ewlett-Packard designed Preci-
sion Architecture to serve as a
common foundation for its

computer systems, to enhance software
portability, to provide price-performance
advantages, and to streamline the com-
pany’s hardware and software develop-
ment, manufacturing, and support
activities. Prior to this, each of HP’s three
major computer product lines, the
HP3000, HP9000, and HP 1000 systems,
had different processor architectures,
operating systems, and input-output
systems.

This article describes the processor com-
ponent of the Hewlett-Packard Precision
Architecture system, henceforth referred
to simply as ‘‘Precision.”’ [t describes the
architecture’s goals, how the architecture
addresses the spectrum of general-purpose
user information processing needs, and
some architectural design trade-offs.

Goals. When HP charged the original
architects with designing the new architec-
ture, it presented us with some high-level,
strategic goals. The architecture should be
general purpose for use in commercial and
technical applications. It should be scala-
ble across technologies, cost ranges, and
performance ranges and provide price-
performance advantages. It should allow
the leveraging of common hardware and
software components. It should be
designed with architectural longevity in
mind, including features that enhance the
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The Hewlett-Packard
Precision Architecture
provides a simple,
comprehensive
foundation for
general-purpose
computer systems. It
is scalable, efficient,

and extendible.

possibility of a long, useful life for the
1990s and beyond. It should allow growth
and extendibility. It should support mul-
tiple operating environments, for exam-
ple, single-user and multiuser, centralized
and distributed computing, and conven-
tional and object-oriented environments.
It should support the implementation of
highly reliable, secure systems and real-
time environments.

A version of this article appeared in Proc. 22nd Hawaii
Int’l Conf. on Systems Sciences, Jan. 3-6, 1989,
Kailua-Kona, Hawaii.
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For the processor architecture, the tech- .
nical mapping of these strategic goals
resulted in a simple RISC-like execution
1'* with features for code compac-
tion and dynamic path-length reduction,
coupled with a more sophisticated set of
extendibility and longevity features.

Precision execution
model

For the execution model of the architec-
ture, we mapped the scalability and price-
performance goals into the following
design guidelines:

® Precision instructions should be
executable in a single cycle with simple
(pipelined) processor hardware.

¢ Code compaction and dynamic execu-
tion time reduction should be considered
for frequently executed operation
sequences.

These guidelines resulted in an architec-
ture where sometimes more than one oper-
ation was performed in one instruction
cycle, and other times only a part of a more
complex operation was performed by one
instruction. We based these design deci-
sions on extensive measurements and
studies of the frequency of operations and
operation sequences.*® We made the
basic assumption that high-level languages
would be used for programming and that
software and hardware would interact for
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Figure 1. Typical system organization.

the most efficient execution."** For
example, we assumed the use of high-level
language optimizing compilers for
optimizing code generated from user
programs.

Figure 1 shows the modules in a typical
system organization. Figure 2 shows the
simple hardware needed for the execution
unit. Figure 3 shows the registers, includ-
ing the 32 general-purpose registers (GRs);
the control registers (CRs), of which 25 are
defined; the eight space registers (SRs);
and the processor status word (PSW). |
will describe the functions of these
registers in the course of the article.

Table 1 summarizes the instruction set
in terms of the generic operations imple-
mented per instruction. The 53 generic
instruction types can be expanded to 140
total instructions when we count all alter-
natives and options. The data types sup-
ported by the basic processor are signed
and unsigned word, halfword, byte,
packed and unpacked decimal numbers,
8-bit ASCII, and 16-bit international
characters.

Simple hardware. The architecture has
a general-register-based, load-store execu-

tion model with a simple execution engine
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comprising an arithmetic logic unit (ALU)
and a shift-merge unit (SMU).
There are 32 general-purpose registers,

where GRO s a constant zero source as well
as a bit-bucket destination. While using
more than 32 simultaneously addressable

IR P

Instruction bus (immediales)

Source1 bus

Source2 bus

32
general
registers

A

Result bus

Load bus

Figure 2. Execution data path.
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General registers

Control Registers

0 31 0 31
GRO Permanent zero CRO Recovery counter (32)
GR 1 Target for ADDIL / General use Reserved
GR2 General use CR 8| Reserved (16) Protection ID 1 (15) WD
. CR 9| Reserved (16) Protection ID 2 (15) WD
. CR 10 Coprocessor configuration register
GR 30 General use CR 11 Shift amount register
GR 31 Link register for BLE / General use CR 12| Reserved (16) Protection ID 3 (15) WD
CR 13| Reserved (16) Protection ID 4 (15) WD
CR 14 Interruption vector address (32)
CR 15 External interrupt enable mask (32)
0 31 CR16 Interval timer (32)
Processor status word *I CR 17 IIA space queue (16/32)
CR 18 llA offset queue (32)
CR 19 Interruption instruction register (32)
CR20 Interruption space register (16/32)
Space registers CR 21 Interruption offset register (32)
CR 22 Interruption processor status word (32)
SRO Link code space 1D CR23 External interrupt request register (32)
SR 1 Space identifier CR 24 Temporary register (32)
SR7 Space identifier CR 31 Temporary register (32)

Note: Space registers are either 16-bit or 32-bit in length.

Figure 3. Registers.

general registers sometimes decreases the
number of memory accesses, the trade-off
yields an increase in the process swap time,
in the number of bits needed to specify reg-
ister addresses in an instruction, and in the
area and access time needed for a larger
bank of registers. Specialized register
structures to improve procedure calling®’
often have many hidden registers, incur-
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ring complexity without the advantage of
making an increased number of simultane-
ously accessible registers available to a
good register allocator.?

Minimal decode instructions. To sim-
plify instruction fetching and decoding, all
Precision instructions are fixed-length
32-bit words. This eliminates, for exam-

ple, the complexity of handling page faults
during the fetching of a single instruction,
which can happen for variable-length
instructions.

Fixed-length instructions also enhance
the use of fixed bit positions for time-
critical operations, without waiting for
decoding of the instruction. For example,
since general register operands are always
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0123456789;123456789212345678921

opcode r r s i LD/STL
opcode r r/i S afxjec | e m r/i LD/ST S/X
opcode 4 r/i s alx|lcc | el cop |m| copr COP LD/ST
opcode r i Long IMM
opcode r r/i c/sle i/l0 lnli BR
opcode r T c f e | r ALU 3R
opcode r r c fle i ALU RI
opcode r r/i c e iptr/0 r/ilen ALUF
opcode r/ier/0 r/i/o s/0 e m r/0 SYsS
opcode u DIAG
opcode r/u r/u u e sfu |n u SFU
opcode u cop |n u COPR

Abbreviations for field names

: condition spedifier

r : general register specifier f : falsify condition ¢

s : space register specifier iptr : immediate pointer

i : immediate (or displacement or offset) ilen  :immediate length

a : premodify versus postmodity, or index shifted by data size or : control register

X . indexed (x=0) versus shart displacement (x=1) [} : notused (set to zeros)

cc : cache hints. [

] : subop (opcode extension) stu . special function unit identifier
m : modilication specifier cop :coprocessor unitidentifier

n : nullification specifier copr 1 Coprocessor register

c

: undefinad (can be defined as instruction extension)

Figure 4. Instruction formats.

specified by the two leftmost register fields
in any register format (see Figure 4), the
reading of general registers can occur in
parallel with instruction decoding. The
target register, however, can be in any one
of the three register fields in different
instruction formats. This is an acceptable
trade-off since the processor has ample
time to decode the target register specifi-
cation.

Combined operations. Many Precision
instructions combine two operations into
a single 32-bit instruction word. For exam-
ple, in functional instructions (see Table 1)
each instruction implicitly specifies an
optional ‘‘conditional nullify”’ or ‘‘skip”’
feature in addition to the main arithmetic,
logical, unit, or bit operation. Ina single
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cycle, as the data transformation opera-
tionis performed, the condition specified
in the instruction is also evaluated. If the
condition evaluates to true, then the fol-
lowing instruction is nullified. A nullified
instruction has the effect of a NOP (no
operation), with no changes to any
architecturally visible state, including
memory, and no side-effects like causing
traps or nullification.

Conditional branch instructions also
combine two operations into a single 32-bit
instruction by allowing simultaneously a
functional operation to be performed on
two registers, a condition to be evaluated,
and a PC-relative branch target to be cal-
culated, with the branch taken only if the
condition evaluates to true. This again
achieves code compaction, eliminates the

need for storing condition codes in the
processor, and enhances possibilities for
reordering code in optimizing compilers.

Combined operations reduce both static
code size and dynamic execution time,
since only one instruction is needed rather
than two or more.

Zero-cycle addressing and loading. The
architecture makes extensive use of
immediate data embedded within the
instruction itself as one of the sources of
operands. An immediate operand saves a
memory load operation, provides effec-
tively zero-cycle addressing, and does not
require the use of a general register. Pre-
cision immediates are unusual in that they
are “‘maximal length,’’ that is, they fill up
all unused bits in the fixed-length instruc-
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Table 1. Instruction set*

‘ Memory Reference Instructions

‘ Load {Word/Halfword/Byte}
{Long/Indexed/Short} [Modified]

‘ Store {Word/Halfword/Byte}
{Long/Short} [Modified]

‘ Load Word Absolute {Indexed/Short}

| Store Word Absolute Short

Load Offset
|Load  And Clear Word {Indexed/Short}
‘ Store Bytes Short

‘ Branch Instructions

} (a) Unconditional

| Branch And Link {Displacement/Reg}
Branch Vectored
Branch External [and Link])

‘ Gateway

(b) Conditional

Add {Reg/Immed} And Branch if {True/False}
Compare {Reg/Immed} And Branch if {True/False}
J Move {Reg/Immed} And Branch if {True/False}

Functional Instructions
(a) Arithmetic

Add {Reg/Immed} [with carry] [and Trap on
{overflow/cond/overflow or cond}]

Sub {Reg/Immed} [with borrow] [and Trap on
{borrow/cond/borrow or cond}]

Shift {One/Two/Three} And Add [and Trap on Overflow]

Divide Step

(b) Logical

Or {Inclusive/Exclusive}

And {True/Complement}

Compare {Reg/Immed} And Clear

Add Logical

Shift {One/Two/Three} And Add Logical

(c) Unit and Decimal

Unit Xor

Unit Add Complement [and Trap on Condition]
Decimal Correct

Intermediate Decimal Correct

(d) Bit Manipulation

J Branch On Bit {Variable/Constant}

‘ System Instructions

| (@) System Control

‘ System Mask {Set/Reset/Move to}

‘ Move {to/from} Control Register

" Move {to/from} Space Register
Load Space ID

I Break

‘ Return From Interrupt

J Diagnose

\ (b) Memory Management

‘ Insert TLB {Instruction/Data} { Address/Protection}

| Purge TLB {Instruction/Data} [Entry]

’ Probe Access {Read/Write} {Reg/Immed}

Load Physical Address
‘.‘ Load Hash Address

“ (c) Cache Management

" Flush {Instruction/Data} Cache [Entry]

Purge Data Cache
‘Sync
[ —

Extract {Variable Pos/Constant Pos} {Signed/Unsigned} ‘

Deposit { Variable Pos/Constant Pos} {Reg/Immed}
Zero and Deposit {Variable Pos/Constant Pos} {Reg/Immed}
Shift Double {Variable Pos/Constant Pos}

(¢) Long Immediate

Add Immediate Left
Load Immediate Left

Assist Instructions

Spop {Zero/One/Two/ Three}

(b) Coprocessor Interface

Copr Load {Word/Doubleword } {Indexed/Short}

Copr Operation

Key

Reg = register
Immed = immediate
Pos = position

cond = condition

(a) Special Function Unit Interface /
|
Copr Store {Word/Doubleword } {Indexed/Short} ‘|

*Curly brackets indicate that one alternative within the curly brackets is selected for a given instruction, while square brackets indicate an optional feature that can

be specified in the instruction.

tion and hence maximize the probability
that a constant can be represented as
immediate data within the instruction.
Usually, this would imply that the sign
position, in its traditional encoding as the
leftmost bit of an integer value, would
occur in variable positions. Precision
solved this problem by encoding the sign
position of these variable-length immedi-
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ates as the rightmost bit, simplifying
decoding and sign extension.

Full-word immediates. Sometimes, even
maximal-length immediates in an instruc-
tion are not long enough, since a 32-bit
immediate or displacement is needed. Pre-
cision introduces 32-bit immediates in the
instruction stream by using two fixed-

length 32-bit instructions. For example,
Load Immediate Left loads into a general
register, GR/, a 21-bit immediate padded
on the right with 11 zeros. A Load instruc-
tion executed later, with this GR/ as the
base register, supplies the low-order bits of
the 32-bit displacement value.

This method has the advantage that
each instruction can still be a fixed-length
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32-bit word, simplifying instruction fetch-
ing and decoding. The alternative—
variable-length instructions—requires
either instruction alignment provisions
with attendant memory wastage, or han-
dling the complexity of a page-fault poten-
tially occurring during an instruction
fetch.

A trade-off in the use of immediates
arises in encoding space versus operation
orthogonality, that is, the size of the value
that can be represented by the immediate
versus the other options that can be speci-
fied in the fixed-length instruction. For
instructions with a long immediate field,
we chose to include only those instruction
variants most frequently used rather than
achieve full operation orthogonality with
instructions where both operands come
from registers.

Memory reference instructions. Effec-
tive address calculation for Precision load
and store instructions uses the same exe-
cution unit (Figure 2) as add instructions
and is based on the same guideline of
single-cycle execution.

Static and dynamic displacements. All
address calculations for load and store
instructions are based on the base plus dis-
placement, or base plus (shifted) index
addressing modes, the most frequently
used addressing modes.”'® Static dis-
placements of 14 bits can be accomplished
in one instruction, and 32-bit static dis-
placements can be done with two instruc-
tions using a long immediate instruction,
as described earlier. Using an index regis-
ter, 32-bit dynamic displacements are
possible.

Byte addressing. One reason Precision
implements byte addressing rather than
just word addressing is to allow the effi-
cient movement of unaligned strings of
bytes or characters, common in commer-
cial computations.

A unique Store_bytes instruction sim-
plifies such moves by allowing storage of
any sequence of one to four bytes starting
at any byte location within a 32-bit word.
This includes tribytes, defined as three
consecutive bytes in a word. Storing of tri-
bytes comes free with byte addressing. In
other architectures, unaligned byte moves
would have required loading and masking
of the destination word.

Address stride mechanisms. For
indexed load instructions, the value in the
index register can also be shifted by the
data size to index bytes, halfwords, or
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words. Moreover, the instruction can
specify address modification of the base
register, with support of both pre-
modification and postmodification. A
load or store operation combined with
address modification is another example
of combining two operations in a single
instruction word.

A hardware-software trade-off resulted
in the absence of indexed store instructions
in the basic architecture. We chose to do
this because achieving single-cycle execu-
tion would require a register file with three
read ports rather than two. Coprocessor
indexed store instructions exist, however,
since the data register being stored comes
from the coprocessor rather than the basic
processor.

Another interesting encoding trade-off
is that, in long-displacement load and store
instructions, the timing of address modi-
fication (pre or post) is encoded by the
same bit that encodes the sign of the dis-
placement (increment or decrement). This
prevented cutting in half the range of the
14-bit displacement while still allowing
efficient accessing of stacks with the
predecrement and postincrement options.

Delayed load effect. Optimizing com-
pilers for Precision processors try to insert
one or more instructions after a load
instruction to prevent interlocked pipeline
cycles. However, Precision processors will
interlock if an instruction following a load
instruction uses a register with a pending
load. This hardware-software trade-off
incurs insignificant additional hardware
complexity while preserving code compac-
tion by not requiring the insertion of NOPs
after load instructions, as in some other
architectures without such interlocks.>!!
More significantly, the provision of hard-
ware interlocks gives implementors the
freedom to design different pipelines while
guaranteeing object code compatibility.

Branch instructions. Precision imple-
ments delayed branching with some extra
optimization features. In some architec-
tures, 237! if a common instruction can-
not be found, NOPs have to beinserted in
the delay slot of a conditional branch,
which can be executed for both paths of
the branch. Precision achieves delayed
branching with both static and dynamic
code size reductions by enhancing the
usage of the delay slot instruction follow-
ing a conditional branch instruction. Con-
ditional nullification is performed for
backward branches only if the condition
is false and for forward branches only if

the condition is true. For example, by clos-
ing loops with backward branches, com-
pilers can always move the first instruction
of the loop to the delay slot of the loop-
closing backward branch, decreasing the
loop size by one. By using forward condi-
tional branches to rarely used code, soft-
ware can again optimize the use of the
delay slot instruction for the more fre-
quently used fall-through path. If code is
arranged so that backward branches are
more likely to be taken than forward
branches, then hardware can use the sign
of the branch displacement as a static
branch prediction bit.

Simple Branch And Link instructions
are used as procedure call primitives, with
the return address saved in a general reg-
ister. A base-relative branch using this
general register is used for subroutine
return.

Functional instructions. Functional
instructions execute a data transformation
operation in a single pass through the ALU
or SMU (see Figure 2).

Arithmetic instructions. The Add and
Subtract arithmetic instructions come with
the widest range of options (see Table 1).
The Add And Trap on condition option
allows range checking, often required by
high-level languages, to be accomplished
with minimal instructions.

Multiply and divide primitives. The
Shift And Add instructions implement a
simple integer multiply and accumulate
function, using the standard ALU hard-
ware (Figure 2) with a wider multiplexer on
one port. Multiplication by small cons-
tants can be accomplished in a few cycles,
and multiplication by a variable can be
done typically by breaking the multiplier
into 4-bit pieces.® The Divide Step
instruction implements a single-bit non-
restoring division operation and can be
used in a sequence to perform integer
division.

To implement full fixed-point integer
multiply and divide in a single cycle would
have required special hardware. We did
not consider this cost-effective for a basic,
general-purpose Precision processor
because our studies of large collections of
programs show that integer multiply and
divide operations are rarely used, and mul-
tiplication usually occurs with a constant
known at compile time.>® Hence, we
included only simple multiply and divide
primitives in the basic instruction set, with
floating-point instructions and integer
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Figure 5. Arbitrary bit field movement.

multiply and divide instructions added as
instruction-set extensions supported by
optional hardware assists (described in the
section on the Precision assists archi-
tecture).

Logical operations. The logical instruc-
tions allow efficient implementation of
arbitrary Boolean conditions. For exam-
ple, the Compare And Clear instruction
first assumes a Boolean value of false by
storing zero in the target register. The
negation of the desired Boolean condition
is used to conditionally nullify the follow-
ing instruction. This instruction, if not nul-
lified by the Compare And Clear
instruction, will set the target register to
true. Other architectures usually require a
branch instruction to implement the
equivalent Boolean function.

Unit and decimal primitives. Since a
strategic goal for Precision Architecture is
to support commercial applications, it
must handle decimal operations in Cobol-
like languages as well as alphanumeric
code manipulation. The instruction set
includes five instructions for parallel pro-
cessing of small units (digits, bytes, and
halfwords) within a word.** They are
used for word-parallel string search and
decimal arithmetic. The halfword units
support the processing of 16-bit interna-
tional character sets.

Unlike floating-point arithmetic, these
instructions do not require significant
additional hardware. Hardware support
consists only of condition logic on the
carry bits of each 4-bit group of the ALU.
Cobol applications—important on
HP3000 machines—have been found to
run many times faster on Precision
machines than on the previous non-
Precision-based HP3000 machines.
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Bit field manipulation. Although the
main unit of transfer and operation is the
32-bit word, often it is desirable to be able
to manipulate arbitrary bit fields within a
word or across a word boundary. Exam-
ples include the efficient emulation of
other instruction sets, bit-block transfers,
unaligned byte moves, and field extraction
from records.

The shift-merge unit implements effi-
cient bit-field manipulation instructions
(see Table 1). For example, Extract takes
an arbitrary-length field from any portion
of aword and creates a result with this field
right justified, with optional sign exten-
sion. Deposit does the reverse operation,
inserting a right-justified field into any
portion of a target word, optionally clear-
ing the rest of the target. Hence, in two
instruction cycles Precision can perform
an arbitrary bit field movement (see Fig-
ure 5). Other architectures usually simulate
these instructions by a sequence of shift-
ing and masking.

Extendibility and
longevity features

Beyond the simple execution model
described above, Precision also includes
features designed to give the architecture
a potentially longer useful life by allowing
growth and extendibility of the architec-
ture. Below, I will describe some of these
aspects: the virtual memory model, access
protection, the assists architecture, the
interrupt system, and the input-output sys-
tem and multiple processor support.

Virtual memory model. The Precision
architects felt that the longevity of an
architecture lies in the range of its address-

ing capabilities rather than in the size of its
words or the specific operations imple-
mented. While processing 64-bit integers
rather than 32-bit integers might increase
accuracy, we did not consider the trade-off
in the hardware required for 64-bit
datapaths throughout the processor to be
cost effective for general-purpose com-
puters.

However, computer usage has clearly
tended towards the processing of larger
programs and more data. Hence, the key
to next-generation architectures is not as
much the increase in data size from 32 to
64 bits as the increase in addressing range.
Precision provides a 64-bit virtual address
range, which is four billion times more vir-
tual storage than in current architectures
with 32-bit virtual addresses.”*"!

The large virtual address space allows
virtual addresses to be defined globally
across processes. This contrasts with
architectures where the same address can
be used for different objects by different
processes. An advantage is that address
translation information does not have to
change on a process switch. Global virtual
addressing allows interacting processes to
accumulate a stable working set of address
translations despite frequent process
switching.

Virtual address manipulation in the
processor. Manipulating 64-bit virtual
addresses efficiently with a 32-bit data
path requires some ingenuity. Using the
standard 32-bit ALU, effective address
calculation in memory reference instruc-
tions is performed for 32-bit quantities to
determine the byte offset within a virtual
space. The virtual space, selected from one
of the eight space registers or the implicit
program space register, is then con-
catenated with the byte offset to give the
full virtual address (see Figure 6a). Soft-
ware conventions are commonly observed
for the use of space registers.*

Different levels of the architecture are
defined with respect to the size of the vir-
tual space implemented: level-0 architec-
ture with no space registers, level-1
architecture with 16-bit space registers,
and level-2 architecture with the full 32-bit
space registers. This allows the virtual
memory to be scaled down for a lower cost
Precision processor by reducing the width
of each entry in its translation look-aside
buffer and attendant data paths.

The architecture also incorporates a
concept called ‘‘short pointers’’ to allow
handling of 48-bit or 64-bit virtual
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64 thousand or
4 billion spaces

16 or 32 bits 32 bits.
—
(a) 4 gigabyte virlual spaces
0 12 Base register 31
Fo tm ; 10 ¢ 1
SR4| Space IDa SR5| SpacelDb SR6| SpacelDc SR7 | Space IDd
VT—I .
1 Gbyle
> 2 Gbytes
> 3 Gbytes
4 Gbytes
\ —
v
(b) 4 of 2'® or 2% spaces

Figure 6. (a) Virtual memory organization and (b) short-pointer addressing.

addresses with short 32-bit pointers (see
Figure 6b). It allows, at a given time, data
access to four distinct virtual spaces, each
space being one gigabyte in size. Long-
pointer addressing provides access to four
billion virtual spaces, each space being
four billion bytes in size (Figure 6a). Short-
pointer addressing allows pointers to be
the same size—32 bits—as the standard
integer data type, a situation often
assumed by existing high-level languages
like C. It also allows efficient passing of
pointers via the 32-bit general registers.

Virtual space management in the
memory-disk system. The virtual address
is further partitioned into the space iden-
tifier, the virtual page number (VPN),
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and the page of fset. Each page has a fixed
size of 2 kilobytes. The space identifier and
the VPN are translated into a 21-bit phys-
ical page number (PPN), which is then
used to access physical memory. If the
physical page is not in memory, a page-
fault occurs, and the missing page is
brought in from the disk.

Two software tables are used: a hash
table to index into a page directory (Pdir)
table, which contains one entry for each
physical page in the main memory. Each
entry in the Pdir is either empty or contains
the VPN of the virtual page mapped to
that physical page slot. This has the advan-
tage of reducing the size of the page tables
to correspond to the size of the physical
memory, rather than to the size of the

much larger virtual memory. Both the
hash table and the page directory table per-
manently reside in physical memory for
performance reasons.

To speed up the virtual to physical
address translation process, a translation
look-aside buffer (TLB) is defined as the
processor’s interface to the virtual mem-
ory system. This TLB acts as a cache for
virtual to physical address translations. If
an address translation is not in the TLB,
a TLB miss occurs, handled either by a
software interrupt routine or by a hard-
wired sequence of operations. The archi-
tecture defines memory management
instructions for inserting, changing,
querying, and deleting entries in the TLB
(see Table 1).
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Figure 7. Virtual address translation, protection checking, and cache accessing.

Minimizing paging traffic. A dirty bit
defined for every Pdir and TLB entry indi-
cates if the page now differs from its disk
image. This dirty bit is cleared to zero
when the page is first brought in and when
the page is written to disk, and remains
clear as long as no writes to the page occur.
The first time a program tries to write to
that page, a dirty bit update trap occurs,
which changes the dirty bit in both the Pdir
and the TLB entry from zero to one. This
allows the operating system to avoid writ-
ing out unmodified pages to the disk. The
increase in system performance is well
worth the slight overhead in TLB and Pdir
management.

Address aliasing. A hardware-software
optimization allows virtual cache index-
ing, which facilitates single-cycle loads
from virtual memory. It does this by not
allowing software to do address aliasing or
mapping of different virtual pages to the
same physical page. While address alias-
ing is of some use to software, it imposes
significant performance degradations on
hardware because it precludes the use of
the virtual page as part of the index into the
cache memory.

For example, a virtual access could put
datainto the cache based on its index, and
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a later virtual access, using a different
(aliased) address, would not find the data
in the cache because the index was differ-
entin the virtual page portion. The second
access would then go to memory, where it
might get an inconsistent or stale copy of
the data.

By effectively disallowing address alias-
ing, caches can use the virtual page num-
ber as part of the index without causing the
stale data problem. This allows the cache
to be accessed in parallel with the virtual
address translation being done by the TLB
(see Figure 7), without restrictions on the
size of the cache. If address aliasing were
allowed, either virtual address translation
and cache accessing would have to be seri-
alized, or the cache size would have to be
restricted to that of the page size multiplied
by the cache set-associativity.

Access protection. The architecture pro-
vides hardware support for access protec-
tion to be built into the storage unit and
performed in the same cycle as virtual
address translation and cache access (see
Figure 7).

Precision protection checking is defined
at the page level, to control access to the
page in three dimensions: the type of
access allowed (read, write, or execute),

the privilege level at which access is
allowed, and the group of processes
allowed access to the page. One reason for
the choice of a 2-kilobyte page size rather
than a larger one is so that access control
can be defined at a finer granularity (use-
ful in object-oriented environments, for
example).

Privilege levels. For access rights check-
ing, the architecture defines four hierarchi-
cal protection rings. The current privilege
level of a process is checked against the
privilege level for the read, write, or exe-
cute access being made to that page by this
process.

Generalized supervisor/user transfers.
This privilege-level mechanism allows a
process to have different access rights over
time without the overhead of changing
TLB entries when access rights change or
at process switch. Thus user programs
(privilege level 3) can invoke the services
of an operating system supervisor (privi-
lege level 1) or kernel (privilege level 0)
using an efficient procedure call rather
than an interrupt or process switch. This
can be done by a procedure call to a Gate-
way instruction, which branches to the
body of the more privileged routine. The

COMPUTER



Gateway instruction can promote the priv-
ilege level while saving the caller’s privilege
level in the return address register so that
it cannot be “‘forged”’ by the caller. On
returning to the caller, a privilege-
demoting branch instruction is used.

Access identifiers. The currently execut-
ing process can claim membership in up to
four groups of pages simultaneously, each
group having its own access identifier and
write-disable bit, saved in four control
registers. The access identifier allows each
process sharing memory to access differ-
ent domains in memory without the over-
head of changing the TLB on process
switch. Four access identifiers are
provided to facilitate the controlled trans-
fer of information between logical envi-
ronments. These four access identifiers are
checked against the protection identifier
attached to the virtual page being accessed.
A protection identifier of all zeros attached
to a page allows public access to that page.

When set, the write-disable bit disallows
writing for all privilege levels to the pages
protected by the associated access identi-
fier. This allows, for example, a single
writer and multiple readers for a group of
processes accessing a common protected
domain of pages.

These protection features built into the
architecture allow implementation of very
secure, flexible environments. They might
not be necessary for single-user or
dedicated-controller environments, but
they are necessary for efficient implemen-
tation of secure multiuser systems.

Assists architecture. One of the goals of
Precision Architecture is to define a
general-purpose, basic instruction set and
allow future instruction set extensions.
These future “‘assist’’ instructions could
then be executed on optional hardware
assists to speed up the processing of spe-
cialized computations, such as floating-
point or graphics. An assist instruction
defines the architectural interface between
the processor, memory, and any future
assist in terms of data movement opera-
tions, but we left specific functions per-
formed by an assist for future definition.

Software compatibility. While other
architectures define backward software
compatibility with a previous instruction
set,'? the Precision assists architecture
defines forward software compatibility
with future assist instruction sets. In addi-
tion, software portability among Precision
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processors with different configurations of
hardware assists is also achieved. These
compatibility and portability goals are
achieved by means of a transparent assist
emulation trapping mechanism that auto-
matically causes an interruption on detect-
ing an assist instruction not supported by
a hardware assist. This allows a software
trap handler to perform the function
required by the assist instruction, using the
basic Precision instructions. Critical infor-
mation needed for emulation is present in
the interruption parameter registers, con-
siderably speeding up the emulation
routines.

SFUs and coprocessors. The architec-
ture recognizes two classes of assists: spe-
cial function units (SFUs) and
coprocessors. SFUs are viewed as very
tightly coupled to the main processor
buses, serving as alternate functional units
to the ALU or SMU in the execution unit
of a basic Precision processor. As such, an
SFU receives its operands from the general
registers and places its result into a general
register, like a basic ALU instruction. A
3-bit SFU identifier is attached to each
SFU instruction, allowing up to eight
SFUs simultaneously in a system.

We view a coprocessor as a hardware
assist coupled to the processor at the level
of the data cache or memory. As such, it
has its own set of coprocessor registers,
loaded from or stored to memory using the
same virtual address translation and pro-
tection mechanism as the basic processor.

Coprocessor load/store instructions are
like processor load/store instructions,
except that the target/source registers are
coprocessor registers rather than the
processor’s general registers. Coprocessor
registers can be of a different size than
processor registers; for example, the
floating-point coprocessor registers are 64
bits wide.

Other than the coprocessor load/store
instructions, there is only one other
coprocessor instruction, where the opera-
tions to be performed by the coprocessor
can be defined as an instruction extension.
As for SFUs, a 3-bit coprocessor identifier
is attached to each coprocessor instruc-
tion, allowing up to eight coprocessors or
16 logically different assists in a Precision
configuration.

While an SFU provides execution-unit
extendibility, a coprocessor also provides
register-set extendibility.

An example of an assist is the floating-
point coprocessor (see Figure 8). The Pre-
cision floating-point architecture allows

highly pipelined implementations. It com-
plies with the ANSI/IEEE 754-1985
floating-point standard, although not all
operations and exceptions need to be sup-
ported by hardware, since an assists excep-
tion trap can be used for software support
of unimplemented features.

For complex operations not frequent
enough to justify the addition of assists
hardware, a software call to a streamlined
subroutine—called millicode—is used.

Interrupt system. [n Precision Architec-
ture, the term “‘interruptions’” includes all
abnormal events like memory faults, pro-
tection violations, computation excep-
tions, hardware malfunction, power
failure, timer interrupts, and external
interrupts. Synchronous interruptions
(those caused by instruction execution) are
precise interruptions across all Precision
processors, allowing predictability and the
leverage of software interruption handlers.
Asynchronous interruptions (external to
the instruction stream, like machine
checks, power failure, and external inter-
rupts) provide a standardized way of
reporting malfunctions, saving state, and
giving rapid real-time response to external
conditions and requests.

Interruption registers. The interesting
aspects of the Precision interrupt system
are probably the ways in which the inter-
ruption registers are used for fast context
switching, expediting interruption process-
ing, and implementing precise interrup-
tions even with delayed branching. There
are six control registers (Figure 3) used to
save state, such as the processor status
word (PSW) of the interrupted program,
the instruction causing an interruption, the
virtual space and offset for data memory
reference instructions, and the virtual
spaces and offsets of the first two instruc-
tions processed upon returning from inter-
ruption servicing.

Fast context switch. Interruption servic-
ing is implemented as a fast single-cycle
context switch rather than a complete pro-
cess swap. The information in the inter-
ruption registers is usually continuously
updated by a Precision processor during
normal instruction processing so that, on
detecting an interruption, the processor
only has to save the current PSW in the
interruption PSW register, clear the cur-
rent PSW, and pass the control flow to a
vectored location in a dynamically relocat-
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64 bits wide

fr0 Status

Exception register 1

fr1 Exception register 2

Exception register 3

fr2 | Exception register 4

Exception register 5

fr3 | Exception register 6

Exception register 7

fr4 Data register
fr15 r Dala register l
(a)
Single [ Exponent | Fraction ]
precision  gion 8 bils 23 bis
Double ™7 Exponent Fraclion ]
precision Sign 11 bits 52 bits
Quad [T Exponent I Fraction ]
precision ol 15 bits 112 bits
(b)
FADD Addition FREM Remainder
FSuB Subtraction FSQRT Square root
FMPY Multiplication FRND Round
FDIV Division FCMP Compare
(©)

Figure 8. Floating-point coprocessor, including (a) floating-point registers,
(b) floating-point data types, and (c) floating-point coprocessor instructions.

X'00000000
Memory address 3.75 gi
A gigabytes
X'F0000000
1/O address 256 megabyles
XFEFFFFFF space

Figure 9. Physical address partitioning.
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able interruption vector table. Clearing the
PSW has the effect of disabling other
interruptions, freezing the interruption
registers, and enabling real mode
addressing.

Eight control registers can be used as
scratchpad registers for quick general-
register saves under privileged software
control. Upon completion of interruption
processing, a Return From Interrupt
instruction is executed, which restores the
saved processor state and restarts execu-
tion at the interrupted instruction.

Precise interruptions with delayed
branching. Delayed branching has been
known to cause difficulties in interruption
processing. Precision has easily solved this
with the interruption instruction address
(I1A) queue. The I1A queue consists of two
instruction-return addresses, which are the
first two instructions processed upon
returning from the interruption. Interrup-
tions caused by branch instructions are
always taken after the branch instruction
completes.

The hardware automatically collects in
the IIA queue the addresses of the delay
slot instruction, followed by the target
instruction of the branch (generally non-
contiguous addresses). Since the I1A queue
saves the return addresses of the time-
sequential instructions following an inter-
ruption, there is no restriction on a branch
instruction occurring in the delay slot of
another branch instruction.

Flexible external interrupts. There are
32 external interrupt classes, each of which
can be individually masked by privileged
software. When an external interrupt
occurs,its corresponding interrupt pend-
ing bit is set in the external interrupt
request register. If the corresponding mask
bit in the external interrupt mask register
is also set, an external interrupt is taken.

Debugging and diagnostic hooks. The
architecture provides debugging support
traps to aid in software development. A
Break instruction can be used to insert
software checkpoints anywhere in the
code, causing a break trap when executed.
This instruction allows software encoding
of bits within the instruction, which will be
ignored by the hardware but interpreted by
the software in the Break trap handler.

Pages can also be tagged by two trap-
enable bits that cause a trap whenever any
reference is made to that page, or only
whenever a store is made to that page.
Traps can also be enabled whenever a
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branch is taken, or whenever the privilege
level of the running process is promoted or
demoted.

A recovery counter is defined to facili-
tate the implementation of fault recovery
in software rollback schemes and for
single-step debugging. It can be enabled to
cause an interrupt after the execution of a
predetermined number of instructions.

Precision Architecture also includes a
Diagnostic instruction, whose only
defined field is the 6-bit major opcode
field. The rest of the instruction can be
defined for implementation-specific oper-
ations, like accessing pipeline registers or
implementation-specific mode bits, not
otherwise directly accessible by software.
This instruction has proven very useful in
boot-up, self-test, and diagnostic routines.

I/0 system and multiple processor sup-
port. The architecture defines a memory-
mapped input-output system, with [/O
devices mapped to the top sixteenth of the
four-gigabyte physical address space (see
Figure 9). A Precision /O module can be
interrogated and controlled by software
via load and store instructions. [/O
addresses are not cached, and software
maintains cache coherency for direct
memory access by means of explicit cache
control instructions.

A simple semaphore operation, Load
And Clear Word, resembles the test-and-
set indivisible operation in earlier architec-
tures.'" Instructions for purging and
flushing the translation look-aside buffers
and caches allow software to maintain
TLB and cache coherency when necessary.

Bus standards have also been defined
for hardware-managed TLB and cache
coherency, in which case software sees
only a single cache and a single TLB. The
architecture does not constrain the type of
asymmetric multiple processor support
implemented by the total hardware-
software system.

Precision processor
implementations

While describing the range of Precision
products is beyond the scope of this arti-
cle, I will give some processor references
and describe a typical pipeline.

First-generation Precision processors
have been implemented in a variety of
technologies, including transistor-
transistor logic,'> n-type metal-oxide
semiconductor,? complementary metal-
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Instruction 1 Fetch Execute Load/Store
Instruction 2 Fetch Execute Load/Store
Instruction 3 Felch Execute Load/Store —I

Figure 10. Typical pipeline.

oxide semiconductor,' and emitter-

coupled logic (in a prototype), with a vari-
ety of clock speeds, cache support, and
TLB support, over a range of performance
and cost. These processors are used in both
the HP3000 series 900 business computer
line and the HP9000 series 800 technical
computer line.

Figure 10 shows a typical pipeline for a
Precision processor.'? In the Fetch stage,
the fetched instruction is decoded at the
same time as the reading of the general
registers. During the Execute stage, the
operands are routed through the ALU or
SMU, where a functional operation or
address calculation occurs, and the condi-
tion is also evaluated if necessary. At the
end of the Execute stage, the result is
stored in the general registers and also
bypassed to the next Execute stage if
necessary.

There are no pipeline penalties for
delayed branching, since the target address
is calculated during the Execute stage at
the same time the condition is evaluated
for a conditional branch. This is done in
time to fetch either the target instruction
or the sequential instruction in the next
cycle. Similarly, there are no pipeline
penalties for load or store instructions,
except when the register being loaded is
used in the immediately following instruc-
tion. This situation is minimized by Pre-
cision optimizing compilers using code
reordering.

Attainment of the
SPECTRUM goals

In the spirit of architectural acro-
nyms, > [ will take the liberty of
defining a SPECTRUM architecture as
one with the following goals:

® Scalable implementations

¢ Price-performance advantages

¢ Extendible architecture

¢ Commercial applications
® Technical applications

® Reusable components

¢ Unconstrained lifetime
® Multiple environments

This makes Precision a SPECTRUM
architecture, since the above goals include
most of the major ones enunciated for its
design. These goals are more similar to
those addressed in the design of architec-
tures like the IBM 360/370 architecture'’
and the DEC VAX architecture’ rather
than to those of RISC microprocessor
architectures.>*7!!

However, the Precision execution
model shares many features common to
these RISC architectures.>*7%'" These
include features like register-based execu-
tion, simple load-store interface to mem-
ory, delayed branching, simple addressing
modes, fixed-length instructions, and
three-register nondestructive functional
instructions. Such architectural features
can usually be implemented with simple,
pipelined processor hardware, where
single-cycle execution is achievable for
most instructions. Since the hardware
requirements are simple, these architec-
tures are scalable in the sense that they can
be implemented by low-cost hardware or
by higher cost, higher performance proces-
sors, which have very fast processor clock
frequencies. A variety of process technol-
ogies with different densities, speeds, and
costs can be used.

Since Precision instructions are executa-
bie in a single cycle by simple hardware, we
can say that the architecture has price-
performance advantages—more instruc-
tions can generally be executed in a given
amount of time by less costly processors
than in architectures with large, complex
instruction sets.”'® However, simply
executing more instructions in a given
amount of time does not necessarily imply
that more useful work is accomplished,
especially if very little is accomplished in
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an average instruction.>>”!! For this rea-
son, Precision instructions try to combine
frequent instruction pairs, like Compare
and Branch, into one instruction. This
saves both static code space and dynamic
execution time, since one instruction
replaces two and only one execution cycle
is needed for both operations.

In fact, all Precision functional instruc-
tions have a built-in skip operation; mem-
ory reference instructions can have base
register address modification operations;
and conditional branch instructions com-
bine both the condition generating oper-
ation and the branch operation in one

instruction. In addition, the conditional
branch nullification scheme and the con-
ditional trapping scheme allow both static
and dynamic code optimizations for loop-
ing, jumps to error routines, and range
checking. The use of maximal-length
immediates also helps to reduce the num-
ber of load instructions and the execution
time involved.

Note that, in computer systems with
disks, tapes, graphics accelerators, and
other I/O devices, the cost of the proces-
sor subsystem is important, although not
necessarily the dominating factor in sys-
tem cost. Similarly, the performance of the
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processor subsystem is important, but not
necessarily the dominating factor in sys-
tem performance.

The Precision assists architecture allows
flexible instruction-set extendibility with-
out sacrificing software compatibility. In
fact, the built-in assists emulation trap
allows software to be compatible among
Precision systems with different configu-
rations of hardware assists and even with
future, as yet undefined, assists. The Diag-
nose instruction also allows implementa-
tion-specific instruction-set extensions.
This is useful for implementing reliable
and serviceable systems.

The fact that Precision processors have
been used in both the commercial HP3000
and the technical HP9000 product lines
attests to the general-purpose nature of the
architecture. Decimal operations are sup-
ported for Cobol applications, while effi-
cient coprocessor integration contributes
to high performance for floating-point
applications. The most frequently used
Precision instructions are quite different
for Cobol, Fortran, or C applications.

The Precision machine models have
leveraged or reused key components
like hardware VLSI processors, floating-
point processors, cache and TLB con-
trollers, and standard bus controllers.
Both the HPUX (Unix) and MPE-XL
operating systems can run, unmodified, on
all Precision processor systems. By defin-
ing not only user-visible architecture, but
also system-visible architecture, Precision
Architecture has defined not just an appli-
cations binary interface,” but also a sys-
tems binary interface. Naturally, when
object code is compatible at the most
privileged systems level, it is also com-
patible at the least privileged user-
applications level. Precision Architecture,
together with Precision bus standards, has
provided the potential for streamlining
software, hardware, and input-output
developments.

The longevity of Precision Architecture
is certainly unconstrained by its large
64-bit virtual address space, since this is
four billion times larger than current 32-bit
virtual address architectures.

The virtual memory structure and the
built-in access protection features allow
the implemention of multiple operating
environments, since a large amount of
addressability is provided, with provisions
for various kinds of access control and
protection for different domains of pages.
The flexible bit-manipulation features
enhance the emulation of older instruction
sets, contributing to easy migration from
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older HP machines. The external interrupt
system allows environments requiring fast,
real-time response to asynchronous
events. The access protection features,
machine checks, power-fail interrupt, and
diagnostic features provide hooks for
implementing secure, highly reliable, and
serviceable systems.

recision Architecture has a simple

execution model, where each

instruction can be executed in a
single cycle by a simple, scalable processor.
This is enhanced by code compaction and
execution time reduction features for the
efficient processing of frequent operation
sequences. The architecture provides a
64-bit virtual address space to support
growing user needs and flexible protection
mechanisms to implement secure multi-
user systems. Moreover, the assists archi-
tecture provides forward compatibility
with new instructions and register sets that
can be added, with these instructions
executed transparently by either hardware
assists or software emulation.

Precision Architecture provides a sys-
tems binary interface for software com-
patibility at both applications and systems
levels. It forms the basis for the consolida-
tion of hardware and software production.
The architecture has been refined through
extensive performance measurements and
analysis and tested against various hard-
ware implementations and software envi-
ronments. [t combines successful
architectural ideas evolved from the past
with several innovative features to support
both current computing needs and future
cooperative computing environments. [
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