://iacoma@cs.uiuc.edu nhonarmand@cs.stonybrook.edu rblee@princeton.edu

Abstract—
Hardware security features need to strike a careful balance

between design intrusiveness and completeness of methods.
In addition, they need to be flexible, as security threats
continuously evolve. To help address these requirements, this
paper proposes a novel framework where Record and Deter-
ministic Replay (RnR) is used to complement hardware security
features. We call the framework RnR-Safe. RnR-Safe reduces
the cost of security hardware by allowing it to be less precise at
detecting attacks, potentially reporting false positives. This is
because it relies on on-the-fly replay that transparently verifies
whether the alarm is a real attack or a false positive. RnR-Safe
uses two replayers: an always-on, fast Checkpoint replayer that
periodically creates checkpoints, and a detailed-analysis Alarm
replayer that is triggered when there is a threat alarm.

As an example application, we use RnR-Safe to thwart
Return Oriented Programming (ROP) attacks, including on the
Linux kernel. Our design augments the Return Address Stack
(RAS) with relatively cheaper hardware. We evaluate RnR-Safe
using a variety of workloads on a VM running Linux. We find
that RnR-Safe is very effective. Thanks to the judicious RAS
hardware extensions and hypervisor changes, the checkpointing
replayer has an execution speed comparable to the recorder.
In addition, the alarm replayer needs to handle very few false
positives.

Keywords-component; formatting; style; styling;

I. INTRODUCTION

As security attacks become more frequent and varied,
there is increasing interest in augmenting processor and sys-
tem hardware with security features. As a result, processor
manufacturers have developed new hardware architectures,
such as Intel’s MPX [1], AMD’s Secure Processor [2], and
ARM TrustZone technology [3].

A general difficulty in this area is that security threats
are continuously evolving, circumventing existing security
defenses. What used to be an effective defense yesterday
is less effective today. Hence, defense systems have to
be flexible. For example, to defend against code injection
attacks, W⊕X [2], [4] features have been widely deployed in
processors. They prevent the execution of data by enforcing
the invariant that memory pages are either executable or
writable, but never both. Unfortunately, new attacks have
appeared that do not need code injection. In particular, an
attack based on code reuse called Return Oriented Program-
ming (ROP) [5] is now the preferred technique. It builds
attack code by chaining together multiple snippets of code
from the victim program, hence bypassing W⊕X defenses.

An intriguing primitive that can help defend against
security threats is Record and Deterministic Replay (RnR)
(e.g., [6], [7], [8], [9], [10]). With RnR, a workload’s initial
execution creates a log, which can be deterministically

replayed on another machine. RnR has been used for security
purposes, most often off-line, to provide insight into how and
when an attack took place [7], [9]. It has also been used to
support speculating past security checks [11].

In this paper, we explore a novel approach to hardware
security design, where RnR is used to complement hardware
security features—to offload intrusion checks and/or to elim-
inate check imprecision. We call the framework RnR-Safe.
In RnR-Safe, we reduce the cost of security hardware, by
allowing the hardware to be less precise at detecting attacks,
potentially reporting false positives. This is because we rely
on an on-the-fly replayer that transparently verifies whether
the alarm is a real attack or a false positive. The result is a
very general security framework that can be combined with
a variety of relatively cheaper security hardware.

RnR-Safe relies on two types of on-the-fly replayers
running on a different machine: an always-on fast replayer
that periodically creates checkpoints of the monitored execu-
tion (Checkpointing replayer), and an analyzing replayer—
triggered by an alarm—that starts from a checkpoint and
analyzes the execution to determine whether the alarm was
due to a real attack or a false positive (Alarm replayer). The
alarm replayer can execute multiple times, with different
levels of analysis, until the attack is fully understood.

As an example application, this paper then applies this
approach to thwart ROP attacks—including on the kernel,
a challenging target to defend. A ROP attack causes a Re-
turn Address Stack (RAS) misprediction. However, a RAS
misprediction is an imprecise ROP detector, as it may also
occur for benign software. Hence, rather than augmenting
the RAS hardware to guarantee perfect detection, RnR-
Safe makes simple modifications to the RAS hardware to
eliminate the vast majority of the false positives. The few
remaining false positives are identified by the alarm replayer,
thus minimizing hardware changes. This follows the RnR
philosophy.

To evaluate RnR-Safe, we execute a set of varied work-
loads on a Virtual Machine (VM) running Linux. We find
that RnR-Safe is an effective hardware-software co-design
point. Thanks to the judicious RAS hardware extensions
and hypervisor changes, the checkpointing replayer has a
speed that is comparable to that of the recorder, and can be
replaying continuously. In addition, the alarm replayer has
to handle only very few false positives.

The contribution of this paper is threefold. First, we
propose a novel RnR-based hardware-software approach to
enhance security called RnR-Safe. Second, we tailor RnR-
Safe to detect ROPs in the kernel space, and discuss the



challenges encountered during its implementation. Finally,
we evaluate the cost of RnR-Safe in this use.
Assumed System and Threat Models. ROP attacks can
occur within the kernel or user contexts, and RnR-Safe can
secure both. The target most difficult to secure is the kernel.
We focus on evaluating RnR-Safe’s ability to detect kernel
ROP attacks. The protected system (kernel and applications)
runs inside a VM whose execution is continuously recorded.
The recorded execution is concurrently being replayed on a
different machine, where ROP attacks may be found.

We assume the attacker can launch a ROP attack against
the kernel via any combination of address disclosure and
memory corruption vulnerabilities to hijack and corrupt the
kernel stack. We assume that the host machine OS and
hypervisor (in the recording and replaying machines) are
benign, and that they can safeguard against compromised
guest VMs through traditional memory page permissions.

II. BACKGROUND

A. Record and Replay

Record and deterministic Replay (RnR) of workloads is a
popular architectural technique (e.g., [12], [13], [14], [15],
[10], [16], [17], [18], [19], [6], [20], [8]). As a workload
runs, RnR records all the non-deterministic events that can
affect the execution and stores them in a log. Then, in a
potentially different platform, the workload is re-run. At
this time, the system injects the recorded events at the
correct times, enforcing a deterministic execution (Replay).
Typically, the non-deterministic events are the inputs to
the workload and, in parallel programs, the interleaving of
memory accesses.

RnR can be done at different abstraction layers. In this
work, we use VM-level RnR [7], [13], [14], [21]. Moreover,
we consider uniprocessor hardware. As a result, the sources
of non-determinism are interrupts raised and data copied
by virtual devices into the guest machine. We also assume
the widely used model of hypervisor-mediated I/O, as used
in Xen [22] or Qemu [23]. These assumptions are not
necessarily limitations, as RnR approaches compatible with
multiprocessor [6], [18] and virtualized I/O [24] exist.

There are several papers that investigate the use of RnR
in a security-related scenario [7], [9], [11], [21], [20], [25].
ReVirt [7] shows an example of using VM-level RnR for
post-facto offline analysis of a time-of-check to time-of-use
race conditions in the Linux kernel. IntroVirt[9] explores
using VM-level RnR to determine if systems were previously
exploited once zero-day attacks are discovered. Speck[11]
explores using a combination of OS-level speculation and
program-level RnR to remove security checks from the
critical path of a program. ParanoidAndroid [20] and Se-
cloud [25] explore the possibility of maintaining replicas of
mobile devices in the cloud, and perform program-level RnR
in the cloud. Finally, Aftersight [21] suggests using VM-
level RnR to perform online dynamic analysis of a system’s
execution. However, it does not address several important

hardware-software design issues of such a model, including
one key contribution of our work: separation between the fast
checkpointing replayer and the exhaustive alarm replayer.
We discuss the details in Section IX.

B. Example Application: Return Oriented Programming
(ROP)

RnR-Safe is a general framework that can be used to
thwart a variety of attacks. As an illustration, in this paper,
we consider ROP [5] attacks, including those on the kernel.
Appendix A describes ROP attacks.

At a high level, ROP attacks can be detected with what
is called a Shadow Stack [26]. The shadow stack operates
with ”Last In First Out” semantics. When a call instruction is
encountered, the address of the instruction following the call
is pushed to the top of the shadow stack. Return instructions
trigger a pop from the shadow stack. ROP attacks can be
detected when the return address used by the processor
mismatches the one popped from the shadow stack.

However, shadow stacks present several implementation
challenges. First, the validity of the shadow stack hinges
on its integrity. Hence, the shadow stack must be secured
against the very software it protects. This includes protecting
it against the kernel itself, which might be compromised and
malicious. Also, codes can be highly nested (e.g., recursive),
multi-context (e.g., the kernel), or imperfectly nested (e.g.,
error and exception handling). Since false positives are unac-
ceptable, proper handling of these corner cases is necessary.

As a result, there have been a variety of approaches that
focus on protection against ROP attacks (e.g., [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38]).
Unfortunately, while some of them are provable prevention
techniques, they appear insufficient from a practical point of
view. Indeed, it is a matter of fact that systems today still
remain vulnerable to such attacks. We discuss the reasons
in the next section.

C. ROP is Still Unsolved Today

There are three reasons why existing ROP protection
techniques have limitations from a practical point of view:
Hardware Intrusiveness. Some approaches [30], [32], [35],
[29] require intrusive hardware changes. For example, both
SmashGuard [29] and SRAS [30] add a hardware stack used
to verify the return targets. If the hardware stack overflows,
it spills into system memory. Also, it needs additional read-
write ports. The PUMP [35] processor supports general
metadata propagation. This can be used to implement various
safety checks, including Control Flow Integrity (CFI). How-
ever, each stage of the pipeline is modified, to support tag
storage and/or rule execution. REV [32] hashes the instruc-
tion sequences within a basic block to verify a program’s
control flow. It requires an additional 32KB first level cache
dedicated to cache signatures, to avoid prohibitive slow-
downs.
Software Impact. The completeness of instrumentation-
based CFI-enforcing solutions such as [27], [28] is attractive.

2



However, securely maintaining a shadow RAS at call/ret
boundaries via binary instrumentation adds overheads of
over 100% [28]. Compiler based solutions can add 6–
8% overhead [39]. Other approaches [34], [40] propose
recompiling the kernel and application to target a secure
virtual instruction architecture. This architecture is emulated
by a compiler-based virtual machine (similar to the Java
Virtual Machine). Aside from performance costs, source
code is not always available, which limits the applicability
of this technique.
Completeness. Other proposals explore alternative ap-
proaches by either detecting ROP attack characteristics [33],
[36], [37] or by making the ROP attacks difficult to
mount [41], [42], [43], [44]. By monitoring control flow
characteristics that are indicators of ROP execution [33],
[36], [45], some ROP payloads can be detected. Unfortu-
nately, ROP payloads may be able to blend their signature to
match that of benign code to evade detection [46], [47]. Sim-
ilar criticisms can be levied against other proposals which
provide probabilistic defences through randomization [44]
and encryption [48], [49], [50]. These defences will ran-
domize code locations or encrypt on-stack return addresses,
thus complicating critical steps in attack code. In partic-
ular, Address Space Layout Randomization (ASLR) [41],
[42], [43], [44] is a widely deployed defence adopting this
approach. While useful in the short-term, these approaches
remain insufficient in the long-term as attackers have learned
to circumvent them [51], [52], [53]. We discuss ASLR in
more detail in Section IX.

Recently, Intel has introduced Control-Flow Enforcement
Technology (CET) [54], which has shadow stacks that verify
return targets. CET prevents traditional memory-modifying
instructions from modifying shadow stack pages. However,
to our understanding, since these shadow stack pages are in
memory, it is conceivable that an attacker can subvert the
system and update the pages. The same concern arises for
Griffin [55]—a CFI verification technique based on analysis
of branch traces. The traces are provided by Intel’s Processor
Trace, and are stored in the system memory directly by the
hardware.

In this paper, we use RnR-Safe to support ROP protection
in a different manner, without a hardware shadow stack.
Effectively, the replayer in a secure machine implements
the shadow stack in software.

D. Return Address Stack

Modern processors use a hardware Return Address Stack
(RAS) to predict the target of return instructions. When a
procedure call executes, the hardware pushes the address of
the instruction that follows it into the top of the RAS. When
a return instruction is decoded, the hardware pops the entry
at the top of the RAS and uses its value as the predicted
target of the return. In most cases, the prediction is correct.
The IBM POWER7 [56] and POWER8 [57] processors have
a RAS with 32 and 64 entries, respectively.

ROP attacks cause RAS mispredictions because the at-
tacker modifies the stack to return to an unexpected instruc-
tion. However, a RAS misprediction cannot alone be used
as an indicator of ROP attacks because the RAS sometimes
mispredicts in the course of benign program execution.

III. AN RNR SECURITY FRAMEWORK

Figure 1 shows the organization of RnR-Safe, our en-
visioned security framework. On the left side, a workload
runs on a Recorded VM. Its hypervisor records all the non
deterministic events of the execution in a software log.
Recording adds only modest overhead—less than 15% on
average, according to Pokam et al. [18]. Note that we record
at the VM level to also protect the operating system.

Checkpointing
Replayer

Alarm
Replayer

Alarm
Replayer

Replaying VMs

Recording
Hypervisor

Checkpoints

Log

Inputs Alarms

Recorded VM

Figure 1: RnR-Safe organization.
The designer has augmented the hardware in the recorded

VM (e.g., processor and memory system) with support to
detect a certain class of attacks, with potentially some false
positives. When this hardware or the recording hypervisor
suspect an attack, the hypervisor inserts an alarm marker in
the log. At this point—and depending on the risk tolerance
of the workload—the recorded VM may be stopped until the
alarm is analyzed, or allowed to continue.

On the right side, one or more Replaying VMs re-
execute the workload natively. They use the log to inject
all the non-deterministic events. As a result, their execution
determistically follows the original one. If an alarm is found
in the log, the replayer characterizes the alarm, detecting
either an attack or a false positive.

A. RnR-Safe Modes of Execution

In RnR-Safe, monitored recording consists of normal
execution, while transparently recording all the non deter-
ministic inputs in a log, and transparently monitoring for
safety violations. If a violation is found or suspected, an
alarm entry is inserted in the log. A key detail is that, in
order to claim complete protection, the detector must catch
all potential threats. In other words, false negatives are not
acceptable.

In RnR-Safe, the replay execution is performed with two
types of replayers. One is the Checkpointing Replayer. Such
replayer runs all the time, at roughly recording speeds. It
uses the log to determistically replay the workload while
creating state checkpoints at regular intervals. When an
alarm marker is found in the log, the checkpointing replayer
launches the execution of an Alarm Replayer out of a recent
(typically the latest) checkpoint. Once old checkpoints and
log entries are verified, they can be discarded to save storage.

3



The second type of replayer is the Alarm Replayer. An
alarm replayer replays log entries from a given checkpoint
until an alarm marker, while performing an extensive, attack-
specific analysis of the replayed execution. Its goal is to
resolve an alarm, either to show that it is a false positive or
to characterize the attack. It can be much slower than the
checkpointing replayer. Typically, alarms are rare events.

B. What RnR-Safe Offers

RnR-Safe provides three security benefits.
Robustness at Relatively Modest Hardware. Perfect de-
tection accuracy often necessitates very intrusive hardware.
RnR-Safe minimizes intrusiveness by separating alarm de-
tection from attack verification using RnR. False positive
alarms and rare corner cases are handled by software-based
replay. Thus, RnR restores robustness to a system built out
of imprecise security hardware. The one requirement of the
alarm hardware is to avoid any false negatives.
Flexibility. RnR-Safe is flexible. As attackers devise new
attacks, defenders can augment the recorded VM with
hardware and software for new alarm generation, and the
replaying VMs with software for new analysis techniques.
The addition of new replayers is particularly compelling,
as the analysis is performed in software. Multiple types of
attacks can be tracked at the same time.
Execution Auditing. RnR-Safe allows detailed analysis of
executions offline. An execution context can be replayed to
audit the code and data state. This is a general mechanism
for identifying security violations by auditing sensitive flows
in the system.

C. How to Use RnR-Safe

The RnR-Safe framework can be tailored to protect
against different attacks. For each attack, we first need a
first-line of defense that targets that threat in the machine.
The key advantage of RnR-Safe is that such a defense,
implemented in hardware or software, can be imprecise—
i.e., it can suffer false positives. This property often makes
the design less intrusive or complicated.

While it is currently unclear to us which types of attacks
would be best suited for RnR-Safe to defend, Table I outlines
three example attacks: ROP, jump-oriented programming
(JOP) [58] and denial of service (DOS) [59]. For each,
the table outlines the alarm trigger, possible first defense,
and the role of relay. The first entry is ROP, which will be
discussed in detail in the rest of this paper. The alarm trigger
is a RAS misprediction, and the first defense is based on
dumping a modified form of the RAS, and using a whitelist
of acceptable RAS mispredictions (as we will see). The role
of replay is to model a kernel-compatible shadow stack.

JOP is a related class of attacks, mounted by redirecting
branches and call instructions to execute the victim’s code.
Preventing such attack requires a different solution, based on
preserving the CFI of call and branch instructions. A first
defense against JOP can be a hardware table of addresses
of the most common functions. An indirect branch target is

compared to the table and is legal if the target is the first
instruction of a function, or any target within the current
function. Otherwise, an alarm is triggered, and the replay
verifies that the target is one of the less common functions.

A DOS attack on the OS can be detected with a counter
that increments every time the kernel performs a context
switch. If the counter has not increased much for a while,
an alarm is raised, and RnR analyzes and identifies the code
that has dominated the system’s execution time. Due to space
limitations, this paper focuses only on the ROP attack next.

Attack Alarm Possible First Role of Replay
Trigger Defense

ROP RAS mis- Dump the RAS, Execute a kernel-
(this paper) prediction Whitelist compatible shadow

stack algorithm
Jump Stray Table of entry and Verify if the
Oriented indirect exit addresses of target is one of
Program- branch the most common the less common
ming (JOP) functions functions
Denial of Kernel Counter of number Identify reason for
Service scheduler of context switches low switching
(DOS) inactivity frequency

Table I: Examples of potential RnR-Safe uses.

IV. EXAMPLE: RNR-SAFE TO THWART KERNEL ROPS

A. Main Idea

The architecture primitive that we use to help detect ROPs
is the RAS. The RAS stores the addresses of the predicted
targets of return instructions. A ROP attack, by causing re-
turns to unexpected addresses, induces RAS mispredictions.

To use RAS mispredictions to thwart ROP attacks in RnR-
Safe requires that there be no false negatives. Fortunately,
execution of ROP payloads is guaranteed to cause RAS
mipredictions, making false negatives impossible. Further-
more, for this detector to be useful in RnR-Safe, false
positive alarms should be infrequent. There are a few major
sources of false positives in the basic RAS operation. We
will explain these sources with Linux kernel examples.

First, there is the effect of multithreading. In a mul-
tithreaded environment, when the kernel switches from
Thread i to Thread j, it leaves entries belonging to Thread i
on the RAS. When executing code in Thread j, these entries
might be incorrectly popped and used for prediction. If so,
not only will Thread j encounter mispredictions, but also
Thread i’s entries will no longer be available for their use
after i is rescheduled. Hence, there will be mispredictions.

A second effect is non-procedural returns in the kernel.
Sometimes—e.g., during a context switch—the kernel in-
serts an address into the software stack, which will later
be used by a return instruction as target. Since there was
no prior call from that address, the RAS will not contain a
corresponding entry and mispredict.

RAS underflows are a third source of imprecision. If the
code executes many nested procedure calls, the RAS may
evict some of the earlier return addresses. Later, when the
execution returns from the inner calls and tries to pop entries

4



corresponding to the outer calls, the RAS will be empty
(underflow) and will mispredict.

Imperfect nesting of procedure calls is another reason
for RAS mispredictions—a situation where a procedure is
called but never returned from. Within the kernel, these
are events that typically only take place as part of bug
recovery processes in the kernel. When the kernel execution
encounters a recoverable bug, it initiates a recovery process,
as part of which it terminates the current thread of execution,
leaving all the RAS entries of the current thread orphaned.
For user-mode code these occur more commonly—e.g., in
exception handling implemented using setjmp/longjmp.

These effects show that the RAS is a detector of ROPs
with many false positives. For RnR-Safe to use it as the
initial defense, we need to robustify the RAS detection capa-
bility with simple support to minimize the false positive rate.
To completely eliminate false positives requires disruptive
software changes and intrusive hardware changes.

An alarm replayer is invoked when there is an alarm. It
starts from a nearby checkpoint created by the checkpointing
replayer. It distinguishes false alarms from real attacks, and
characterizes any detected ROPs.

In the following, we describe the components of RnR-Safe
to protect the kernel despite its unique RAS challenges.

B. Basic Design

As shown in Figure 1, the workload (applications +
kernel) runs in a Recorded VM. As it runs, the hypervisor
creates an input log that is sent to and consumed by a
Replaying VM.

A conventional RAS is slightly augmented in this basic
design of RnR-Safe. Specifically, if we are executing a return
instruction in kernel mode, and a mismatch is found between
the predicted target in the RAS and the actual return target,
a VM exit is triggered. Then, the hypervisor inserts a ROP
alarm entry in the input log. Depending on its configuration,
the hypervisor may or may not stop the recorded VM until
the alarm is fully processed in the replaying VM.

As the checkpointing replayer consumes the log, if it finds
an alarm entry in the log, it triggers the execution of the
alarm replayer, starting from the most recent checkpoint.
The alarm replayer determines whether it is a false alarm or
not.

This basic RnR-Safe design will not miss an attack, but it
suffers from false alarms. Next, we extend this basic design
to reduce its false positives.

C. Supporting a Multithreaded Environment

In a multithreaded environment, a thread might be de-
scheduled while executing in kernel mode. The return ad-
dresses left by this thread in the RAS might be popped and
used (incorrectly) by subsequent threads, and this thread
itself might pop and use RAS entries belonging to other
threads once it is re-scheduled. The result is RAS mispre-
dictions and false ROP alarms.

To address this problem, RnR-Safe extends the processor
hardware as follows. On a context switch, the hardware
saves the current RAS into a safe memory area, and restores
the RAS state as needed for the upcoming running thread.
The hypervisor helps by setting a hardware pointer to point
to the correct memory area to move data out and in. For
that, we augment the set of structures that the micro-coded
virtualization hardware already saves and restores at context
switch to also include the RAS.

The structures are shown in Figure 2. The software struc-
ture in memory is an array of backed-up RASes (BackRAS
array). Each entry belongs to a thread, and has a RAS
and a counter with the number of entries in the RAS. The
counter is needed to know the number of entries that need
to be read-in later on. The processor hardware includes
a pointer (BackRASptr) that points to the backed-up RAS
of the currently-running thread. The pointer is set by the
hypervisor.

��������
����
����
����
��������
����
����
������������

������
������

����������������
����������������

������
������

����
����
����
��������
����
����
����

���
���
���
���

Cnt Cnt Cnt Cnt

Memory Structure (Software) Processor Structures
(Hardware)

BackRAS array

RAS

BackRASptr

Thread
ID

ij

Figure 2: Structures used to support multiple threads.

Figure 3 shows the logic used. On a context switch, as part
of the transition to the hypervisor, the hardware saves the
RAS to the entry pointed to by BackRASptr. In addition,
it stores the count of saved entries. Our measurements
show that a transition to the hypervisor takes about 1,000
cycles. We estimate that backing-up the RAS will add about
200 cycles. Later, when the hypervisor runs, it changes
BackRASptr to point to the entry for the new thread. Finally,
as part of the transition back to the guest, the hardware reads
the correct BackRAS entry into the RAS, taking another 200
cycles.

To program the BackRASptr, the hypervisor needs to be
informed of context switches in the guest kernel and identify
the new thread to be scheduled. Section V-B1 explains how
this is done without modifying the guest kernel.

to Thread j
from Thread i
Context switch

HW transition HW transitionGuest

Save RAS toThread i
BackRAS[i]runs

Set BackRASptr
to point to
BackRAS[j]

BackRAS[j]
to RAS

Copy Thread j
runs

GuestHypervisor

Time

Figure 3: Algorithm and timeline to handle multiple threads.
With this support, when a thread is scheduled, it finds its

correct state in the RAS, thus eliminating many false alarms.

D. Supporting Non-Procedural Returns
Sometimes, the kernel uses the return instruction as an

indirect branch. Specifically, it inserts an address into the

5



software stack, and then executes a return that uses that ad-
dress as target. Since there was no corresponding procedure
call, the RAS did not push an entry, and will mispredict.
Consequently, in these cases, the RAS should not be popped,
as doing so will corrupt the RAS state.

In the Linux version we use, this use of returns occurs
in one place, namely when a context switch is complete. At
that point, right before launching the next thread, the kernel
executes such a return in order to start executing code on
behalf of the new thread. This code is written in assembly
and directs the control flow to three well-defined locations in
the kernel code. These locations complete the task switching
based on whether it involves forking a thread, executing a
kernel thread, or rescheduling a task.

To address this problem, RnR-Safe extends the proces-
sor hardware with a table of “whitelisted” addresses. For
our Linux version, there is a single-entry return whitelist
(RetWhitelist) with the PC of the single return used as
indirect branch, and a target whitelist (TarWhitelist) with
the PC of the three instructions that can be the target of this
return. During return address prediction, if a return and its
target PC match entries in the tables, then the RAS is not
popped and no alarm is raised. These lists are only writable
by the hypervisor.

The logic used and its timeline are as follows. When
an instruction is decoded and identified as a return, the
hardware checks if its PC is in the RetWhitelist. If so, the
RAS is not popped and a Whitelisted flag is set. Later, when
the target address is accessed, if the Whitelisted flag is set,
the hardware checks if its PC is in the TarWhitelist. If it is
not, a VM exit is triggered.

The whitelisted addresses can be found by analyzing
the binary image of the guest kernel. The hypervisor can
populate RetWhiteList and TarWhiteList using the iden-
tified addresses when entering the VM as explained in
Section V-A.

E. RAS Underflows and Imperfect Nesting

It is possible that the kernel executes many nested pro-
cedure calls causing the RAS to evict some of the earlier
return addresses. In this case, when the hardware accesses
the RAS in a return instruction, it may find it empty. This
will cause a RAS misprediction.

RnR-Safe could prevent this problem by adding more
entries in the RAS or opportunistically saving/restoring the
RAS. However, this requires expensive hardware that is
rarely used. Hence, RnR-Safe lets these events raise ROP
alarms, and relies on the replayer to identify them as false
positives. Since the replayer models an unbounded RAS in
software, it can filter out such false positives.

Similary, we let the processor to raise ROP alarms for
mispredictions due to imperfect procedure nesting in the
kernel. Such events are hard to handle transparently in
hardware. However, they are easily filtered out by our alarm
replayer. It should be noted that both of these events are
very rare.

F. Replaying Platform

The input log is passed on-the-fly to another platform,
where a VM running the checkpointing replayer determin-
istically replays the execution.

1) Checkpointing Replayer: To understand the operation
of the checkpointing replayer (CR), we first describe the
contents of a checkpoint. Figure 4 shows three checkpoints.
Each checkpoint has three components. The first one is all
the pages with the VM state. These include the memory
pages plus a page with the processor state (PC, stack pointer,
and the rest of the registers at the time of checkpoint). They
also include the virtual disk image contents. This is the state
that the VM being recorded wrote to the virtual disk. We
need to checkpoint it because, if the execution later reads
this data, the data will not appear in the input log. Note,
however, that the state checkpoints are incremental. Since
we take regular checkpoints, a given checkpoint keeps copies
of only the pages that have been modified since the previous
checkpoint; for each unmodified page, it keeps a pointer to
the page in the latest checkpoint that modified it.

�
�
�
�

Pages and
blocks of
program
state

BackRAS

Checkpt 1 Checkpt 3Checkpt 2

InputLogPtr

Input log buffer

Time

Figure 4: Checkpoints created by the checkpointing replayer.

The second component of a checkpoint is a pointer to
the input log buffer (InputLogPtr). The pointer points to the
next input log entry to be processed after the checkpoint.
Finally, the third component is the BackRAS at the time
of the checkpoint. We will see in Section IV-F2 that it is
needed.

The hardware on which the CR runs works slightly
differently than in the recorded VM. Specifically, the RAS
is dumped into the BackRAS not just at context switching
points, but also at VM exits while in the kernel. This ensures
that, at the point of the checkpoint (which is also a VM exit),
the CR has the up-to-date state of the BackRAS to stash in
the checkpoint. There is no restoring of the RAS at non-
context switching VM exits. As indicated in Section IV-C,
we estimate a VM exit and subsequent entry to take ≈ 2,000
cycles, and saving the RAS to take ≈ 200 cycles.

A second difference is that the hardware’s ability to trigger
ROP alarms is disabled. This is because replay does not
create alarms.

With this background, we can describe the CR operation.
The CR executes the recorded VM in a deterministic manner,

6



periodically creating checkpoints. When the CR decides to
create a checkpoint, it interrupts the processor and dumps
the processor state (PC, stack pointer, and all registers) into
a memory page. The RAS is automatically saved as part
of the VM exit. The CR then creates the checkpoint by
saving: (1) all the memory pages and disk blocks modified
since the previous checkpoint, together with pointers to the
unmodified ones, (2) the current BackRAS, and (3) the
current InputLogPtr. Then, the CR restores the processor
state, marks all pages copy-on-write, and continues execu-
tion. When a page is modified for the first time since the
last checkpoint, a copy is made and used from now on.

The CR regularly recycles checkpoints. However, it can
only recycle a memory page or disk block if it is not pointed
to by a later checkpoint.

2) Alarm Replayer: When the CR encounters an alarm, it
initiates an alarm replayer (AR). The AR determines whether
the alarm is caused by a ROP or is a false alarm. If the
former, the AR provides the state of the system at the point
of the ROP attack. Moreover, the AR can be re-run multiple
times, with increasing levels of instrumentation, to fully
characterize the attack.

The hardware on which the AR runs neither dumps the
RAS state nor triggers ROP alarms. Both capabilities are
disabled because they are not needed.

The AR VM starts by initializing the VM state using
a checkpoint. It marks all the pages pointed to by the
checkpoint as copy-on-write to avoid modifying the initial
state. Then, it reads the checkpoint’s BackRAS into its own
software data structure that it uses to simulate the RAS.
Next, it loads the processor state from memory into the
processor registers. Finally, it starts execution, reading from
the log starting from the InputLogPtr.

The AR executes the recorded VM natively, in a deter-
ministic manner, consuming the input log until it reaches
the alarm marker. The AR models unbounded, per-thread
RAS structures in software. As such, the AR traps every call
and return instruction, inducing VM exits and transferring
control to the hypervisor. There, it models in software an
unbounded RAS with our extensions for multithreading and
non-procedural returns.

Once the AR encounters the alarm in the log, it checks
whether the RAS mismatch can only be explained as an
ROP attack. If so, an expert can study the execution state
to glean information about the attack. Section VI shows an
attack. Note that this design allows running multiple ARs
concurrently to analyze multiple ROP alarms in parallel.

V. IMPLEMENTATION ISSUES

This section summarizes the hardware and hypervisor sup-
port required for the architecture described. Following Intel’s
VT terminology, we use VMCS (VM Control Structure) to
refer to the in-memory control structure through which the
hypervisor communicates with and configures the virtual-
ization hardware. We use VMEnter to mean transferring

execution from the hypervisor to the VM, and VMExit to
mean the opposite transfer.

A. Hardware Support

The hardware support required is modest. It largely reuses
the existing RAS hardware and, of course, RnR hardware.
On top of that, it adds the BackRASptr register and the two
whitelist tables. The requirement for RnR can be considered
the most substantial change. However, RnR is well under-
stood and accepted as a useful primitive for debugging and
program analysis. The RnR infrastructure can be reused for
a large variety of debugging and security analyses.

The maintenance of the BackRAS array in memory, and
of the BackRASptr and whitelist tables is performed in
microcode. Specifically, we extend the VMCS with three
new fields for the BackRASptr and the two whitelist tables.
Microcode reads these fields to program these three pro-
cessor hardware structures. Then, microcode uses the value
of BackRASptr to dump the RAS contents into the active
BackRAS entry in certain VMExits, and to read the active
BackRAS entry into the RAS in certain VMEnters.

B. Hypervisor Support

1) Programming BackRASPtr on a Context Switch: The
hypervisor needs to interpose on all context switches in the
guest kernel during both recording and replay. In Linux,
there is a single instruction where the stack pointer is
changed from pointing to the current thread’s stack to the
next thread’s stack. By setting a trap on this instruction,
the hypervisor forces a VMExit when the guest executes
this instruction. As part of the VMExit’s microcode, the
hardware dumps the RAS into the memory location pointed
to by BackRASPtr.

Once the VMExit is complete and the control is transfered
to the hypervisor, it can introspect the state of the guest
OS to identify the next thread to be scheduled. In Linux, a
thread’s descriptor (called task struct) can be easily found
if the thread’s stack pointer is known. Since we set the trap
on the instruction that changes the processor’s stack pointer,
we can find the next thread’s stack pointer by examining
the register content of the VM — which is available in the
VMCS after a VMExit. Using this stack pointer, we find the
corresponding task struct descriptor in the VM’s memory,
and from that descriptor, read the next thread’s ID.

The hypervisor stores the BackRAS in a memory area
inaccessible to the guest machine. It stores it as a hash
table mapping a thread’s ID (“key”) to its BackRAS entry
(“value”). Using this organization, once the next thread’s ID
is found, the hypervisor checks the map to determine its
BackRAS entry. Then, the hypervisor sets the BackRASPtr
field of the VMCS to point to the BackRAS entry.

2) Recycling BackRAS Entries: In Linux, threads are
constantly being created and killed, and their IDs may be
reused. To keep the BackRAS consistent, we need to remove
from the BackRAS a thread’s entry when the thread is killed
and its ID can be reused. Similarly to the case of context

7



switching, the hypervisor sets a trap on the function that
implements this functionality in the guest kernel to force a
VMExit when it is executed. At that point, the thread ID
can be found by introspection and then used to delete the
corresponding BackRAS entry.

VI. MOUNTING A KERNEL ROP ATTACK

We built and mounted the ROP attack of Figure 10. In
the recording VM, as the workload calls the vulnerable
procedure of Figure 10(c), the hardware pushes into the RAS
the address of the instruction at the call site (call it CallSite).
This is the same address that is stored above the buffer
in the software stack of Figure 10(e). After the malicious
string copy, the software stack becomes Figure 10(f). As the
program executes the return of the vulnerable procedure, the
hardware uses the RAS to predict that execution will transfer
to CallSite. In reality, the target of the return is resolved to
be the address of gadget G1, as shown in Figure 10(f). This
mismatch causes the recorded VM to raise an alarm.

The recorded VM hypervisor then inserts an alarm marker
in the log and may decide to stall the VM. When the
checkpointing replayer sees the alarm marker in the log, it
starts an alarm replayer from the most recent checkpoint. As
the alarm replayer executes, it models the RAS in software.
At the point of the alarm, it observes the mismatch between
the return’s predicted target (in the RAS) and the actual
target (in the software stack), hence declaring an ROP attack.

At this point, the hypervisor performs an analysis of the
system. It can use VM introspection to analyze the VM state,
which has not been polluted by the execution of any gadget.
It can also invoke additional replays further back in time to
perform a deeper analysis of the system.

One question that replay analysis can answer is: how was
the attack possible to begin with? The hypervisor uses the
return instruction that caused the alarm to determine that
the attack occurred in the vulnerable procedure. It uses the
address at the top of the RAS to determine the call site.
An analyis of the vulnerable procedure can conclude the
presence of buffer overflow.

Another question is who attacked the machine? The
hypervisor can determine the thread ID of the current thread,
extract which users are logged in, and determine which
network connections are established.

Yet another question is what did the attacker do? An
analysis of the software stack reveals the gadgets used by
the attacker. In this case, they did not execute. If they did,
the hypervisor can use VM introspection to analyze what
files were touched, what sockets were utilized, and what
processes were forked [60]. This information is easy to get
now because the workload is not running.

VII. EXPERIMENTAL SETUP

A. Goal of the Evaluation

In this paper, the goal of our evaluation is to assess the
overhead of recording, and of replay using the checkpointing
and alarm replayers. We also want to know the rate of

log generation, the bandwidth consumed to save/restore the
RAS, and the frequency of alarms. Additional information
includes the time window between attack and detection,
the log generated during this window, and the number of
checkpoints that the system needs to retain. In our work,
we only mount the kernel ROP attack that we describe in
Section VI. Such attack is representative of ROP attacks, as
they all use the same gadget-based pattern. Collecting and
analyzing multiple real-world kernel ROP attacks is left as
future work.

Note that our design does not support recovery. When
an alarm is raised, the machine being recorded can either
continue while a replay is underway, or it can pause and
wait for alarm verification. We do not envision roll back
and recovery. A future design may consider it.

B. Evaluation Environments

To evaluate RnR-Safe, we use two evaluation environ-
ments. The first one evaluates the performance of our
recording and replaying modes. For this, we use Insight [61],
a VM RnR tool based on a modified Linux KVM hypervisor
and QEMU devices. Since the KVM hypervisor can leverage
Intel VTx extensions to virtualize the processor in hardware,
the performance numbers from this setup are representative
of real-world machines.

The second environment evaluates the correctness of our
techniques and the functional characteristics of our proposed
hardware. For this, we use QEMU in emulation mode. In this
mode, QEMU also emulates the processor using dynamic
translation of the systems software. This mode makes it easy
to simulate our hardware and evaluate its function.

Table II shows the system configuration we use for our
performance evaluation, and Table III shows our bench-
marks.

Host machine
CPU: Xeon E3-64bit,4-cores,3.1GHz Memory: 8 Gbytes
OS: Ubuntu, Linux kernel 2.6.38-rc8

Guest machine
CPU: uniprocessor Memory: 1 Gbyte
OS: Debian, Linux kernel 3.19.0 Disk: 32 Gbytes

Table II: System configuration for performance evaluation.

Benchmark Parameters
apache -n100000 -c20

fileio –file-total-size=6G –file-test-mode=rndrw
–file-extra-flags=direct –max-requests=10000

make linux-4.0 config with all-no

mysql –test=oltp –oltp-test-mode=simple
–max-requests=500000 –table-size=4000000

radiosity -p1 -bf 0.005 -batch -largeroom
Table III: Benchmarks executed.

C. Handling Non-Deterministic (ND) Events

Synchronous ND Events. Instructions such as rdtsc (read
time stamp counter) or rdrand (read random number gener-
ator) return ND results. Accesses to memory regions like
Memory Mapped IO (MMIO) are also ND. The VMCS
controls when the processor will perform a VMExit. We

8



apache fileio make mysql radiosity mean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

NoRecPV NoRec RecNoRAS Rec

(a)

apache fileio make mysql radiosity
0

10

20

30

40

50

60

70

R
e
c 
O
ve
rh
e
a
d
 D
is
tr
ib
u
ti
o
n
(%
)

Rdtsc

Pio/Mmio

Interrupt

Network

RAS

(b)
Figure 5: Execution time of recording setups (a) and breakdown of the Rec overhead over NoRec (b).

configure the controls to synchronously trap these ND ac-
cesses, allowing the hypervisor to log their results. With
similar configuration of the controls on the replaying system,
these events are deterministically reproduced during replay.

Network inputs are a special case and are also syn-
chronous in our system. The arrival of network packets to
the physical NIC is inherently asynchronous but the data
is delivered to the VM at the boundaries of synchronous
VMExits. Thus, this simplifies the recording and replaying
of network events.
Asynchronous ND Events. Asynchronous events are more
challenging to replay. These occur from external interrupts.
These interrupts originate from other processors or from
physical devices like disks. The VMCS structure can also
be configured to cause a VMExit on these events. These
VMExits, however, are asynchronous and will not repeat on
the same instruction during replay. Therefore, for faithful
replay, replay has to manually recreate them.

Trapping the VM at the same processor context is not
straightforward. Insight uses performance counters to cause
a VMExit as close as possible to the required point in replay.
From there, the processor is single-stepped until execution
reaches the desired injection point. Each step will suffer the
overhead of a VMExit (≈2,000 cycles).

D. Evaluating Replay Overhead

To evaluate the overhead of checkpointing replay, we
reuse the Linux copy-on-write implementation used during
fork system calls. Virtual memory belonging to the VM is
allocated within a user-space QEMU process running on the
host machine. With minor modifications, a checkpoint can
be created by forking the QEMU process.

The alarm replayer models the RAS at every call and re-
turn instruction. Unfortunately, current Intel VTx extensions
do not support trapping call and return instructions. Hence,
to measure the performance impact of alarm replay, we
modified GCC to instrument binaries by inserting a debug
exception before kernel context switches, and before call
and return instructions. The debug exception is a single byte
opcode (0xCC) used to trap instructions by raising debug
exceptions. The VMCS is configured to cause VMExits on
debug exceptions. This allows us to mimic the behavior of
the alarm replayer, modulo a minor performance impact due
to a 0.11% increase in the size of the Linux binary.

E. Evaluating the Proposed Hardware

In binary translation mode, QEMU virtualizes the proces-
sor using software only. This mode is significantly slower,
but it allows for simulation of hardware. We use this mode to
evaluate our proposed hardware modifications in RnR-Safe.
We simulate a 48-entry RAS by default.

VIII. EVALUATION
A. Recording

Our recording scheme generates the log and also saves/re-
stores the RAS at context switches. Recall we require
hypervisor-mediated I/O, which prevents the use of para-
virtualized (PV) network drivers. Figure 5(a) compares the
execution time of our scheme (called Rec) to that of three
other setups: no recording with PV drivers (NoRecPV),
no recording and no PV drivers (NoRec), and recording
without dumping the RAS (RecNoRAS). Each benchmark
is normalized to NoRec.

We see that disabling PV increases the execution time
of these benchmarks by 25-150%. Apache and fileio are
affected the most, while mysql is not impacted much, as
it avoids disk accesses by caching recently-accessed tables
in memory. Note, however, that RnR has been successfuly
applied to PV drivers [24]; applying those techniques in our
solution would eliminate this overhead from our system.

Recording (Rec) takes, on average, 27% longer than
NoRec. Recording without saving/restoring the RAS (Rec-
NoRAS) takes 24% longer than NoRec. These overheads are
modest, and are likely to decrease in a reasonably-optimized
implementation of recording—e.g., Pokam et al. [18] mea-
sure that their implementation of recording adds only 13%
overhead.

To understand the source of overheads, Figure 5(b) takes
the slowdown of Rec over NoRec and breaks it down into
their sources, namely recording timer reads (rdtsc), port
and memory-mapped I/O accesses (pio/mmio), interrupts,
network packet contents, and saving/restoring the RAS.

We see that the dominant overhead across all benchmarks
is due to recording rdtsc. This event occurs very frequently,
especially in fileio and mysql, where the application itself
issues many timer reads to measure transaction speed. In ad-
dition, fileio issues disk command and control signals using
pio. It also has DMA activity, which causes interrupt events
to signal file access completion. Apache receives network

9



packets and uses mmio accesses to the NIC to retrieve the
packets. The more computation-intensive benchmarks (make
and radiosity) have little overhead. Finally, saving/restoring
the RAS induces only 4% overhead on average.

Figures 6(a) and (b) show the input log generation rate,
and the bandwidth of RAS saving and restoring, respectively,
for all our benchmarks. We do not compress the data. We
see that the rates of log generation are low. Apache has the
highest input log rate (4 MB/s) because it records network
packet contents. We also see that the RAS save/restore band-
width is very small. Overall, the impact of the architecture
on the memory system is modest.

ap
ach

e
file

io
mak

e
mysq

l

rad
ios

ity
0

1

2

3

4

5

In
p
u
t 
L
o
g
 R

a
te

 (
M

B
/s

)

(a)

ap
ach

e
file

io
mak

e
mysq

l

rad
ios

ity
0.0

0.2

0.4

0.6

0.8

1.0

B
a
ck

R
A
S
 B

a
n
d
w

id
th

 (
M

B
/s

)

(b)
Figure 6: Input log generation rate (a) and bandwidth to
save/restore the RAS (b).

B. Minimizing False Alarms

The RnR-Safe hardware eliminates most of the false
alarms in the kernel, allowing only a few false alarms to
be reported to the replayers. Figure 7 shows the number of
kernel false alarms reported to the replayers (FalseAlarm)
and those suppressed with the whitelist and with the Back-
RAS. The figure shows the number per million instructions.
Since the number of remaining false alarms is so small, the
FalseAlarm category cannot be seen, and we put the number
on top of the bars. All the benchmarks except Apache have
practically no kernel false alarm. Apache has a few false
alarms, mosty because it has some deep procedure nesting
under network stress conditions. Both the whitelist and the
BackRAS are very effective at removing false alarms.

apache fileio make mysql radiosity
0

1000

2000

3000

4000

5000

E
ve
n
ts
/1
M
 I
n
st
ru
ct
io
n
s

6.01

0

9e-05

0

0

FalseAlarm Whitelist BackRAS

Figure 7: Kernel alarms and alarms suppressed.

C. Replaying

1) Checkpointing Replay: Figure 8(a) compares the ex-
ecution time of various checkpointing replay setups to the
recording setup (Rec). The replay setups use no checkpoint-
ing (RepNoChk) or checkpoint every 5, 1, or 0.2 seconds
(RepChk5, RepChk1, and RepChk02, respectively). The bars

are nomalized to Rec. From the data, we see that check-
pointing every 1 second (RepChk1) increases the execution
time over Rec by 59% on average.

These results show that checkpointing replay runs at a
speed that is roughly comparable to that of recording. As a
result, checkpointing replay can be on all the time. While
checkpointing replay is a bit slower, it can catch up with
recording because even busy machines are rarely 100%
utilized — they are often waiting for multiple reasons.
During that time, recording slows down but replay can
continue. If the replay gets significantly behind, we can use
backpressure to temporarily slow down recorded execution.

The figure also shows that increasing or decreasing the
checkpoint period changes the speed. Interestingly, even
without checkpointing, replay already takes on average 48%
longer that Rec.

To understand these effects, Figure 8(b) takes the slow-
down of RepChk1 over Rec and breaks it down into its
sources. The sources are the events that we saw in Fig-
ure 5(b) for the recording, plus creating checkpoints (Chk).
During recording, the RAS category involved saving/restor-
ing the RAS at context switches; now it additionally includes
saving (but not restoring) the RAS at VMExits.

The breakdown in the figure shows that creating check-
points contributes noticeably to the total overhead. This
is why the frequency of checkpoints matters. The actual
overhead depends on the memory write characteristics of the
workload; poor memory locality causes more page copies,
increasing checkpointing overhead.

Interestingly, we see that interrupt overhead dominates.
The reason is that interrupts are asynchronous events, while
rdtsc, pio/mmio, and network are synchronous. Identifying
the instruction that should get the asynchronous interrupt
injected during replay is time consuming. As indicated in
Section VII-C, it requires single-stepping VMExits over
several instructions. This is the reason for the overhead of
Figure 8(b). It also explains that replaying without check-
pointing (RepNoChk) already has significant overhead over
Rec.

2) Alarm Replay: Finally, Figure 9 compares the ex-
ecution time of alarm replay (RepAlarm) to previously-
shown environments: checkpointing replay (RepChk1) and
recording (Rec). The bars are normalized to Rec. Alarm
replay needs to trap on every call and return instruction.
Hence, the slowdown of this mode directly relates to how
many kernel call and return instructions were executed. We
see that replaying make and mysql takes 30-40x longer than
recording them. For apache, it takes 50x. On the other hand,
for radiosity, with its modest kernel activity, it takes 2.8x.

D. Time Window to Respond to an Attack

The amount of time it takes to detect a ROP is the dif-
ference between the time when the alarm replayer confirms
a ROP, and the time when the recording execution logged
the alarm. Such time window and the length of the resulting
log that was generated in between the two times depend on

10



apache fileio make mysql radiosity mean
0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
li

ze
d

 E
xe

cu
ti

o
n

 T
im

e

Rec

RepNoChk

RepChk5

RepChk1

RepChk02

(a)

apache fileio make mysql radiosity
0

20

40

60

80

100

R
e
p
C
h
k
1
 O
ve
rh
e
a
d
 D
is
tr
ib
u
ti
o
n
(%

)

Rdtsc

Pio/Mmio

Interrupt

Network

RAS

Chk

(b)
Figure 8: Execution time of checkpointing replay setups (a) and breakdown of the RepChk1 overhead over Rec (b).

apache fileio make mysql radiosity mean
0

10

20

30

40

50

60

N
o
rm

a
li
ze
d
 E
xe

cu
ti
o
n
 T
im

e

Rec RepChk1 RepAlarm

Figure 9: Execution time of alarm replay.

two factors: the workload characteristics and the number of
machines dedicated to replay. For the system described, we
measured that the time window is on average a few seconds,
and the log size several MBs (Figure 6(a)).

The number of checkpoints that the system needs to retain
depends on how far back we want execution to roll to fully
understand the attack. Strictly speaking, to reproduce the
state at the point of the attack, the alarm replayer only needs
to start from the most recent checkpoint. Such checkpoint is,
at worst, one second old. If that is all that is desired, RnR-
Safe only needs to keep as many checkpoints as the duration
of the time window mentioned above in seconds—this is
to ensure that the correct checkpoint is not prematurely
overwritten.

However, if the user wants to analyze the last N seconds
of execution before the attack was triggered to understand
the context of the attack, RnR-Safe needs to keep an
additional N checkpoints. Finally, checkpoints can be stored
indefinitely, if the user wants their entire history recorded.
The user can be motivated to do this as the recorded history
can be used for forensics and to audit prior executions to
detect intrusions.

IX. RELATED WORK

Control Flow Integrity. Enforcing Control Flow Integrity
(CFI) [27] is the sound technique to prevent code reuse
attacks. It requires preventing branch destinations disallowed
by the Control Flow Graph (CFG) and/or the shadow stack.
Relaxed approaches [46] avoid the shadow stack and/or CFG
by relaxing the definition of valid branch targets. Valid
branch targets depend on either the type or location of
the destination instruction. For example, Intel CET [54]
re-purposes a multi-byte NOP instruction to mark valid
destinations for indirect branches. Other approaches [31],

[32] define validity via the proximity of the branch desti-
nation with respect to function boundaries. In general, such
approaches fail to completely eliminate gadgets [46], [62],
permitting ROP payload construction. Moreover, shadow
stack integrity and longevity of CFI are additional points
of concerns for CFI [63], [64].
Address Space Layout Randomization. ASLR hardens
systems against ROP attacks by randomizing the locations
of the stack, heap, and program instructions. Thus, attackers
must first discover the location of the code and stack via ad-
dress disclosure attacks [53], [52], [51], [65]. This additional
requirement compounds the difficulty of mounting ROP
attacks. Additionally, to further strengthen ASLR, there are
proposals for hardening systems against address disclosure
attacks [66], [67], [68]. In summary, ASLR is a practical,
effective, and widely deployed hardening technique which
indeed makes ROP attacks more difficult to mount. However,
until the address disclosure attack surface is eliminated,
ASLR cannot fully eliminate ROP attacks.
Record and Deterministic Replay (RnR) for Security.
Bezoar [69] uses taint tracking hardware to identify network
inputs originating from an attacker. Then, the VM is replayed
while skipping the malicious network inputs.

The closest previous work to ours is Aftersight [21]. It
suggests using VM-level RnR to perform online dynamic
analysis of a system’s execution. Although it lays out a
general direction for VM-level RnR for online analysis,
Aftersight does not address some important aspects of such
a model.

For example, unlike RnR-Safe, Aftersight assumes that
the full replay analysis is constantly running and is able to
catch up with (or only modestly slow down) the record-
ing; otherwise, it loses precision and might introduce false
positives. This is not a reasonable assumption in case of
heavy-weight analysis, as needed for ROP detection. In
addition, RnR-Safe advances the state of the art by proposing
an architecture that presents the key practical aspects of
online RnR security analysis. These key practical aspects
are: (1) Co-designed hardware-software mechanisms (e.g.,
the RAS extensions are co-designed with the capabilities of
the replayers) to achieve reasonable overhead while keeping
hardware changes simple; (2) separate checkpointing and
alarm replayers; and (3) need-based triggering of the alarm

11



replayers (as opposed to constantly-running analysis).
X. CONCLUSIONS

This paper proposed RnR-Safe, a framework where RnR
is used to complement a hardware security feature, allowing
the latter to be imprecise and suffer false positives. This
property often makes the feature design less intrusive or
complicated. RnR-Safe uses two on-the-fly replayers: a
checkpointing one and an alarm one. As an example, we
applied RnR-Safe to thwart ROP attacks to the kernel, the
most difficult target to secure. RnR-Safe augments the RAS
hardware to eliminate false positives due to multithreading
and non-procedural returns. We evaluated RnR-Safe on a
VM running Linux. We found that RnR-Safe is a very effec-
tive co-design. The checkpointing replayer has comparable
execution speed as the recorder, and can be replaying all the
time. Also, the alarm replayer has to handle only very few
false positives.

ACKNOWLEDGMENT

This work was supported in part by NSF grants CCF 16-
29431, CCF 16-49432, and CCF 17-25734.

APPENDIX A: WHAT IS A ROP ATTACK?

The objective of attackers is to execute malware on a
victim machine. In the past, attackers injected malware
machine code into memory allocated for data, and hijacked
execution to fetch instructions from there. The W⊕X [2],
[4], [70], [71], [72] policy was designed to counter this
specific attack vector. By enforcing that memory pages
are either executable or writable—but never both—malware
injected into memory can no longer be executed. To bypass
W⊕X, “Code Reuse” based attacks were proposed. For these
attacks, existing correct code unwittingly provides malware
instructions. ROP [5] is the dominating example of this
approach.

Conceptually, an ROP attack executes multiple snippets
of code from the victim program or software environment
(e.g. libc) called Gadgets. Each gadget is terminated with a
return—a branching instruction whose target is popped from
the software stack. The attacker first loads into the software
stack the addresses of the desired gadgets. Then, to trigger
the attack, control flow is forced to the first gadget. As the
first gadget terminates, its return instruction pops the next
entry from the software stack, redirecting execution to the
next gadget. Thus, by writing onto the stack the addresses of
gadgets, the attacker can stitch together a desired sequence
of gadgets required to achieve the desired malicious effects.

This type of attack is dangerous for several reasons. First,
it has been shown that the right set of gadgets can construct a
Turing-complete language [5], enabling an ROP compiler to
translate malware from any other Turing-complete language
(like C) to one expressed entirely in gadgets. Second, this
attack bypasses the prevalent W⊕X defense techniques,
because there is no data being written and then directly
executed: the malware executes existing code. Finally, any

simple bug in the code enabling attackers to corrupt the stack
can trigger the execution of a sophisticated chain of gadgets.

Figure 10 shows an example of an ROP attack that
exploits a buffer overflow to execute three gadgets. We use a
buffer overflow bug for simplicity; any bug that allows stack
modification can be used to launch an ROP attack.

AA239C5FF0
BD905EE02F
23FF90BC78
9DD025FA72
DA9047FE85
28AA34FC28
BBD23FA931
04BCAD48F1

(a) Finding gadgets

G1

G2

G3

pop R1

ret

ret

call [R2]
ret

mov R2, [R1]

G2
G1

G3

(b) Translating to gadgets

pop R1

call [R2]
mov R2, [R1]

void vulnerable(char *str){

char buffer[128];
...
strcpy(buffer,str); /*No bounds check,

buffer overflow */...
return;

}

(c) Vulnerable code

Stack pointer

junk_data[0:127]

127

0

G1

G3
G2

Addr

St
ac

k 
gr

ow
th

(e) Functional stack (f) Compromised stack

Stack pointer

127

0

Return address

buffer[0:127]

(d) Generating a ROP chain

str = [junk_data[0:127], G1, Addr, G2, G3]

Figure 10: Example of Return Oriented Programming attack.

In Figure 10(a), the executable is scanned for instances
of the return (ret) instruction. We decode a few bytes before
three returns creating three gadgets (G1-G3). Executing the
three gadgets in sequence is equivalent to executing the code
in Figure 10(b). The code will result in a subroutine call to
a function pointer loaded from a memory location stored on
the stack. If this is executed during kernel execution, it can
be a call to code giving the user root privileges.

Figure 10(c) shows code that is vulnerable to a buffer
overflow attack. The code copies a string into a 128-
byte buffer without verifying that it can fit in the buffer.
Figure 10(d) shows how a payload can be constructed to
exploit this code to execute ROP malware. Figure 10(e)
shows the benign state of the stack, and Figure 10(f) its
state after being corrupted by the malicious input string.
Now, returning from the vulnerable function takes us to G1,
which will pop Addr into R1 and then return. The return
will lead to G2, which will load into R2 and return to G3.
Then, G3 will perform the call.

REFERENCES

[1] C. Otterstad, “A brief evaluation of intel mpx,” in Systems
Conference (SysCon), 2015 9th Annual IEEE International,
pp. 1–7, April 2015.

[2] American Micro Devices, “Amd64 architecture programmer’s
manual volume 2: System programming,” 2006.

12



[3] J. Winter, “Trusted computing building blocks for embedded
linux-based arm trustzone platforms,” in Proceedings of the
3rd ACM Workshop on Scalable Trusted Computing, STC ’08,
(New York, NY, USA), pp. 21–30, ACM, 2008.

[4] Intel Corporation, Intel R© 64 and IA-32 Architectures Soft-
ware Developer’s Manual. No. 253669-033US, December
2015.

[5] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in
Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, (New York, NY, USA),
pp. 552–561, ACM, 2007.

[6] M. Xu, R. Bodik, and M. D. Hill, “A ”Flight Data Recorder”
for Enabling Full-System Multiprocessor Deterministic Re-
play,” ISCA, June 2003.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen, “Revirt: Enabling intrusion analysis through
virtual-machine logging and replay,” SIGOPS Oper. Syst. Rev.,
vol. 36, pp. 211–224, Dec. 2002.

[8] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Con-
tinuously Recording Program Execution for Deterministic
Replay Debugging,” ISCA, June 2005.

[9] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen, “Detect-
ing Past and Present Intrusions Through Vulnerability-specific
Predicates,” in Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, SOSP ’05, (New York, NY,
USA), pp. 91–104, ACM, 2005.

[10] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: Record-
ing and Deterministically Replaying Shared-Memory Multi-
processor Execution Efficiently,” ISCA, June 2008.

[11] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn,
“Parallelizing security checks on commodity hardware,” in
Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, (New York, NY, USA), pp. 308–318,
ACM, 2008.

[12] G. Altekar and I. Stoica, “ODR: Output-Deterministic Replay
for Multicore Debugging,” SOSP, October 2009.

[13] T. Bressoud and F. Schneider, “Hypervisor-Based Fault-
Tolerance,” ACM Transactions on Computer Systems, vol. 14,
February 1996.

[14] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and
P. M. Chen, “Execution Replay of Multiprocessor Virtual
Machines,” VEE, March 2008.

[15] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging Paral-
lel Programs with Instant Replay,” IEEE Trans. Comp., April
1987.

[16] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu, “PRES: Probabilistic Replay with Execution
Sketching on Multiprocessors,” SOSP, October 2009.

[17] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie,
“PinPlay: A Framework for Deterministic Replay and Repro-
ducible Analysis of Parallel Programs,” CGO, April 2010.

[18] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu,
J. Gottschlich, N. Honarmand, N. Dautenhahn, S. T. King, and
J. Torrellas, “QuickRec: Prototyping an Intel Architecture Ex-
tension for Record and Replay of Multithreaded Programs,”
ISCA, June 2013.

[19] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy, “DoublePlay: Parallelizing
Sequential Logging and Replay,” ASPLOS, March 2011.

[20] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos,
“Paranoid android: Versatile protection for smartphones,” in
Proceedings of the 26th Annual Computer Security Appli-
cations Conference, ACSAC ’10, (New York, NY, USA),
pp. 347–356, ACM, 2010.

[21] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling Dynamic
Program Analysis from Execution in Virtual Environments,”
USENIX ATC, June 2008.

[22] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art
of Virtualization,” ACM SIGOPS Operating Systems Review,
vol. 37, no. 5, pp. 164–177, 2003.

[23] “Qemu open source process emulator.” http://qemu.org.

[24] A. Burtsev, D. Johnson, M. Hibler, E. Eide, and J. Regehr,
“Abstractions for practical virtual machine replay,” in Pro-
ceedings of the12th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE ’16,
(New York, NY, USA), pp. 93–106, ACM, 2016.

[25] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and
W. Sanders, “Secloud: A Cloud-based Comprehensive and
Lightweight Security Solution for Smartphones,” Comput.
Secur., vol. 37, pp. 215–227, Sept. 2013.

[26] T. H. Dang, P. Maniatis, and D. Wagner, “The performance
cost of shadow stacks and stack canaries,” in Proceedings
of the 10th ACM Symposium on Information, Computer and
Communications Security, pp. 555–566, ACM, 2015.

[27] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in Proceedings of the 12th ACM Conference
on Computer and Communications Security, CCS ’05, (New
York, NY, USA), pp. 340–353, ACM, 2005.

[28] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: A
detection tool to defend against return-oriented programming
attacks,” in Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS
’11, (New York, NY, USA), pp. 40–51, ACM, 2011.

[29] H. Ozdoganoglu, T. Vijaykumar, C. Brodley, B. Kuperman,
and A. Jalote, “Smashguard: A hardware solution to prevent
security attacks on the function return address,” Computers,
IEEE Transactions on, vol. 55, pp. 1271–1285, Oct 2006.

[30] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi, “Enlisting
hardware architecture to thwart malicious code injection,”
in First International Conference on Security in Pervasive
Computing, March 2003.

[31] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev,
“Branch regulation: Low-overhead protection from code reuse
attacks,” in 9th Annual International Symposium on Computer
Architecture (ISCA), pp. 94–105, IEEE, 2012.

13

http://qemu.org


[32] E. Aktas, F. Afram, and K. Ghose, “Continuous, low over-
head, run-time validation of program executions,” in Proceed-
ings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-47, (Washington, DC, USA),
pp. 229–241, IEEE Computer Society, 2014.

[33] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, H. DENG, et al.,
“Ropecker: A generic and practical approach for defending
against rop attack,” 2014.

[34] J. Criswell, N. Dautenhahn, and V. Adve, “Kcofi: Complete
control-flow integrity for commodity operating system ker-
nels,” in Security and Privacy (SP), 2014 IEEE Symposium
on, pp. 292–307, May 2014.

[35] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu,
J. M. Smith, T. F. Knight, Jr., B. C. Pierce, and A. DeHon,
“Architectural support for software-defined metadata process-
ing,” in Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, (New York, NY, USA),
pp. 487–502, ACM, 2015.

[36] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Trans-
parent rop exploit mitigation using indirect branch tracing.,”
in USENIX Security, pp. 447–462, 2013.

[37] Y. Xia, Y. Liu, H. Chen, and B. Zang, “Cfimon: Detecting
violation of control flow integrity using performance coun-
ters,” in Dependable Systems and Networks (DSN), 2012 42nd
Annual IEEE/IFIP International Conference on, pp. 1–12,
IEEE, 2012.

[38] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “De-
feating return-oriented rootkits with ”return-less” kernels,” in
Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, (New York, NY, USA), pp. 195–208,
ACM, 2010.

[39] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “Stack-
guard: Automatic adaptive detection and prevention of buffer-
overflow attacks.,” in Usenix Security, vol. 98, pp. 63–78,
1998.

[40] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Se-
cure virtual architecture: A safe execution environment for
commodity operating systems,” in Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, (New York, NY, USA), pp. 351–366, ACM, 2007.

[41] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson, “Ilr: Where’d my gadgets go?,” in 2012 IEEE
Symposium on Security and Privacy, pp. 571–585, May 2012.

[42] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced
operating system security through efficient and fine-grained
address space randomization,” in Presented as part of the
21st USENIX Security Symposium (USENIX Security 12),
(Bellevue, WA), pp. 475–490, USENIX, 2012.

[43] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy x86
binary code,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, (New
York, NY, USA), pp. 157–168, ACM, 2012.

[44] P. Team, “Pax address space layout randomization (aslr),”
2003.

[45] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and
N. Abu-Ghazaleh, “Scrap: Architecture for signature-based
protection from code reuse attacks,” in IEEE 19th Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA2013), pp. 258–269, IEEE, 2013.

[46] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose,
“Stitching the gadgets: On the ineffectiveness of coarse-
grained control-flow integrity protection,” in USENIX Security
Symposium, 2014.

[47] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns,
M. Contag, and T. Holz, “Evaluating the effectiveness of
current anti-rop defenses,” in Research in Attacks, Intrusions
and Defenses, pp. 88–108, Springer, 2014.

[48] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard
tm: protecting pointers from buffer overflow vulnerabilities,”
in Proceedings of the 12th conference on USENIX Security
Symposium, vol. 12, pp. 91–104, 2003.

[49] N. Tuck, B. Calder, and G. Varghese, “Hardware and binary
modification support for code pointer protection from buffer
overflow,” in International Symposium on Microarchitecture,
pp. 209–220, Dec 2004.

[50] B. Spengler, “Grsecurity,” 2006.

[51] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh, “On the effectiveness of address-space ran-
domization,” in Proceedings of the 11th ACM Conference
on Computer and Communications Security, CCS ’04, (New
York, NY, USA), pp. 298–307, ACM, 2004.

[52] R. Hund, C. Willems, and T. Holz, “Practical timing side
channel attacks against kernel space aslr,” in 2013 IEEE
Symposium on Security and Privacy, pp. 191–205, May 2013.

[53] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A. R. Sadeghi, “Just-in-time code reuse: On the effective-
ness of fine-grained address space layout randomization,” in
2013 IEEE Symposium on Security and Privacy, pp. 574–588,
May 2013.

[54] Intel Corporation, Control-flow Enforcement Technology Pre-
view . No. 253669-033US, June 2017.

[55] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows
using intel processor trace,” in Proceedings of the Twenty-
Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’17, (New York, NY, USA), pp. 585–598, ACM, 2017.

[56] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni,
J. A. Van Norstrand, B. J. Ronchetti, J. Stuecheli, J. Leenstra,
G. L. Guthrie, D. Q. Nguyen, B. Blaner, C. F. Marino, E. Ret-
ter, and P. Williams, “Ibm power7 multicore server processor,”
IBM Journal of Research and Development, vol. 55, pp. 1:1–
1:29, May 2011.

14



[57] B. Sinharoy, J. Van Norstrand, R. Eickemeyer, H. Le,
J. Leenstra, D. Nguyen, B. Konigsburg, K. Ward, M. Brown,
J. Moreira, D. Levitan, S. Tung, D. Hrusecky, J. Bishop,
M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach,
T. Karkhanis, and K. Fernsler, “Ibm power8 processor core
microarchitecture,” IBM Journal of Research and Develop-
ment, vol. 59, pp. 2:1–2:21, Jan 2015.

[58] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented program-
ming without returns,” in Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS
’10, (New York, NY, USA), pp. 559–572, ACM, 2010.

[59] “CVE-2015-5364..” Available from MITRE, CVE-ID CVE-
2015-5364., Dec. 3 2015.

[60] S. T. King and P. M. Chen, “Backtracking Intrusions,” SOSP,
October 2003.

[61] R. Senthilkumaran and P. Kulkarni, “Insight: A framework
for application diagnosis using virtual machine record and
replay,” 2014.

[62] N. Carlini and D. Wagner, “Rop is still dangerous: Break-
ing modern defenses,” in 23rd USENIX Security Sympo-
sium (USENIX Security 14), (San Diego, CA), pp. 385–399,
USENIX Association, 2014.

[63] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity principles, implementations, and applications,”
ACM Trans. Inf. Syst. Secur., vol. 13, pp. 4:1–4:40, Nov. 2009.

[64] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow
integrity,” in Proceedings of the 24th USENIX Conference on
Security Symposium, SEC’15, (Berkeley, CA, USA), pp. 161–
176, USENIX Association, 2015.

[65] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump
over aslr: Attacking branch predictors to bypass aslr,” in
2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1–13, Oct 2016.

[66] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger,
and J. Pewny, “You can run but you can’t read: Preventing
disclosure exploits in executable code,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, (New York, NY, USA), pp. 1342–
1353, ACM, 2014.

[67] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow,
F. Monrose, and M. Polychronakis, “No-execute-after-read:
Preventing code disclosure in commodity software,” in Pro-
ceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’16, (New York,
NY, USA), pp. 35–46, ACM, 2016.

[68] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte:
Thwarting memory disclosure attacks using destructive code
reads,” in Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, (New
York, NY, USA), pp. 256–267, ACM, 2015.

[69] D. A. S. de Oliveira, J. R. Crandall, G. Wassermann, S. Ye,
S. F. Wu, Z. Su, and F. T. Chong, “Bezoar: Automated virtual
machine-based full-system recovery from control-flow hijack-
ing attacks,” in IEEE Network Operations and Management
Symposium, pp. 121–128, April 2008.

[70] S. Andersen and V. Abella, “Data execution prevention.
changes to functionality in microsoft windows xp service pack
2, part 3: Memory protection technologies,” 2004.

[71] D. Seal, ARM architecture reference manual. Pearson Edu-
cation, 2001.

[72] P. Team, “Non executable data pages,” 2004.

15


	Introduction
	Background
	Record and Replay
	Example Application: Return Oriented Programming (ROP)
	ROP is Still Unsolved Today
	Return Address Stack

	An RnR Security Framework
	RnR-Safe Modes of Execution
	What RnR-Safe Offers
	How to Use RnR-Safe

	Example: RnR-Safe to Thwart Kernel ROPs
	Main Idea
	Basic Design
	Supporting a Multithreaded Environment
	Supporting Non-Procedural Returns
	RAS Underflows and Imperfect Nesting
	Replaying Platform
	Checkpointing Replayer
	Alarm Replayer


	Implementation Issues
	Hardware Support
	Hypervisor Support
	Programming BackRASPtr on a Context Switch
	Recycling BackRAS Entries


	Mounting A Kernel ROP Attack
	Experimental Setup
	Goal of the Evaluation
	Evaluation Environments
	Handling Non-Deterministic (ND) Events
	Evaluating Replay Overhead
	Evaluating the Proposed Hardware

	Evaluation
	Recording
	Minimizing False Alarms
	Replaying
	Checkpointing Replay
	Alarm Replay

	Time Window to Respond to an Attack

	Related Work
	Conclusions
	References

