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Piracy of copyrighted digital contents, such as movies and music is rampant in cyberspace. A 

piece of digital material may be repeatedly copied and proliferated throughout the Internet with 

ease. We examined both software and hardware vulnerabilities in existing digital copy-protection 

methods. As a result, we propose a non-copyable disk (NCdisk) that makes it significantly harder 

for digital contents to be copied. Any digital content written onto the NCdisk can only be read 

through a predefined set of outputs of the NCdisk, and the original plaintext digital form may 

never be read out of the NCdisk. We add a minimal set of components based on the Secret-

Protection (SP) architecture to the existing disk’s SoC chipset to attribute the disk with the non-

copyable property. We enhance the original SP architecture with a new instruction and a defined 

set of trusted software APIs for the NCdisk application. We further present the security protocol 

to be used along with the NCdisk to provide a copy-protected digital movie download scenario. 

Finally, we analyze the prospects of marketing the NCdisk for the online movie download 

application by devising two different business models and examining their competitiveness and 

financial projections.   

In the Appendices, we also describe an alternate, more complex ASIC-based architecture for 

the NCdisk that we first proposed, and the implementation of the PAX processor that performs 

fast cryptographic processing and could be used as the embedded processor in an NCdisk.
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1.1 Problem and Motivation 

Today, an immense amount of information exists in digital form. A large percentage of it is 

copyrighted contents that should only be available to authorized users. In such cases, the user is 

usually permitted to read (or play) the contents but should not be allowed to copy and distribute 

the contents. Nevertheless, unauthorized copying and distribution of digital contents occur 

frequently and is a major problem for many content providers.  

This content-piracy problem is currently a serious concern for the movie and music industry. 

Due to the increasing Internet bandwidth and the emergence of more powerful portable player 

devices, the demand for directly downloading media contents from the Internet to an end-user’s 

player device is on the rise. A typical copy-protection method [1] used to prevent the illegal 

copying of these media contents is as follows: a content provider installs his own software onto 

the user’s player device, such as a PC, an iPod, etc. Then, the provider sends encrypted contents 

to the user’s device. In order to obtain the keys used to decrypt and read the encrypted contents, 

the user must authenticate with the content provider or with a third party licensing clearinghouse. 

Next, the keys are sent to and hidden on the user’s device. Only the content provider’s installed 

software on that device can find and use the keys to decrypt the encrypted contents. Hence, this 

copy-protection method restricts the copying of contents by sending only encrypted contents 

over public networks, hiding keys on the user’s devices, and allowing only the provider’s special 

software to find and use these keys.  
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A major weakness with the existing copy-protection method described above is that the 

encrypted contents are sent to various kinds of player devices that do not have secure processing 

architectures to hide the decryption keys. In the underlying processor architectures, machine 

instructions, registers, memories and buses are open resources that can be controlled or accessed 

by the operating system (OS), application software and also by malicious software. Furthermore, 

since both the application software and the OS can have bugs and software vulnerabilities, 

hackers can use these software weaknesses to find the hidden decryption keys.  

We propose a non-copyable disk (NCdisk), which is a storage device that automatically 

encrypts all data written into it and does not allow the plaintext form of the data to leave it except 

through controlled display outputs. We propose a minimal set of changes to an existing disk 

controller System-on-Chip (SoC) to attribute the disk with the non-copyable property. Our 

proposal is based on the Secret-Protection (SP) secure processor architecture [2][3][4], which 

provides a secure environment to store critical secrets and allows only a trusted software module 

to access these critical secrets. Further, our proposal enhances the original SP architecture with a 

new instruction to simplify secure embedded storage. We also define a set of trusted software 

APIs for the NCdisk application.  

 

1.2 Threat Model and Assumptions 

We assume that the content provider can write a trusted software module that will be allowed 

to use and access critical secrets like envryption keys, but does not leak these secrets out. 

Further, we assume that any other software is un-trusted and should not be allowed to access 

critical secrets. This includes the Operating System and other applications of the personal 

computer or handheld computing or entertainment device. The attacker is able to mount software 
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attacks. He can monitor all network transactions. He can also mount some hardware attacks, such 

as probing external memories and buses. We assume that physically probing inside a chip, such 

as a System-on-Chip (SOC) is more difficult without destroying functionality, and hence this is 

not in our threat model.  We also do not consider side-channel attacks on a SoC, or denial of 

service attacks. 
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Figure 2-1 shows a flowchart of the NCdisk concept. The NCdisk is a data storage device, in 

which any digital content written into the device is automatically encrypted using a key that is 

generated by the NCisk that never leaves the NCdisk. All data stored on the NCdisk are in such 

an encrypted form, and the stored data can only be read through a set of predefined outputs, such 

that the digital plaintext form of the data never leaves the NCdisk.  

Both plaintext data and encrypted data may be written onto the NCdisk. Each encrypted data 

is encrypted using a secret key, called the Content-Provider Media Key (CMK), which is known 

only by the content provider and the NCdisk. The CMK is never actually stored anywhere but is 
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Fig 2-1. NCdisk Concept 



Chapter 2: NCdisk Concept 
 
 

5 
 

instead generated using a shared key between the content provider and the NCdisk. We examine 

the detailed key management protocol in Chapter 3. Both the content provider and the NCdisk 

must have a secure location to generate and use the CMK so that it is not revealed to anyone else. 

We assume that the content provider has such a secure location, and we show in Chapter 3 how 

the NCdisk achieves this. If the CMK is kept secret, then the plaintext form of the encrypted data 

will not be leaked out during the network communications phase, where the encrypted version of 

the movie is transferred from the content provider across the public networks and input into the 

NCdisk.  

Either plaintext data or CMK-encrypted data can be input into the NCdisk.  Plaintext data 

input is first encrypted using the Device Media Key (DMK). For CMK-encrypted data input, the 

NCdisk first decrypts the data using the CMK and then re-encrypts the data using the DMK. The 

DMK is generated within the NCdisk and it never leaves the disk. We discuss in Chapter 3 how 

to keep the DMK secret from everyone, including the user of the disk. Note also that each input 

data to the NCdisk is encrypted using a different DMK, as described in detail in Chapter 3. 

Encrypting all the data stored on the NCdisk using a DMK protects the storage phase of the data, 

by ensuring that the plaintext version of the digital data never resides on the disk.  

Any data stored on the NCdisk can only be read out of the disk through a pre-defined set of 

output channels. An encrypted digital data can be decrypted and converted to an analog format, 

which can then be sent out of the NCdisk. Alternatively, an encrypted digital data can be 

decrypted using the DMK and re-encrypted using a Player Media Key (PMK), which is only 

known by a trusted digital display and the NCdisk. Both the trusted digital display and the 

NCdisk must have a secure location to generate and use the PMK so that it is not revealed to 

anyone else. The PMK-encrypted data is sent out of the NCdisk. Third, if the NCdisk has an 
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integrated display, such as a built-in LCD screen like in handheld entertainment devices (e.g., the 

iPod), then the NCdisk may decrypt the stored data and send the digital streaming data to the 

integrated display. It is assumed that it is hard for a casual attacker to siphon off information on 

the internal link connecting the NCdisk and its integrated display. Note that this integrated 

display is not foolproof against more dedicated attackers. Nevertheless, this integrated display 

raises the bar against possible attacks to siphon off information. In all three pre-defined output 

channels, the high-fidelity, digital plaintext version of the data never leaves the NCdisk in the 

output phase of the NCdisk. To summarize, the NCdisk ensures that no one, not even the 

legitimate user of the NCdisk, can obtain a copy of the digital plaintext version of the data stored 

on the disk.  

The NCdisk addresses some of the weaknesses of existing copy-protection methods. Instead 

of sending copyrighted movie or music contents to insecure PCs or portable media players, a 

content provider can instead send these contents to a user’s NCdisk. In a way, the NCdisk 

functions like a book in that only those people who have physical possession of the NCdisk can 

view the contents stored on it. Just as it would be very inconvenient for a person to copy a bound 

book, a user would have a very difficult time trying to copy the original digital plaintext data 

stored on the NCdisk. However, unlike a book, the NCdisk provides the convenience of directly 

downloading and viewing copyrighted digital contents without the need to physically travel to a 

store. Also, with the growing storage densities, an NCdisk can store many items of digital 

multimedia content. 
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 In this chapter, we show how the NCdisk design can be achieved using an adaptation of 

the Secret-Protection (SP) architecture targeted for general-purpose microprocessors [2,3].  We 

simplify the SP architecture for use in an embedded system like a commodity disk controller, but 

we also expand upon its reduced-mode version proposed for sensor-nodes in [4] by providing a 

more flexible secure scratchpad memory.  We define new SP registers and a new SP instruction 

for this.  The work reported in this chapter has been published in our conference paper [5].  This 

chapter takes material from, and expands upon, material from [5]. 

 

3.1 NCdisk SoC Architecture 

The NCdisk concept ultimately boils down to achieving two security goals. The first goal is 

to enable the NCdisk to be able to store secret keys and ensure that these keys never leak out of 

the NCdisk. The second goal is to fully predefine how data can be read out of the NCdisk such 

that the original digital plaintext data is never leaked out. We do not achieve these two goals by 

redesigning a completely new disk architecture from scratch. Instead, we only need to be 

concerned with the disk controller components (shown shaded in yellow in Figure 3-1), which 

control how data is written in or read out of a disk. We achieve these two goals by implementing 

a SoC consisting of existing disk controller components, plus a minimal set of additions. This  



Chapter 3: NCdisk Design Based on the SP Architecture 
  
 

8 
 

new SoC can then be connected to the rest of the existing disk components to turn an existing 

disk [6] into an NCdisk.  Figure 3-2 shows the new SOC with enhancements described below. 

The existing disk controller components in the SoC include a disk controller processor, a 

read/write buffer control, and some RAM and ROM memory. The additions are divided into two 

types. The first type of additions comes from the Secret-Protection (SP) architecture[2][3][4], 

which provides a secure environment for a set of trusted software modules (TSM) to access 

critical secrets, while preventing these secrets from leaking out of the SoC. We enhance the 

original SP architecture with a new instruction. SP enhancements are shown in green in Figure 

3.2. The SP additions include new SP registers and hardware support for new SP instructions. 

Also, portions of the RAM and ROM are dedicated for SP software. As we examine below, the 

processor used in the SoC will perform a significant amount of cryptographic functions. 
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Fig 3-1. Existing Hard Disk Architecture 
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Appendix B describes our work on a parallel project involving the PAX processor, which has 

special features for accelerating cryptographic processing. The PAX processor seems like a good 

fit for the NCdisk SoC.  

 

The second type of additions is the output interface. There are three different output 

interfaces, which encompass the predefined set of outputs. These are shown in blue in Figure 3.2. 

We also define a set of trusted software APIs for the NCdisk application that restricts the 

input and output functions with respect to the NCdisk. Other software can only invoke the 

NCdisk through this set of trusted software APIs.   

Next, we examine how this SP-based SoC achieves the two goals of the NCdisk.  
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Fig 3-2. SP SoC for NCdisk (not drawn to scale) 
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3.2 Use and Enhancement of SP Architecture for NCdisk 

A. Storing and Protecting Keys 

The SP-based SoC stores keys in two places. First, the SoC stores a 128-bit key called the 

Device Key in a non-volatile on-chip register. The Device Key is not pre-set by the NCdisk 

manufacturer. Instead, each NCdisk generates its own Device Key upon initialization for 

deployment. This can be done by the owner of the NCdisk. The protocol for initialization will be 

described in a later section.  This Device Key  never leaves the NCdisk.  (Note that this Device 

Key is called the Device Master Key, DMK, in the authority-mode SP architecture described in 

[3].  This is not to be confused with our DMK which is a different Device Media Key generated 

from the Device Key for each movie stored in the NCdisk.) 

Second, user and content provider keys can all be stored off-chip, encrypted with the Device 

Key. Since the protection of the off-chip keys hinge on the protection of the Device Key, we 

focus on efforts to protect this on-chip Device Key. 

The Trusted Software Module (TSM) of the SP architecture plays an important role in 

protecting the Device Key. No software, except the TSM, can access the Device Key register. 

Only the TSM software stored in the on-chip ROM can get a key that is derived from the device 

key. Table 3-1 contains SP instructions used for protecting the TSM and its execution. Note that 

the SecureMem_Set instruction is a newly defined instruction that I have added to the SP 

architecture, which provides more flexible secure scratchpad memory for TSM execution.  This 

is described further below.  
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The SP instruction Begin_TSM turns on the Concealed Execution Mode (CEM) status bit 

register, while the End_TSM instruction turns off the CEM status bit register. The Begin_TSM 

instruction can only be invoked by programs stored on the on-chip TSM ROM. Also, the other 

SP instructions, such as End_TSM, SecureMem_Set, and DK_Derive_Key may only be invoked 

when the CEM status bit is turned on. This implies that the TSM software stored in ROM can 

execute the SP instructions only after the Begin_TSM instruction is invoked first. Further, this 

TSM ROM code can call more complicated TSM code that is stored off-chip. This extended 

TSM code must be integrity-checked before it is run. Note that since all TSM software must start 

off with the Begin_TSM instructions, which can only be invoked from the ROM, no other 

external software can call the DK_Derive_Key instruction to derive an encryption key using the 

device key. The DK_Derive_Key is the only instruction that can use the Device Key. Even this 

instruction cannot read out the value of the Device Key to another register or memory. Instead, it 

can only use the Device Key to derive different encryption keys (Device Media Keys, DMKs) 

for encrypting different files stored on the NCdisk.  

SP Instruction Description 
Begin_TSM 
(on-chip ROM ) 

Begins execution of the TSM  
(Enables access of TSM scratchpad 
memory) 

End_TSM 
(TSM only) 

Ends execution of the TSM  
(Disables access of TSM 
scratchpad memory) 

SecureMem_Set 
(TSM only) 

Sets the StartAddr and EndAddr 
registers to define the TSM 

scratchpad memory 
DK_Derive_Key 
(TSM only) 
 

Derive a new encryption key using 
the device key and an input key id 

 
Table 3-1. SP Instructions used for NCdisk  
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To ensure that no non-TSM software may run during CEM, we disable interrupts during 

CEM mode, similar to [4].  This also allows us to simplify the SP architecture by eliminating the 

SP registers used to save the hash of the encrypted general registers, and the interrupt return 

address register needed to protect the saved TSM state upon interrupts [2,3]. 

Simply disallowing non-TSM software to access the Device Key register is not enough to 

prevent its contents from leaking out of the SoC. The run-time data generated by the TSM 

software in ROM must not be leaked out of the SoC because this data may include information 

that can reveal the device key. Similar to the sensor-mode SP architecture [4], we propose to 

dedicate a portion of RAM as TSM scratchpad memory. This scratchpad memory can only be 

accessed when the CEM status bit is on.  

 

Enhancement of SP architecture: 

We propose a new SP instruction called SecureMem_Set, which can set the start and end 

addresses of the scratchpad memory. The start address and end address are stored in the new 

32-bit StartAddr and EndAddr registers (see Figure 3.2). The SecureMem_Set instruction can 

change the values of these registers. When the SoC is in the CEM mode, the memory location 

between the StartAddr and EndAddr becomes accessible to the TSM software, which is the 

only software that can run during the CEM mode. However, when the SoC is not in the CEM 

mode, this scratchpad memory will not be accessible by any instructions. This enables a 

flexible-sized TSM scratchpad memory, which gives the TSM software programmer the ability 

to decide how to allocate the RAM between TSM trusted access and general access (untrusted) 

areas.  
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Further, not allowing any software to directly access the Device Key register and preventing 

the run-time data of the TSM software from leaking out of the SoC still does not ensure that the 

Device Key will not leak out of the SoC. The TSM software must be carefully written to ensure 

that this trusted software does not send any information that can be used to detect bits of this key, 

outside of the SoC. Towards this goal, we define a fixed set of API functions (see Table 3-2) to 

be implemented by the TSM software for the NCdisk. Any other software or external control can 

only use the NCdisk by calling one of these predefined functions. None of these API functions 

will output the Device Key, or plaintext digital data, from the SoC.  

 

B. Controlled Predefined Output 

The second goal of the NCdisk is to predefine how data can be read out of the NCdisk such 

that the original digital plaintext data is never leaked out. This part of the problem is not defined 

by the previous SP architecture papers in [2,3,4].  (In [2] and [3], trusted input/output 

mechanisms are assumed to exist in the trust model, but not explicitly defined.)  

We achieve this goal of controlling the output of the NCdisk by carefully defining its TSM 

API functions. There are three API functions for reading data out of the NCdisk. Each API 

function reads data out through a different output interface on the SoC. These three API 

functions provide the only way for software or external control to read data out of the NCdisk 

and none of these API functions will leak out the original digital plaintext data.  

API Function Description 
TSM_Write Write data into NCdisk 

TSM_Read_Analog Output to analog channel 
TSM_Read_Trusted Output to trusted display 

TSM_Read_Integrated Output to integrated display 
 

Table 3-2. TSM API 
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The TSM_Read_Analog function decrypts the stored data, converts it into an analog format 

through the D/A converter, and sends it out of the NCdisk. This API function performs the 

analog conversion immediately after the decryption, and since interrupts are disabled, the 

plaintext digital data (e.g., the high fidelity movie) will not leak out. 

The TSM_Read_Trusted function decrypts the stored data with the DMK, re-encrypts it with 

the PMK, and sends encrypted digital data out of the NCDisk. Each data has its own DMK, and 

each trusted display may have its own PMK. The DMKs, CMKs, and PMKs are never stored 

anywhere. Instead, they are deleted right after encryption and re-derived upon decryption by a 

shared secret key or the Device Key by the trusted software.  

Finally, the TSM_Read_Integrated function decrypts the stored data and sends it to an 

integrated display through the integrated display interface. Since the display is integrated with 

the NCdisk, we assume that it is much harder for an attacker to siphon off the data on the internal 

link connecting the integrated display to the NCdisk.   

While we have defined these three controlled output interfaces, it is left to future work to 

further strengthen their secure implementations.  For example, the TSM_Read Integrated 

function should be implemented by some integrated mechanism that defeats siphoning of 

plaintext  data between the NCdisk and the integrated display in a handheld multimedia device 

(e.g., an iPod device). 

 

3.3 Security Protocol 

Before presenting the NCdisk security protocol, we first examine an online movie download 

scenario for using the NCdisk, as shown in Figure 3-3.  
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At stage 1, a content provider has a database of movies. The content provider sends the 

movies in encrypted form to its users through the public Internet (insecure) at stage 2. At stage 3, 

the users receive this encrypted movie. In existing DRM systems, users store these encrypted 

movies, along with the decryption keys on their PC or portable media players, which typically do 

not provide adequate protection for these keys. As a result, these movies may be easily copied 

and proliferated through the Internet. However, if the users store these movies onto their 

NCdisks, then those movies will not be easily copied in their original high-quality digital 

plaintext form. Instead, the movies can only be viewed through the NCdisk and one of three pre-

defined type of outputs.  

The NCdisk can provide both security for the content providers and convenience for the 

users. The NCdisk can be used to replace the current DVD-by-mail rental services such as 

Netflix™ and Blockbuster™. These service providers currently mail millions of DVDs to their 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
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Analogy or
Encrypted
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SP SoCSP
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Integrated
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Fig 3-3. Online Movie Download Scenario using NCdisk 
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users each week. Instead, these service providers could mail to each user a single NCdisk. Using 

this NCdisk, the users can download their desired movies without having to wait for DVDs by 

mail, and the content providers will have the assurance that their movies cannot be mass copied 

in their original plaintext digital form.  

We present a security protocol to use along with the NCdisk for an online movie download 

application, as shown in Table 3-3. When the NCdisk is manufactured, it is completely empty. It 

has no movies stored on it, and its SoC registers and memory are void of keys and software. The 

manufacturer ships these blank NCdisks to the movie content distributor, who is the “trusted 

third party (TTP)” in our model. The 5 paragraphs below refer to parts (a) through (e) in Table 3-

3.  This is also further illustrated by Figures 3-4 through 3-7. 

In Table 3.3(a), the content provider first installs initialization software on the NCdisk that 

will self-generate a random Device Key and store it in the Device Key register, load up the 

trusted TSM software, write in a unique serial number (SNj) identifying the NCdisk (Dj), and 

load up the shared key that the content provider shares with the NCdisk. Afterwards, the content 

provider can remove the initialization software. Note that since the Device Key and TSM 

software are in ROM (write-once Flash) memory, no one can re-program the NCdisk in the 

future. This prevents an attacker from tampering with the NCdisk. After the NCdisk is 

initialized, it can be deployed to users.  
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NCdisl Security Protocol 

 

C: content provider.  

M: movie content;  i: ith movie. 

D: NCdisk;  Dj : jth NCdisk;  SNj: serial number for jth NCdisk. 

 

Manufacturer provides a blank Dj  

Manufacturer builds a blank NCdisk Dj that does not have any software or keys stored inside.  

 

(a) Manufacturer sends Dj to C for initialization  

1.C loads secure installation software into NCdisk RAM.   

2. This initialization software does the following: 

a. Generates a random Device Key, DKj. and writes DKj into the Device Key register, 

which is a non-volatile register (e.g., write-once Flash memory).  

b.  Loads TSM software into the write-once memory area.  

c.  Generates a keyed hash of the extended TSM software and stores this extended 

TSM software and its keyed hash in the off-chip data storage area.  

d.  Stores a unique SNj into the write-once memory area. 

e.  Generates a random key CDKj, which it shares with Dj. It encrypts CDKj using the 

device key and stores it in the off-chip storage area.  

3.Finally, C removes the initialization software, disables the writing of the on-chip Flash 

memory, and the NCdisk is fully initialized.   

 

(b) C distributes Dj to user j 

1. User j buys Dj from a store, or C sends Dj to user j. 

2. User j connects Dj online to C’s website 

3. C reads SNj from Dj. C has a database that associates each SNj with a CDKj, which C shares 

with Dj. Using CDKj, C securely sends data to Dj. 
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(c) C builds a movie database  

1. C generates a random movie encryption key CMKi for each movie Mi. 

2. C encrypts movie Mi with CMKi. 

3. C saves )( i
CMK ME i and CMKi in movie database. 

4. C periodically re-encrypts Mi with a new CMKi  

 

(d) C prepares Mi to send to Dj 

1. For a given Mi, C prepares a different Mi bundle for each Dj as follows: 

  a. C searches up the CDKj that it shares with Dj 

  b. C generates a MIDi
j identifying Mi and Dj 

  c. C derives a key Ki
j = MACCDKj(MIDi

j) 

  d. C encrypts CMKi with Ki
j 

  e. C sends the bundle for Mi to Dj:       }),(),({ i
j

i
K

i
CMK MIDCMKEME i

j
i  

 

(e) Dj processes bundle before storing it 

1.Dj first decrypts the bundle to obtain plaintext Mi: 

  a. Dj re-derives Ki
j = MACCDKj(MIDi

j) 

  b. Dj decrypts CMKi = ))(( i
KK CMKED i

j
i
j

 

  c. Dj decrypts Mi = ))(( i
CMKCMK MED ii  

2. Dj then re-encrypts Mi for storage 

  a. Dj generates a random IDi
j identifying Mi and Dj 

  b. Dj uses device key DKj and IDi
j to derive a new movie encryption key:  

           DMKi
j = MACDKj(IDi

j) 

  c. Dj encrypts Mi with DMKi
j 

  d. Dj throws away DMKi
j  

  e. Dj stores Mi bundle, which is now non-copyable  },)({ i
jIDME i

DMK i
j

 

Table 3-3. NCdisk Security Protocol 
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As shown in Fig 3-4 and the protocol summary in Table 3-3(b), when a user connects the 

NCdisk Dj to the content provider through the Internet, the content provider can read off the SNj 

on Dj. The content provider has a database that associates each SNj with the corresponding key 

that it shares with that Dj. Using this shared key, the content provider can securely send movie 

contents to Dj.  (The Shared Key j shown in Fig, 3-4 is the CDKj in Table 3-3(b).) 

 

Further, the content provider builds a movie database, where each movie Mi is encrypted 

using a different movie encryption key CMKi. These movies and their keys are assumed to be 

stored in a secure location on the content provider’s server, as shown in Fig 3-5 and Table 3-3(c).  

 A particular movie Mi is sent to numerous NCdisks. The content provider prepares a 

different bundle for each NCdisk Dj (see Table 3-3(d).) The bundle consists of three 

components. The first component is the encrypted movie, which is encrypted (once) with the 

movie encryption key CMKi. The second component is the encrypted CMKi. For different Dj, 

the CMKi is encrypted using a different key Ki
j. This key is always derived upon use and  

immediately deleted afterwards. Only the content provider and the NCdisk can re-derive Ki
j. The 

User Database
(Trusted)

 SN1    Shared Key 1
 SN2    Shared Key 2
 SN3    Shared Key 3
   ...              ...
 SNn    Shared Key n

NCdisk Dj
(SNj, Shared Key j)

Content Provider (CP) NCdisk User

(1). User buys a NCdisk from store

(2). User connects the NCdisk online

(3). CP reads serial number SNj

(4). CP communicates with NCdisk
       with the Shared Key j

 
 

Fig 3-4. NCdisk Establishes a Secure Communication with Content Provider 
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third component is a random value MIDi
j that identifies that particular movie Mi and that 

particular NCdisk Dj. This value plays a role in re-deriving Ki
j, but it is only useful to the content 

provider and the NCdisk. This process is described in Fig 3-6. 

Table 3-3(e) describes how an NCdisk processes the encrypted movie before storing it in the 

NCdisk.  When an NCdisk receives a movie bundle, it re-derives Ki
j and uses Ki

j to obtain the 

original movie encryption key CMKi, which can be used to obtain the plaintext movie Mi. Next, 

the NCdisk re-encrypts Mi using a new movie encryption key DMKi
j, which is derived using the 

NCdisk’s unique device key, Dj, as shown in Fig 3-7. At this point, no one can copy the original 

digital plaintext movie from the NCdisk. Using the predefined API functions, the NCdisk 

provides a set of controlled outputs to ensure that the original digital plaintext movie does not 

leak out during the output phase.  

 

 

Server Generates a
Movie Key CMKi
for Each Movie

CMK1 CMK2

CMK3 CMKi

Server Movie Database

*   Movie keys are securely stored on the server.
** Movie keys will be updated periodically

CMKi

Fig 3-5. Content Provider Builds a Secure Movie Database 



Chapter 3: NCdisk Design Based on the SP Architecture 
  
 

21 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMKi

User Database
(Trusted)

 SN1    Shared Key 1
 SN2    Shared Key 2
   ...              ...
 SNn    Shared Key n

Movie Key Database
(Trusted)

 Movie #1         CMK1
 Movie #2         CMK2
     ...                ...
 Movie #n         CMKn

Radom
Number

Generator

Key ID
for this User
& this Movie

Deriving a
new Key

Encryption

Key ID Shared Key j

Derived Key
for this User
& this Movie

Encrypted CMKi
for this User
& this Movie

CMKi

CMKi

Key ID,
E(CMKi)

To the NCdisk

 
 

Fig 3-6. Content Provider Prepares a Movie for NCdisk 
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Fig 3-7. NCdisk Downloads a Movie and Stores it on NCdisk 
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4.1 Application of the NCdisk  

In chapter 3, we examine that the NCdisk can be used in the online movie download 

application. It can be used to replace the current DVD-by-mail rental services such as Netflix™ 

and Blockbuster™. These service providers currently mail millions of DVDs to all their users 

each week. Instead, these service providers could mail to each user a single NCdisk. Using this 

NCdisk, the users can download their desired movies without having to wait for DVDs by mail, 

and the content providers will have the assurance that their movies cannot be mass copied in 

their original plaintext digital form. In this chapter, we analyze the prospects of turning the 

NCdisk technology into a business. In the sections below, we examine two different types of 

business models for using the NCdisk in the online movie download application and compare 

their competitiveness and financial projections.  

 

4.2 The Business Models 

 Just having the NCdisk technology is not enough for the online movie download 

business. We must also provide high quality digital movie contents that can be delivered to the 

NCdisk. There are two viable business models for achieving this.  
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Business Model 1: Market NCdisk to content service providers 

(1) We form a company to develop the SP-based SoC (System on Chip). This 

development mainly involves programming in hardware description language (HDL) 

and simulating to test for its correct operation. We partner with a chip manufacturer 

to turn our HDL code into an actual chip. This way, as a “fables” company, we do not 

need to invest in manufacturing our chip.  

(2) We further design the NCdisk system, which involves integrating the SP-based SoC 

with an existing disk architecture. We design the entire schematic and documentation. 

We also design and test a prototype, preferably on a FPGA. Then, we partner with a 

contract or OEM manufacturer, who will make the actual NCdisk product. In this 

scenario, the manufacturer will be responsible for the warrantee.  

(3) We establish a server that runs the NCdisk security protocol (described in Chapter 3) 

used to securely send data content from the content provider to the customer’s 

NCDisk. Our server does not hold any contents. We partner with a content service 

provider, such as Netflix, who will provide the actual movie selection, user account 

maintenance, billing, and customer support. Note in this case, our company does not 

directly get involved with the customer.  

We analyze this model based on its people, context, opportunity, and deals. From a people 

perspective, this business model requires that our company focus on the NCdisk technology. We 

would mainly need people who are good in this technology area, but obviously, it would be 

beneficial to have people on our team who have experience in the media content industry.  

From a context and opportunity perspective, there are two things that make this model 

appealing. First, the movie industry wants to get into the online movie download business 
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because they know that this is what consumers will want in the future. However, they are 

reluctant to put movies on the Internet because there is insufficient technology to protect the 

contents. The NCdisk, if it works, goes a long way in solving this problem. Further, two major 

DVD rental companies, Netflix and Blockbuster, have made it public that they wish to enter the 

online movie download industry. These two companies are at constant battle with each other for 

customers. The NCDisk seems like the appropriate device that will give one company a major 

advantage against the other company. This relates to the deal perspective. With the Netflix and 

Blockbuster tensions, we may be able to get a good deal if we talk to both sides and take the 

better offer. However, this type of business model involves taking money from Netflix or 

Blockbuster instead of directly from the end-users. The extra level of separation reduces our 

revenue, as shown in financial analysis later.  

 

Business Model 2: Market NCdisk directly to users as a new content service provider 

(1) Same as Model 1 

(2) Same as Model 1 

(3) We establish an online store to sell and rent digital contents, such as movies, TV 

shows, music, digital books, etc. We take a revenue sharing model with the content 

provider. In this case, we will provide the actual movie selection, user account 

maintenance, billing, and customer support. Note in this case, our company directly 

sells the service to the end-user. We no longer play a middle-man role.  

We analyze this model based on its people, context, opportunity, and deals. From a people 

perspective, our company requires three types of skill sets: (1) technical (2) web merchandise 

system developer, and (3) marketing and business skills in media content area. Compared to 
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business model 1, this model requires more skill sets and manpower. From context and 

opportunity perspective, we will directly compete with existing content service providers, such 

as Netflix. We have a good technology, but as we examine below, we are not the first to market 

since there are similar types of devices already out there. From a deal perspective, we will be 

making deals directly with the content providers and we will hopefully try to enter a revenue 

sharing model. We will get a larger cut of the pie than with the business model 1.  

 

4.3 The Competition 

 For business model 1, the competition is mainly the content service providers themselves. 

For example, if we try to license our NCdisk to Netflix, we face the alternative that Netflix may 

wish to develop their own technology. Netflix currently has a 50-engineer team to develop their 

online downloading solution. Will they want to partner with us?  

 For business model 2, we have direct competition with content service providers, such as 

Netflix and Blockbuster, since we will also be a content service provider. Compared to DVD 

mailing, the online movie download strategy is more convenient for users and cheaper for us. 

The question is when Netflix or Blockbuster will come out with their online download service. 

The only way to take a large market share is to beat Netflix or Blockbuster to the market in 

developing a secure and convenient online download product and service, and to provide a more 

compelling on-going advantage.  

 

4.4 The Financial Projections 

 Now we analyze the income statement for both business models 1 and 2.  
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 For model-1, we assume we partner with Netflix. The major revenue comes from selling 

the NCdisk at a price of $120. Either Netflix or the end-user customer will pay for this device. 

Another major source of revenue is in the 10% revenue share with Netflix. We assume that each 

customer on average pays a monthly fee of $15, and we hope to take $1.5 of that fee. The bottom 

line is that existing Netflix cost on US mailing fees is $100M/year and existing mailing facilities 

and employees is another $100M/year. Our revenue cannot exceed this $200M/year. Note that 

even this $200M is not a likely maximum because Netflix will not be completely stopping their 

DVD mailing business immediately.  

 For model 2, we first analyze several key components of revenue and expense sources in 

order to get the numbers for the income statement. The first number is how much we can charge 

customers in a monthly fee. By my renting experience from both Netflex and Blockbuster, a 

customer can mail about 4-6 times each month. Each mail has 3 DVDs if users sign on a $17.99 

program. This is equivalent to $1-$1.5 for each movie. We may set $19.99 for 20 movies per 

month, and $1.49 for each movie after the 20 movie limitation. 

 The most important number is how much it costs to get movie content from the movie 

studios. Based on the marketing study of Wharton, DVD rental companies such as Netflix and 

Blockbuster have two ways to get movie contents. One way is to buy a DVD with a copyright of 

renting and reselling. The average cost is about $60 for each DVD disk (not each title). Another 

way is the revenue-sharing model. DVD rental companies pay about $8 per DVD upfront and 

then pay 30-45% of revenue earned from the DVD renting. The Wharton’s study show that, the 

revenue-sharing model increases revenue by 75% during the market test period. The reason is 

that customers have more titles to select and so they rent more. For business model 2 of the 

NCdisk business, we assume a 50% revenue sharing without upfront pay with the movie studios. 
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It is reasonable to assume no upfront fee for our model because our sharing percentage is higher. 

Further, note that our sharing revenue is equal to 50% of our renting revenue minus the cost of 

the NCdisk.  

Moreover, there is more expense for website development and customer support in model 

2 than model 1. However, the resources needed are proportional to the customer size and revenue 

income. As shown in the income statement, we increase our support staff only as our customer 

base increases.  

 Note that the breakeven point for both models is less than 100K customers. Also, note 

that model 2 is three times more profitable than model 1. The income statements are shown 

below.   

Model 1 - We provide NCDisk for Netflix 1st year 2nd year 3rd year 4th year 5th year
(assume Netflix or user pays for NCDisk)  
   
Accumulated number of NCDisk users 0 10 100 500 1,000
    New added NCDisk users  10 90 400 500
Sales revenue items:      
    NCDisk sales, $120 each 0 1,200 10,800 48,000 60,000
    NCDisk protection, $3.99/mon, 50% 
enroll 0 240 2,400 12,000 24,000
    Revenue share with Netflix, 10% of  
    $15/mon 0 180 1,800 9,000 18,000
Total revenue 0 1,620 15,000 69,000 102,000
    Less cost of sale, 50% of NCDisk sale  
    price 0 600 5,400 24,000 30,000
Gross margin 0 1,020 9,600 45,000 72,000
Operation expense items:      
    Employee salary, including benefits 2,000 2,000 3,000 4,000 5,000
    Equipment 500 500 1,000 1,000 1,000
    Office renting 100 100 300 300 500
    NCDisk RMA, 80% of protection  
    revenue 0 192 1,920 9,600 19,200
    Web server cost 100 200 500 500 500
    Other cost (travel etc.) 500 500 1,000 1,000 1,000
Total operation expense 3,200 3,492 7,720 16,400 27,200
Incoming before tax -3,200 -2,472 1,880 28,600 44,800
    Provision for income tax, 50% rate 0 0 940 14,300 22,400
Net incoming, in thousand USD -3,200 -2,472 940 14,300 22,400
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Model 2 - We directly provide Movie 
renting  1st year 2nd year 3rd year 4th year 5th year
(assume NCDisk is free)  
      
Accumulated number of NCDisk users 0 10 100 500 1,000
    New added NCDisk users  10 90 400 500
Sales revenue items:      
    NCDisk protection, $3.99/mon, 50% 
enroll 0 240 2,400 12,000 24,000
    Movie rental revenue, $19.99/mon 0 2,400 24,000 120,000 240,000
    Non-movie rental revenue, 20% of 
rental   
    revenue 0 480 4,800 24,000 48,000
Total revenue 0 3,120 31,200 156,000 312,000
    Less cost of sale, $60 per NCDisk 0 600 5,400 24,000 30,000
    CP rev share, 50%*(rentRev –  
    NCDiskcost) 0 900 9,300 48,000 105,000
Gross margin 0 1,620 16,500 84,000 177,000
Operation expense items:      
    Employee salary 2,500 2,500 4,000 6,000 8,000
    Equipment 500 500 1,000 1,000 1,000
    Office renting 100 100 500 500 1,000
    NCDisk RMA, 80% of protection  
    revenue 0 192 1,920 9,600 19,200
    Web server 200 300 500 1,000 2,000
    Customer support 0 200 500 1,000 2,000
    Other cost (travel etc.) 500 500 1,000 1,000 1,000
Total operation expense 3,800 4,292 9,420 20,100 34,200
Incoming before tax -3,800 -2,672 7,080 63,900 142,800
    Provision for income tax, 50% rate 0 0 3,540 31,950 71,400
Net incoming, in thousand USD -3,800 -2,672 3,540 31,950 71,400

 
Table 4-1. Financial Analysis for the NCdisk Business Models (units in thousand USD) 

 

 In table 4-1, the major marketing data is referenced from the Netflix annual report and 

University of Pennsylvania Wharlton’s marketing research paper [8-10]. 

 

4.5 Next Step for Business 

The rough financial analysis shown above suggests that Business Model 2 provides far 

greater revenue than Business Model 1. Also, Model 2 provides more control over the company 

for the founders than does Model 1. However, Model 2 has greater competition since we will be 
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competing directly with the more established content providers. The exercise of working through 

the financial projections above provides a good first step to analyzing the prospects of the 

NCdisk business. As our work in Chapters 2, 3, and 4 show, we are fairly confident of the 

technology, but in order to better understand the real need of the online movie download market, 

the next step should be to talk to real customers, content providers, and content service providers.  
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We propose an NCdisk concept to prevent copying of protected digital content. The NCdisk 

concept boils down to implementing two design goals: protecting secrets and providing output 

control. We achieve these two goals by implementing a (Secret-Protection) SP-based SoC 

architecture that can be added to existing disk architecture to turn that disk into an NCdisk. 

Further, we design a security protocol that can be used along with the NCdisk to provide security 

and convenience for the online movie download application.  

Future work includes extending the NCdisk architecture and security protocol to support 

multiple content service providers. This means that the NCdisk has to be shared by mutually-

distrusting content service providers.  Future work also includes investigating how the NCdisk 

can be extended to support other applications besides online movie download. We would like to 

research using the NCdisk to provide more copy-protection and privacy-protection for computer 

data. 
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  The SP-based SoC design of the NCdisk described in Chapter 3 represents the latest 

version of the NCdisk. In this appendix, we describe an earlier design of our NCdisk architecture 

that is ASIC-based, and compare it with the SP-based version.  

 

ASIC-based NCdisk Architecture 

 This earlier version of the NCDisk Hardware Architecture, Figure 4-1, is an ASIC-based 

co-processor design. It was designed for the online movie download application – and hence has 

a similar design goal as the SP-based NCdisk described in chapter 3. However, its 

implementation is different and more complex.  It has a control processor (CProc), which runs 

software that controls the input/output of the movie files, as well as other general purpose 

routines. The NCdisk also has a secure processor (SProc), which is part of a SoC that runs the 

security software. The NCdisk has an untrusted hardware module that consists of a regular disk, 

the CProc, a USB controller used to connect the NCdisk to a PC, an Ethernet controller used to 

connect the NCdisk to a home network router, and a wireless transceiver used to control the 

NCdisk with a remote-control. The movie files are stored on the regular disk. They are encrypted 

by security software and critical secrets that are stored on the SoC.  
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A.1.  Security Assumptions and Definitions for online movie download application 
 
 Prior to looking at the ASIC-based architecture in detail, it is important that we clearly 

define our security assumptions and goals for the online movie download application.  

 

 

ASIC-based NCdisk Hardware Architecture

NCDisk Coprocessor SoC

untrusted hardware module

Chipset Level-1 Security Components (DSP)

Chipset Level-2 Security  Components  (ASIC)

CProc
(Control

Processor)

SProc
(Secure Processor)

TV/PC
remote control

memory
ROM/RAM

Disk

Bootup
ROM

fT( )

TKKID

iNTK SEEDSN

PRNG

KID

write-enable

Code
Memory

KID

oNTK NTK

USB
control

Encrypted Data

Integrity Checked (Hashing)

Ethernet
Control

PC

Key
Update

Controller

Router

D/A
TV Out

TV

Plain Data

Data
Memory

Registers

SM
(Shared
Memory)

Ctl

 
 

Fig A-1 ASIC-based NCdisk Hardware Architecture 
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First, we assume that the existing encryption algorithm, hashing function, and random 

key generator that we use are cryptographically strong. We also assume that the standard 

cryptographic protocol, such as SSL, for two-party authentication between the server and the 

NCdisk is secure. Moreover, we define that an encrypted movie file is broken if the movie 

encryption key is compromised by an attacker. We define that an NCdisk is broken if the critical 

secret of the NCdisk is compromised by an attacker. Moreover, an attacker can clone a device if 

he can obtain the critical secret of the device, in which case the attacker could produce multiple 

copies of NCdisks that contain the same broken critical secret.  

Further, we assume that physically opening up a SoC chipset and probing the internal bus 

without damaging the chipset is a difficult but still feasible task for professionals. If the internal 

bus can be probed, then the software and data memory on the chip can be read out. This can be 

accomplished by connecting the internal bus to an external processor or instrument. Further, if 

the internal processor can be used to run attacker software, then the internal register contents can 

be read out through the internal bus. At this point, we are ready to give two security level 

definitions:  

 

Chipset Level-1 Security Definition: a particular on-chip component has Chipset Level-1 

Security if an attacker has to physically open up the chipset and probe the bus to obtain data 

from the component by either running software on the internal processor or external processor. 

 

Chipset Level-2 Security Definition: a particular on-chip component has Chipset Level-2 

Security if an attacker may not obtain data from the component even if he physically opens up a 

chip, probes the bus, and runs software on the internal processor or external processor. The only 
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way to obtain data from the component is to perform gate level reverse-engineering of the 

chipset. 

 

The security goals of the NCdisk architecture are:  

(1) Store the critical secrets of the NCdisk in Chipset Level-2 Security hardware. In other 

words, an attacker may not obtain the critical secrets of the NCdisk (and thereby 

clone the NCdisk) without performing gate level reverse-engineering of the chipset.  

(2) Breaking one movie in the server database should not affect the security of other 

encrypted movies. In other words, if an attacker obtains the encryption key of one 

movie, that key should not leak information about the encryption keys of other 

movies. 

(3) Breaking one NCdisk should not affect the security of other NCdisks. In other words, 

if an attacker obtains the critical secret of one NCdisk, that information should not 

leak the critical secrets of other NCdisks.  

(4) Breaking one movie file on an NCdisk should not affect the security of other movie 

files on the same NCdisk. In other words, if an attacker obtains the encryption key of 

one movie file on the NCdisk, that key should not leak information about the 

encryption keys of other movie files on the same NCdisk.  

(5) Only a predefined a set of player devices are able to receive the NCdisk output data. 

(6) When a particular pirated movie file is found, it should be traceable to the specific 

NCdisk. Then, that NCdisk should be revoked.  

Same as SP-based NCdisk architecture in chapter 3, these security goals also could be narrowed 

down to two major points: storing and protecting critical secrets, and controlling of output. 
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A.2. Storing and Protecting Keys  

 
The security measures of storing and protecting keys are provided by the SoC in Fig A-1. 

The SoC contains various Chipset Level-1 Security components. It contains a boot-up ROM, 

which is the starting point of all code executed by SProc. The SoC also contains RAM that stores 

most of the secure software. This software in RAM is integrity-checked each time by ROM code 

before being executed. Further, the SoC contains data RAM memory. Part of this memory may 

be encrypted to store some long-term secrets. The other part of the memory may contain 

intermediate data of currently running security software. The SoC also contains on-chip registers 

to store intermediate data of any programs running on the SProc. These register data may spill 

over into the RAM data memory. Also, the SoC contains a D/A converter that immediately 

converts an unencrypted movie file into analog streams that can be outputted to a TV. Note that 

the method of using secure ROM and integrity-checked RAM to secure software is similar to the 

method used in extended sensor-node SP [4] and IBM Co-Processor [11].  

The security protocol is similar to that in Chapter 3. The NCdisk device key DKj has 

three different types of iNTK, NTK, and oNTK. The iNTK is used to secure communication 

between the server and the NCdisk. The oNTK is used to secure communication between the 

NCdisk and a trusted player device. The NTK is used to protect the movie files on the NCdisk. 

The NTK is known only to the NCdisk. Not even the server or the legitimate user of the NCdisk 

knows this key. Further, the SoC stores these critical keys (NTK, iNTK, and oNTK) in Chipset 

Level-2 Security hardware. These three keys cannot be broken even if the SoC chipset is opened, 

or the bus is probed, or the SProc is used to run malicious software. Hence, it prevents cloning 

the NCdisk. Further, the iNTK and oNTK are initially installed and may be updateable by the 
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content provider. The updating process is securely executed by the Key Update Controller, 

which works as follows: 

(1) The iNTK and oNTK may only be updated by the server, who knows the old key.  

            (2) The server first inputs the old key value for iNTK (or oNTK). 

(3) The server then inputs the new key value for iNTK (or oNTK). 

(4) The Key Update Controller uses hardware logic circuits to compare the inputted old  

                  key value with the existing key value of the iNTK (or oNTK). 

(5) If the two key values are the same, then the existing iNTK (or oNTK) value is  

                  replaced by the new inputted key value.  

(6) If the two key values are not the same, then the Key Update Controller runs a  

                  hardware delay before resetting the controller. This is to ensure that an attacker may  

                  not feasibly devise an automated way to keep guessing the old key value by brute  

                  force.  

In addition, these three critical keys are never directly used to encrypt a movie file. Instead, they 

are used as input of a cryptographic hash function to derive different encryption keys for 

different movies. This further ensures that the critical keys are not leaked out.  

 The key derivation function is the fT( ) function block shown in Figure A-1. The fT( ) 

function is same as MAC function in chapter 3. This function takes as input a critical key (iNTK, 

oNTK, or NTK) and a movie ID (a random Key ID). Then, the fT( ) function outputs a derived 

key TK for a particular movie. It is important that the TK values are checked to be 

cryptographically strong before they are used.  
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A.3. Controlled Predefined Output 

 No data and software inside a SoC should be accessible from outside of the SoC. Only a 

predefined player device can receive the output data through a set of secure API functions. 

Moreover, the CProc and the SProc do not share a common bus. Instead, they are separated by a 

shared memory module. The shared memory completely isolates the internal bus of the SoC 

from the outside. The communication from the CProc to the SProc is shown in Figure A-2. As 

described above, the secure boot up ROM and the integrity-checked RAM code ensures that only 

the secure software on the SoC can run on the SProc. The CProc may only call the SoC to 

execute a particular function through the shared memory. The CProc only knows the function 

IDs and the input/output data formats of the secure software library. The SProc processes the 

value in shared memory and outputs its result back into the shared memory. The CProc reads this 

result. The step-by-step communication is described as follows:  

 

 

CProc Shared Memory SProc

Parameters and data
passed to the function

SBusy Flag

C2S function ID
S2C function ID

Control
Processor

Secure
Processor

CBusy Flag
(1), check if SBusy==0
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(3), load func id

(4), load func data

SPro Interrupt
CPro Interrupt

(5), issue interrupt to SProc (6), start NCDisk_isr()

(7), set SBusy=1

(8), process func

(9), read input data

(10), send
output data

(11), set SBusy=0

(12), issue interrupt to CProc(13), start interrupt routine

(14), process
return data

Comunication From CProc to SProc Through Shared Memory

NCDisk
Software

Commands

NCDisk
Software

lib functions

 
Fig A-2. Communication Between CProc and SProc through Shared Memory 
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(1) CProc checks the “SBusy” bit. If this bit is set, then it means that SProc is running and is 

using the shared memory. In this case, the CProc must wait until the bit is cleared by 

SProc. 

(2) CProc sets the “CBusy” “CBusy” bit to claim the ownership of the shared memory. 

(3) CProc loads the function ID into the “C2S function ID” word in shared memory.  

(4) CProc loads the function parameters and data into shared memory. The data format is  

            predefined for each function.   

(5) CProc issues an interrupt to SProc, at which point the SProc starts to process the value in  

      shared memory. The CProc should now clear the “CBusy” bit to release the use of the  

      shared memory to SProc. 

(6) SProc runs the interrupt service routine NCdisk_irs(), which is stored in the secure ROM.  

(7) The NCdisk_irs() routine sets the “SBusy” bit to claim ownership of the shared memory. 

(8) The NCdisk_irs() routine then calls the NCdisk_main() function, which validates the 

function ID and data format.    

(9) If the shared memory input is validated, the NCdisk_main() function uses the input data 

to execute the function.  

(10) The output of the function is sent back into shared memory based on a predefined 

format. 

(11) SProc clears the “SBusy” bit to release the ownership of the shared memory. 

(12) Sproc issues an interrupt to CProc 

(13) CProc runs an interrupt service routine to process the data returned by SProc.  
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The above steps describe the communication from the CProc to SProc. The 

communication can also occur in the other direction. In other words, the SProc may also call the 

CProc to execute a particular function, such as error reporting and debugging functions.  

The NCdisk software library functions are divided into two subsets. One is the set of core 

functions located in ROM. The other is the set of extended functions located in RAM. RAM 

functions are not allowed to directly run on SProc. RAM functions can only be called by ROM 

functions. The RAM code is integrity-checked by ROM. Since no one can change ROM code, 

the security of the system is ensured. Note that attackers are allowed to read the ROM code 

(although this is very difficult), but even if they do so, they will not be able to change anything. 

A description of some main core functions is detailed below:  

 

• NCdisk_bootup( ) – SProc boot up function, in ROM 

o Perform boot up procedure 

o Initialize NCdisk_irs( ) interrupt routine 

o All functions run on SProc must go through the NCdisk_irs( ) routine. 

 

• NCdisk_irs( ) – interrupt service routine, in ROM 

o This function is called by the interrupt signal issued by CProc 

o Set the SBusy flag 

o Call NCdisk_main( ) 

• NCdisk_main( ) – SProc main function. Links to all functions in library, in ROM. 

o Validate the command and data format in shared memory 

o If the function is in ROM and the data range is correct, call the function 
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o If the function is in RAM, check the function integrity, then call the function 

 

• NCdisk_update( ) – allows server to add or delete library function in RAM, in ROM 

o Parameters  

 A flag describing whether function is to be added or deleted from 

RAM 

 function name and id 

 start and end memory address in RAM 

 The number of total blocks passing through shared memory to transfer 

this new function to the SProc RAM. 

 current block index 

 hash value of the function using iNTK, block by block  

o Functions 

 if deleting an existing function from RAM, verify that all parameters 

match to the exiting function in RAM 

 if add a new function, check if it matches predefined rule (such as 

memory mapping etc) 

 check hash value for each block in shared memory by using iNTK 

 Only server knows how to interface the new function to ROM 

function.  

• NCdisk_reset( ) – reset NC Disk to original manufacturer setting, in ROM 

o Reset all setting to original manufacturer setting 
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• NCdisk _reencrypt() – decrypts and re-encrypts a movie file  

o Parameters 

 Input encrypted movie frame 

o Functions 

 Decrypts and re-encrypts the movie frame in one algorithm such the 

intermediate plaintext data is never stored anywhere.  

 

• NCdisk_Convert() – decrypts and converts a movie file to a playable format 

o Parameters 

 Input encrypted movie frame 

o Functions 

 Decrypts and converts the movie frame to a playable format in one 

algorithm such the intermediate plaintext data is never stored 

anywhere.  

 

A.4. Comparison between SP-based and ASIC-based NCdisk Architecture 

For both the SP-based and ASIC-based NCdisk architecture, the design goals were the same: 

to protect critical secrets and to provide a controlled set of predefined outputs. The SP-based 

architecture is able to achieve these goals by taking a single processor and adding a minimal set 

of hardware additions onto that processor. On the contrary, the ASIC-based architecture requires 

a co-processor design, which is more costly. Further, the SP-based architecture uses a Trusted 

Software Module (TSM) that allows the specific application of the SP-based processor to be 

flexibly defined. On the other hand, the ASIC-based architecture restricts the application of the 
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SoC to be fixed to the NCdisk application. A benefit of the ASIC-based architecture is that it can 

be implemented into an SoC by connecting an existing processor to some ASIC logic. In 

contrast, implementing the SP-based SoC architecture requires changing an existing processor, 

although the change is only minimal.  

A lot of the work done by special-purpose hardware in the ASIC-based architecture is done 

by the Trusted Software Module (TSM) in the SP-based architecture.  In fact, all the 

cryptography processing and disk-controller processing can be done by the single processor in 

the SP-based model.  We also examined the use of PAX, a general-purpose processor with 

special features for acceleration of cryptographic processing for this SP-based NCdisk processor.  

We describe the work on implementing PAX in Appendix B. 
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 This appendix describes a two year long project that I have been working on in parallel 

with the NCdisk project. It is apparent that the processor used in the SoC of the NCdisk must 

perform a significant amount of encryption and decryption of movie contents. At the same time, 

the processor must also perform other general purpose functions. This project involves working 

on the PAX processor which has special features for accelerating cryptographic processing [21-

26,28] . In the sections below, we examine my work in encoding the ISA of PAX, developing the 

software toolset for PAX, designing the VHDL code for the Parallel Table Lookup Unit (PTLU) 

of PAX, mapping the AES algorithm to PAX implementations with different word sizes, and 

implementing PAX on a Virtex-II Pro FPGA.  

 

B.1 Encoding of PAX and PLX Processors 

PAX [28] and PLX[20] are two small, general-purpose instruction set architectures (ISA) 

designed by Prof. Ruby Lee and students at Princeton University, Department of Electrical 

Engineering. PAX is a word-size scalable processor designed to be a simple yet high-

performance ISA for cryptographic processing, while PLX is a fully subword-parallel processor 

designed to be a simple yet high-performance ISA for multimedia information processing.  This 

section describes the challenge in combining the two processors into one processor, and encodes 

a unique ISA set that covers both processors’ instructions.   
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B.1.1 Background 

There are many applications, such as cell phones, laptops, palm pilots, etc, that need both 

cryptographic and multimedia processing. Since PAX and PLX are built-from-scratch processors 

designed to be fast and power-efficient at these two functions, it is desirable to combine these 

two instruction sets into one processor. Further, since the PLX instructions have already been 

encoded, we encode the PAX instruction set on top of the existing PLX encoding. Both PAX and 

PLX are encoded with 32-bit instructions. Six of the bits are designated for opcodes, giving 64 

possible opcodes. The PLX instruction set takes up only a fraction of the 64 available opcodes, 

and so the PAX instruction set can be mapped into the remaining empty opcodes and the subops 

of the PLX encodings. During the combining of PAX and PLX, some PAX instructions sacrifice 

some functionality. Below, we examine the rationale behind the PAX-PLX instruction set 

combination. We discuss the two major encoding issues in combining PAX and PLX.  

 

B.1.2. Major Encoding Issues 

Making Predication Compatible  

 A fundamental problem of combining the PAX and PLX instruction sets is that PLX uses 

predication, while PAX does not. The novel predication method used in PLX greatly reduces the 

performance degradation caused by conditional branch instructions during multimedia 

processing. However, predication is not significantly helpful for the cryptographic processing of 

PAX, which uses a simple set of conditional branch instructions. To implement predication, PLX 

has 128 1-bit predicate registers, which are divided into sixteen groups. At any one time, only 

one group of 8 registers is active. The first three bits of any PLX instruction is used to select one 

of the eight active registers. Then, the rest of the instruction executes only if the chosen register 
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has a value of 1. Since PAX does not utilize predicate registers, it can use the first three bits of an 

instruction for something else, such as an additional immediate field or subop field. However, to 

combine PAX and PLX instruction sets in one processor, the instructions must be encoded in 

such a way that hardware can easily differentiate between predicated and non-predicated 

instructions. We explore three different methods of achieving this and rationalize our method of 

choice.  

Instructions How is it affected? 
ALU Immediate: 

addi 
subi 
andi 
ori 
xori 

Memory Access: 
load 
store 

PLX version only requires 13-bit immediate field: 
 
 

 
Non-predicated PAX version requires 16-bit immediate field: 

(Imm16 = Imm16a || Imm16b)  

Pred(3) Opcode(6) Rd(5) Rs1(5) Imm13 

Imm16b Opcode(6) Rd(5) Rs1(5) Imm16a 

Loadi (see section 2.2) 

PLX requires 2-bit selection field: 
(Subop2 = S1 || S2) 

 
PAX requires 3-bit selection field: 

(Subop3 = S1 || S2 || S3)  

Pred(3) Opcode(6) Rd(5) S1 S2 Imm16 

x x S1 Opcode(6) Rd(5) S2 S3 Imm16 
Table B-1. How Predication of PLX affects some PAX instruction encodings 

 One method is to make all PAX instructions predicated. This method has the advantage 

that all instructions in the PAX-PLX combined processor are predicated, and so, the hardware 

has no need to differentiate between predicated and non-predicated instructions. The 

disadvantage is that the first three bits of any PAX instruction will have to be used to specify 

predicate registers. Since these three bits could have been used for something more important, a 

predicated version of PAX may sacrifice some performance.  Table B-1 illustrates these issues. 

First, the ALU immediate and memory access instructions require a 13-bit immediate field in 

PLX. However, these instructions in PAX would benefit from a 16-bit immediate field. If the 
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first 3 bits of the instruction are used to specify predicate registers, then there is not enough room 

for a 16-bit immediate field. Second, the loadi instruction (See Section 2.2) in PLX requires a 2-

bit selection field to specify one of four possible locations, while the PAX versions of loadi 

requires a 3-bit selection field to specify one of eight possible locations. Once again, there is not 

enough room for the extra bit of selection because of the space taken up by the 3 bit predicate 

field.  

A second method to make predication compatible between PAX and PLX is to create a 

new predication mode. Prior to examining an instruction, first check the mode. If the mode is 

predication-enabled, then the instruction is treated as a PLX instruction. In this case, treat the 

first 3 bits as a predicate field, and examine the opcode field only if the predicate register is true. 

If the mode is predication-disabled, then the instruction is treated as a PAX instruction. In this 

case, bypass the predicate-check and look directly at the opcode. Depending on the opcode, the 

first three bits can be either an immediate field or a subop field. The advantage of this solution is 

that many pairs of PAX and PLX instructions can share the same opcodes, although they use the 

first three bits differently. Also, it is very simple to switch between the PLX and PAX 

instructions in a single program. The following pseudo-code explains this convenience: 

pred_on          // instruction that switch to predication-enabled mode 
P0 addi Rd, Rs, 0x16          // addi treated as PLX instruction. Hence, addi  

                                                        // executes only if P0 (predicate register) is true and it has a  
                                                        // 13-bit immediate field.  

pred_off                              // instruction that switch to predication-disabled mode 
addi Rd, Rs, 0x16               // addi treated as PAX instruction. Hence, addi  

                                                       // has a 16 bit immediate field.  
addi PLX version 

P (3) Op (6) Reg (5) Reg (5) Imm13 
 
addi PAX version. Imm16a and imm16b are concatenated to form Imm16. 
Imm16b Op (6) Reg (5) Reg (5) Imm16a 
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Another advantage of this solution is that the two processors maintain their original 

properties: all PLX instructions are predicated, while all PAX instructions are non-predicated. 

The disadvantage of this solution is that a 32-bit instruction does not include all information 

needed to execute this instruction. We must look at the predication mode prior to examining any 

instruction.    

                                     

The two methods examined so far are, in a sense, polar opposites. Method 1 calls for 

making all PAX instructions predicated, while method 2 calls for maintaining the non-predicated 

property of all PAX instructions. The third method is a compromise between the first two 

methods and is suitable for the PAX-PLX combined instruction set. Some PAX instructions are 

predicated, and the rest remain non-predicated. Of the 64 possible opcodes, eight opcodes are 

selected to be non-predicated, Table B-2, and the other opcodes are all predicated. The eight non-

predicated opcodes are specially chosen so that the processor only has to examine three of the six 

opcode bits to differentiate between predicated and non-predicated opcodes. If bits 1, 3, and 4 are 

all ones, then the opcode is non-predicated, and the first three bits of the instruction are treated as 

either an immediate field or a subop field. If bits 1, 3, and 4 are not all ones, then the opcode is 

predicated, and the first three bits of the instruction are treated as a predicate register field.  

The eight non-predicated opcodes do not cover all PAX instructions. Many PAX 

instructions are mapped into the predicated opcodes. The advantage of this method is that with 

opcode 
Bit 
1 

Bit 
2 

Bit 
3 

Bit 
4 

Bit 
5 

Bit 
6 

2C 1 0 1 1 0 0 

2D 1 0 1 1 0 1 

2E 1 0 1 1 1 0 

2F 1 0 1 1 1 1 

3C 1 1 1 1 0 0 

3D 1 1 1 1 0 1 

3E 1 1 1 1 1 0 

3F 1 1 1 1 1 1 

Table B-2. 8 non-predicated 
d
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the eight un-predicated opcodes, we can cover most of the important PAX opcodes. Further, it is 

much simpler to implement than method 2. We choose this method to map the PAX and PLX 

instruction set into one opcode set, Section 3.  

 Use of the loadi instruction 

PAX has a load immediate instruction, which loads a 16-bit immediate to an aligned 16-

bit field of Rd. Since PAX is wordsize scalable up to 128 bits, there are up to 8 possible positions 

to load the 16-bit immediate field in Rd. Furthermore, PLX has a different version of the load 

immediate instruction, which can only load a 16-bit immediate to one of four aligned 16-bit 

fields in the lower 64 bits of Rd. The PAX-PLX instruction set needs to support both types of 

load immediate instructions. There are two methods. The first method is to have a 3-bit subop, 

which gives 8 different possibilities, one for each of the positions in a 128-bit Rd. Using this 

instruction, PAX can load a 16-bit immediate to any of the 8 locations in Rd, and PLX can load 

to any of the 4 locations in the lower 64 bits of Rd. The other method is to have only a 2-bit 

subop, which gives 4 different possibilities. In this case, loadi can only load to the lower 64 bits 

of Rd, which is suitable for PLX. For PAX, to completely load a 128-bit register, one would load 

the lower 64 bits of two separate registers and then use the “mix 8 byte” instruction to combine 

the two registers into one. The two methods are illustrated below: 

Method 1: loadi has a 3-bit subop. Loading an entire 128-bit register R1 requires 8 
instructions, as shown in assembly language below: 
 

loadi.z.0 R1 7 6 5 4 3 2 1 0
loadi.z.1 R1 7 6 5 4 3 2 1 0
loadi.z.2 R1 7 6 5 4 3 2 1 0
loadi.z.3 R1 7 6 5 4 3 2 1 0
loadi.z.4 R1 7 6 5 4 3 2 1 0
loadi.z.5 R1 7 6 5 4 3 2 1 0
loadi.z.6 R1 7 6 5 4 3 2 1 0
loadi.z.7 R1 7 6 5 4 3 2 1 0
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Method 2: loadi has a 2-bit subop. Loading an entire 128-bit register R3 requires 8 loadi 
instructions and a mix instruction, as shown in assembly language below: 
 

loadi.z.0 R1 7 6 5 4 3 2 1 0
loadi.z.1 R1 7 6 5 4 3 2 1 0
loadi.z.2 R1 7 6 5 4 3 2 1 0
loadi.z.3 R1 7 6 5 4 3 2 1 0

 
loadi.z.4 R2 7 6 5 4 3 2 1 0
loadi.z.5 R2 7 6 5 4 3 2 1 0
loadi.z.6 R2 7 6 5 4 3 2 1 0
loadi.z.7 R2 7 6 5 4 3 2 1 0

 
mix.8.r  R3, R1, R2 7 6 5 4 3 2 1 0

 

As illustrated above, these two methods only differ by one instruction. To use method 1, 

we have to use 8 non-predicated opcodes to encode the loadi instructions with 3-bit subops. 

Since there are only 8 non-predicated opcodes, method 1 is wasteful. To save opcodes, we use 

method 2 and share the loadi instruction between PAX and PLX.  

 

B.1.3 The Encoding Results 

The solution is published as a technical report [21]. The full version of PAX encoding is 

described in document [24,25], and the complete encoding and references for the PAX-PLX 

instruction set is in document [22,23]. 
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B.2 Development of PAX Assembler, Linker and Simulator 

This section discusses the development of the PAX-32 toolset, which consists of a 

simulator, assembler, and linker. The PAX simulator is based on the SimpleScalar simulator, and 

the PAX assembler and linker are based on the GNU toolset. The development method of the 

PAX toolset discussed in this section can be extended to develop similar toolsets for other new 

processor ISAs. The more detailed results are described in the technical report [26]. We used this 

toolset to write assembly code for one round of the AES-128 encryption algorithm, assemble and 

link it, and simulate it on the SimpleScalar simulator. Then, we ran a similar program with an 

ARM toolset. We noticed a 10.84 times speedup in the PAX-32 processor compared to the ARM 

processor when running the encryption algorithm. 

 

B.2.1 Introduction 

 After the ISA of PAX has been designed and encoded, the next step is to develop a 

toolset consisting of a simulator, compiler, assembler, and linker. There are two approaches to 

creating the toolset. One approach is to construct the toolset from scratch, and the other approach 

is to port PAX onto an existing toolset. The advantage of the first approach is that it is often 

easier to write the toolset from scratch rather than to learn the code structure of an existing 

toolset. Nevertheless, in an effort to make PAX as portable as possible, we chose to build the 

PAX toolset based on a popular toolset that has an easily portable code structure.  

The goals of this research are three-fold. First, we describe the development of the PAX 

toolset, which is based on the GNU toolset and SimpleScalar Simulator [29,30]. This section 

discusses the development of the simulator, assembler, and linker, but does not discuss the 

compiler. Second, although the file names and code structures discussed in this paper are specific 
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to PAX, the development technique used may be generalized to write a toolset for any processor 

ISA. Finally, we examine the performance results that are obtained for PAX from using this 

toolset.  

 

B.2.2 Methodology of Building a Toolset for a New Processor ISA  

An ISA toolset allows researchers to study the performance of a processor ISA by using 

only software. The main framework of the toolset is shown in Fig B-1. Using this toolset, 

researchers can write c-code or s-code, then produce executable code, and finally run the code on 

the simulator. There are many variations of simulators, and each one is implemented as a 

simulation module. Types of simulation modules range from functional simulators, which 

implement the architecture of the processor, to complex performance simulators that implement 

the micro-architecture of the processor. By using various types of simulation modules, 

researchers can study the performance of the processor ISA from many different perspectives. 

Compiler Assembler SimulatorLinker

GNU  ToolSet

Crosstool script to create cross compilers for different
machines

SimpleScalar Simulator

*.c file *.s file *.o file exec. file simulation
module 1

simulation
module 2

simulation
module 3

.

.

.

 
Fig B-1: Structure of toolset for a new processor ISA that is based on 

GNU toolset and SimpleScalar simulator. 
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This way, the strengths and weaknesses of the processor may be carefully analyzed before 

committing the time and money necessary to design and manufacture the hardware version of the 

processor. In this paper, we do not cover the development of a compiler for a processor ISA, but 

this is a necessary part of future research. This paper discusses the development of an ISA toolset 

that allows researchers to write s-code, assemble it, link it, and simulate it on a functional 

simulator1. The rest of this section discusses the reason for choosing the GNU toolset and the 

SimpleScalar simulator [29,30] as the base platform, and how to set up the base platform.  

 
 
Base Platform of the Toolset 

The reason we chose the GNU toolset as the base platform for the compiler, assembler, 

and linker is that GNU is a free, open source software2 that is widely used in both academia and 

industry. Currently, the GNU Compiler toolset (which includes the compiler, assembler, and 

linker), called GCC, supports a long list of commonly used machines, including ARM, i386, 

MIPS, PowerPC, etc. The code structure of GCC is designed so that it can be easily ported to 

different machines.  

Next, the reason we chose the SimpleScalar simulator as a base platform for the simulator 

is that SimpleScalar is a popular, well-respected simulator used in the academic arena. 

SimpleScalar was originally written to simulate a sample ISA called PISA, which stands for 

Portable ISA. PISA is a 64-bit processor that includes a set of commonly used instructions. 

SimpleScalar is popular for its powerful set of simulation modules, Table B-3. The code 

structure of SimpleScalar is designed so that researchers who want to use the simulator can 

conveniently port their processor ISA to SimpleScalar. Currently, SimpleScalar supports a wide 

                                                 
1 This paper does not emphasize the design of different simulation modules, but instead focuses on the design of the 
overall structure of a software toolset for a processor ISA.  
2 http://www.gnu.org/ 
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selection of machines ranging from specialized processors designed in universities to popular 

processors used in industry such as ARM and PowerPC.  

 
Simulator Function 
Sim-safe Functional simulator 
Sim-fast Functional simulator. Optimized version of Sim-safe 
Sim-profile Generates program profiles, by symbol and by address 
Sim-cache Generates one- and two-level cache hierarchy statistics and profiles 
Sim-outorder Detailed performance simulator 

 
Table B-3  SimpleScalar Simulator Suite 

 
In order to port a processor to this base platform, one must first pick an existing 

processor—supported by the base platform—that is most beneficial to use as the starting point. 

In the case of PAX, that processor is ARM [32]. Then, in both the GNU toolset and the 

SimpleScalar simulator, we find the ARM related files, create a copy of them, and change them 

to fit PAX exactly. See Sections B-3 and B-4. Note that each step of the toolset in Fig B-1 can be 

independently designed. One can pick different processors as the starting points for each stage of 

the toolset.  

One important similarity between ARM and PAX is that they both have 32-bit 

instructions3. This is important because it allows the two processors to share a similar structure in 

the assembler, linker, and SimpleScalar loader, which is responsible for loading an executable 

file into the simulator memory. The ARM assembler converts ARM assembly language to ELF-

format object files. If we use ARM as a starting point in writing the PAX assembler, then our 

major task in porting the PAX assembler is to code the PAX instructions, instead of worrying 

about the structure and format of the object file. On the contrary, if I based PAX on a 64-bit 

processor, then I would have to change the assembler such that it generates 32 bit instructions in 

                                                 
3 Note that although PAX is wordsize scalable to 32, 64, and 128 bits, the instruction size is always 32 bits. 
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the object file rather than 64-bit instruction. This is not a trivial task. Further, if PAX and ARM 

have similar object file formats, then the PAX linker would be the same as the ARM linker. This 

is a major benefit of using ARM as a starting point. Similarly, if PAX and ARM share the same 

linker, then the resulting executable file would be very similar, and this in return means that the 

ARM SimpleScalar loader and the PAX SimpleScalar loader could be the same.  

Moreover, ARM uses the TIS standard ELF file format, which defines the format of the 

object files. The ELF file format is widely used and has better support in GNU compared to other 

object file formats such as ECOFF. Since I will have to write a PAX assembler in GNU, it is a 

good idea to use the well-supported ELF file format.  

Now that we have chosen ARM as the starting point processor, the next step is to build 

the SimpleScalar ARM simulator and the GNU-ARM toolset. SimpleScalar ARM or other 

SimpleScalar simulators can be downloaded from the SimpleScalar 4.0 website4. The readme file 

included in the download fully describes how to install the simulator.  

 

Building a Cross-Compiler for Target Processor 

Next, building the GNU-ARM toolset requires the construction of a cross-compiler, 

which allows one to compile software for a target machine on a host machine of a different type. 

This is because we are running the GNU-ARM toolset on a linux machine, instead of an actual 

ARM machine. More importantly, GNU-ARM is only the starting point, and we ultimately need 

to have a GNU-PAX toolset. Since PAX does not yet exist as hardware, we must use a cross-

compiler to run it on a host machine.  

Creating a cross-compiler can be a very tricky task. One way to obtain the ARM cross-

compiler is to download the version on the SimpleScalar 4.0 website4. Currently, this cross-
                                                 
4 http://www.simplescalar.com/v4test.html 
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compiler does not use the newest version of the GNU toolset. Another way is to use the 

Crosstool script [31] created by Dan Kegel to build the cross-compiler. Users simply specify 

which machine to target and what version of GNU to use and Crosstool script automatically 

builds the GNU cross-compiler toolset in a couple of hours.  

 The results of Crosstool include executables programs for the GCC compiler, assembler, 

and linker, as well as the source codes from the GNU toolset. We change the ARM-specific files 

in the GNU assembler source code to port it to PAX. Afterwards, we need to rebuild the GNU 

assembler. Note that we do not need to rebuild the entire cross-compiler since only the assembler 

files are changed. Instead of re-running the time-consuming Crosstool script each time that we 

need to rebuild the assembler, we write a new script that simply rebuilds the assembler in about 

one minute. We write this script by noting that building a GNU assembler will require the 

following standard sequence of codes that build the GNU binary utilities:  

${BINUTILS_DIR}/configure $CANADIAN_BUILD --target=$TARGET --host=$GCC_HOST 
-- prefix=$PREFIX --disable-nls   ${BINUTILS_EXTRA_CONFIG}   
$BINUTILS_SYSROOT_ARG 
 
make $PARALLELMFLAGS all  
 
make install 
 

All of the capitalized parameters above are processor- and system-specific variables that are 

needed to build the binary utilities. The Crosstool script detects and generates the values for 

these parameters during run-time. We dump these values to a file and use them for our own 

script to only build the binary utilities, without running the entire Crosstool script. Now that we 

have built the GNU-ARM toolset and the SimpleScalar ARM simulator for the base platform, we 

are ready to port the GNU-ARM toolset to PAX.  
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B.2.3 Building the Assembler 

GNU Assembler File Structure 

The Crosstool folder contains the GNU Toolset source codes that were used to build the 

cross compiler. The file structure of these source codes is show in Fig B-2. The root directory is 

subdivided into subfolders such as binutils-2.16.1/ and gcc-4.1.0/. The gcc-4.1.0/ folder contains 

the source code for the GNU Compiler version 4.1.0. The binutils-2.16.1/ folder contains the 

source code for the GNU Binary Utility version 2.16.1. The Binary Utility consist of the 

assembler, linker, files that take care of the object file formats, configuration files, and more. The 

GNU assembler related files are contained in the gas/ folder of binutils-2.16.1/. Further, all the 

GAS target machine configuration files, which is used to port a target machine to the GNU 

assembler, is contained within the config/ folder under gas/. To port the GNU-ARM assembler to 

PAX, we create another copy of the existing tc-arm.c file, which is the ARM configuration files 

for GAS; change the file name to tc-pax.c; and edit this file so that it fits the PAX design exactly.   

tc-pax.c
target

configuration file
for PAX processor

other assembler-
specific files

GNU Toolset Source Code Root Directory:
~\crosstool-0.42\build\arm-unknown-linux-gnu\gcc-4.1.0-glibc-2.3.2

binutils-2.16.1/
folder containing source

code for GNU binary
utility

gcc-4.1.0/
folder containing source
code for GCC compiler

other GNU source
codes

gas/
folder containing
GNU assembler

source code

ld/
folder contaning

GNU linker source
code

other binary utility
files

config/
folder containing
target machine

configuration files

tc-arm.c
target

configuration file
for ARM processor

 
Fig B-2 GNU Toolset File Structure 
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GNU Assembler Code Structure 

Fig B-3 shows the code structure for the GNU assembler. Although the code is specific to 

PAX, the code structure can be generalized to any processor ISA. Further, we wish to explain the 

code structure of the GNU assembler with an emphasis on how to port a processor ISA. This is 

not a complete discussion of the GAS code structure.  

The main GAS program is contained in as.c. This program contains a main function, 

which calls the perform_an_assembly_pass function to carry out the actually assembling process. 

The assembling process can be roughly subdivided into two parts. One part deals with reading in 

an assembler file, figuring out the object file format of the target processor, and setting up and 

configuring the output object file accordingly, such as initializing the various object file sections 

and taking care of symbol relocation. The other part involves actually translating a line of 

assembly code such as “addi r8, r8, #0” to a sequence of binary code “0x10210000”. Since PAX 

and ARM share the same object file format, we do not concern ourselves with the first part of the 

assembling process.  

The perform_an_assembly_pass function calls the md_begin function in tc-pax.c to store 

the PAX instruction names and the registers into symbol hash tables. The purpose of this will be 

clear soon. Afterwards, the read_a_source_file function in read.c is called to read in an assembler 

file and assemble it. Besides configuring the object file format, the read_a_source_file function 

parses individual lines of the assembler file and sends it as input to the md_assemble function in 

tc-pax.c, which converts the line of assembler code into binary code. This process is best 

illustrated with an example. Assume that the md_assemble function takes as input the following 

PAX instruction: 

 addi r2, r3, #0x08 



 Appendix B: Implementation of PAX Processor 

61 
 

 

This instruction tells the processor to add 8 to the content of r3 and send the result to r2. At this 

point, the instruction name and register hash table created by the md_begin function becomes 

useful. The instruction name hash table stores all the PAX instructions with their corresponding 

binutils-2.16.1/gas/as.c:

main( )

- main function for gas
- parse arg, init for section, relocation etc.

binutils-2.16.1/gas/as.c:

perform_an_assembly_pass( )

- main function for assembly
- initialize and set segment: .txt, .data, .bss etc.

binutils-2.16.1/gas/read.c:

read_a_source_file( )

- read and process an assembly file

binutils-2.16.1/gas/include/tc-pax.c:

md_assemble( )

- assemble an individual line of instruction

binutils-2.16.1/gas/include/tc-pax.c: md_assemble( )

opcode = (const struct asm_opcode *)
                hash_find (arm_ops_hsh, str);
inst.instruction = opcode->value

- assemble opcode and subopcodes for the instruction
- note that the function names in tc-pax.c are still
  labeled as 'arm'. This does not affect the function of
  the PAX configuration file.

binutils-2.16.1/gas/include/tc-pax.c: md_assemble( )

opcode->parms (p);

- assemble registers & other operands for the
  instruction. Different types of opcodes require
  different functions to do this assembling.

binutils-2.16.1/gas/include/tc-arm.c:

md_begin ();

- build hash tables for opcode, regs, cpu type etc

static CONST struct asm_opcode insns[] =
{
  /* PAX Instructions */
{"store.4", 0x0d000000, 0, PAX_1, do_PAX_Type_2},
{"addw",    0x1c000000, 0, PAX_1, do_PAX_Type_3a},
}

binutils-2.16.1/gas/include/tc-pax.c:
do_parms( )

i.g. for addw, do_PAX_Type_3a

- assemble registers, subops, & operands for the
  instruction

 
Fig B-3 GNU GAS Code Structure for PAX Processor 
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opcodes, subopcodes, instruction types, and more. The md_assemble function searches the 

“addi” instruction from the hash table to assemble the opcode and subopcode for “addi”.  Then, 

given that the “addi” instruction has the instruction type 2, the do_PAX_Type_2 function is 

called to assemble the operands. The assembling of the register operands r2 and r3 requires the 

use of the register hash table.  

As discussed above, the only part of the GAS source code that we need to change is the 

part that involves translating individual lines of assembly code into binary code. After studying 

the code structure of GAS, it seems like we only need change tc-arm.c to tc-pax.c by replacing 

the ARM-specific configurations with PAX-specific configurations 

 

B.2.4 Building the Simulator 

SimpleScalar File Structure 

The root directory of the SimpleScalar simulator is ~/simplesim-pax/5,  as shown in Fig 

B-4. Directly under this root directory, there is a program called main.c, which is the starting 

point for the simulator. There is also a separate program for each of the simulation modules that 

SimpleScalar supports, Table B-3. 

 
 

Further, there is a sub-directory for each target processor that SimpleScalar supports. 

These sub-directories contain a standard set of files that should be changed or written to port the 

target to SimpleScalar. For example, the target-arm/ directory contain the ARM-specific 

configuration files, and the target-pax/ directory contain the PAX-specific configuration files. 

The file pax.h is the header file for the target processor that defines the data structure of the 

                                                 
5 I added the “pax” in the directory name to signify that this is the version of SimpleScalar that is ported to PAX.  
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processor, including the register structure, the functional units, and different instruction bit fields. 

These definitions in the header file are used by pax.c and pax.def, as well as the simulator files. 

The file pax.def contains a list of macro functions and definitions that define the PAX instruction 

set, the instruction format, and the implementation functions (decoder). The file pax.c contains a 

set of utility functions that is related to the instructions, registers and disassembler. In addition, 

the files loader.c loads an executable program into the simulator memory, and the files elf.c and 

symbol.c take care of the object file format of the target processor.   

In order to port PAX to SimpleScalar, we need to use the target-arm/ directory as a 

starting point for the target-pax/ directory. We modify the arm.h, arm.c, and arm.def files by 

adding in PAX-specific code to create the pax.h, pax.c, and pax.def files. Since PAX and ARM 

share the same object file format, we do not need to edit the loader.c, elf.c, and symbol.c files. 

Finally, we make some minor changes in the simulation module files.  
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SimpleScalar Code Structure 

Fig B-5 shows the code structure for the main.c file, which is the starting point of the 

simulator. First, main.c initializes register statistics, which include a set of variables that record 

run-time data about the register. Also, each simulation module may require various command 

line options, and so the main.c file initializes these options. Further, a decode table, which is 

used in decoding input instructions, is generated using the pax.c, pax.h, and pax.def files. Next, a 

particular simulation module is initialized. This involves creating the register memory of the 

SimpleScalar Root Directory:
~/simplesim-pax/

Target-ARM Directory

Target-PAX Directory

main.c:
define main( ) rountine for SimpleScalar
simulator. The code struction is target
independent. (I have added PAX code for
debugging purpose.)

pax.h:
define PAX register structure; define PAX
instruction bit fields (opcode, immediate,
subop, and register field) ; define PAX
SimpleScalar global variables and functions

pax.def:
define pax instruction set for all opcodes and
subops; define PAX instruction format and
instruction implementation function (decoder)

pax.c:
build opcode table for all PAX opcode and
subop instruction set; define register operation
functions; define instruction processing
functions; disassembler processing functions

loader.c, elf.h, symbol.c:
define PAX linker and loader function for
SimpleScalar simulator; same as ARM, which
uses the ELF format

arm.def,arm.h,arm.c,loader.c,elf.c,symbol.c:
ARM specific code, same structure as PAX.

sim-safe.c, sim-profile.c, sim-cash.c, sim-
fast.c, sim-outorder.c, etc:
define sim-main( ) routine for each simulation
mode. Need to change some code from ARM
to PAX, and add debug code for PAX.

makefile:
build multiple SimpleScalar simulation modes.
Need to modify to suit PAX.

 
Fig B-4  SimpleScalar File Structure for Porting PAX 
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processor. Note that the main.c file is compiled separately for each simulation module. Then, the 

executable program is loaded into memory. Finally, main.c initializes more simulation statistics, 

sets the simulator start time, runs the simulation by calling a simulation module, and prints out 

the log data.   

The simulation modules differ in the way they analyze the run-time information, but the 

code structure is similar. We examine the code structure for the functional simulator sim-safe.c, 

as shown in Fig B-6. Many of the initialization functions called in main.c actually belong in the 

simulation module file (main.c calls functions in these files). After initializations are complete, 

sim-safe.c enters a while loop that fetches an instruction from memory, decodes it, updates the 

simulator and register statistics, and fetches another instruction. Other more complicated 

simulation modules analyze the data in more detail, but this while loop is always needed.  

The main.c and sim-safe.c code structure presents a good overview of how the 

SimpleScalar simulator is organized. As we have seen, all the processor-specific information 

resides in pax.c, pax.h, and pax.def.  

 

B.2.5 Extending the Toolset 

In the previous Sections, we have demonstrated how to build a GNU assembler, GNU 

linker, and SimpleScalar simulator for a new processor ISA. Although we ported the PAX 

processor by using the ARM processor as the starting point, the methodology can be generalized 

to build a toolset for other processors. Using the steps described above, we can further extend 

upon the existing toolset to add new instructions, define new register memory, and create new 

functional units and instruction flags.  
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 initialize architected state
sim_load_prog ();

Initialize simulator options:
sim_reg_options(); // set sim options. from sim-safe.c
opt_process_options(); // parse simulator options
sim_check_options(); // check valid options

start
main ( )

Initialize registers:
to set reg value, flag, output to file etc.
opt_reg_flag (); opt_reg_int (); opt_reg_string (), etc

simplesim-pax / main.c

end
main()

Initialize simulator I/O options:
fflush(stderr);
if (!freopen(sim_simout, "w", stderr))

initialize the instruction decoder */
md_init_decoder();

initialize all simulation modules
sim_init();

Initialize all simulator stats
sim_sdb = stat_new();
sim_reg_stats(sim_sdb);

set simulator start time
sim_start_time = time((time_t *)NULL);

Run simulator
running = TRUE;
sim_main();

End simulator and log data
exit_now(0);  // finish simulator and print out results

SimpleScalar
simulation mode:
~/simplesim-pax/

sim-safe.c,
sim-fast.c,
sim-cash.c,

sim-profile.c,
sim-outorder.c,

etc

~/simplesim-pax/
target-pax/

pax.c

 
Fig B-5 SimpleScalar Main( ) Code Structure for PAX Porting 
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simplesim-pax / sim-safe.c
(or other sim-[model].c)

innitialize the sim-safe model :
sim_reg_options( ), sim_check_options( ), sim_init( ),
sim_load_prog ( ), sim_reg_stats( );

start
sim-main ( )

initialize default next PC
regs.regs_NPC = regs.regs_PC + sizeof(md_inst_t);

synchronize register files...
regs.regs_R[MD_REG_PC] = regs.regs_PC;

initialize DLite debugger
dlite_main();

loop while(true)

loop end

end
sim-main()

fetch a new instruction and get op code
MD_FETCH_INST(inst, mem, regs.regs_PC);
MD_SET_OPCODE(op, inst); // from am.h or pax.h

execute the instruction
      switch (op)
{
   #define DEFINST(OP, MSK, NAME...) case OP:  \
                SYMCAT(OP, IMPL); break;
   #include "machine.def"
}

log data and output to file
     myfprintf(); md_print_insn();dlite_main();
go to next instruction for PC and NPC, if any
      regs.regs_PC = regs.regs_NPC;
      regs.regs_NPC += sizeof(md_inst_t);

simplesim-pax/
main.c

simplesim-pax/
dlite.c

simplesim-pax/
target-pax/

pax.def
pax.c
pax.h

simplesim-pax/
dlite.c

 
Fig B-6 SimpleScalar Sim-Safe Code Structure for Porting PAX 



 Appendix B: Implementation of PAX Processor 

68 
 

 Moreover, many processors come in different word-sizes, and so, an interesting task is to 

extend the existing toolset to different word-sizes. For example, the current toolset supports 

PAX-32. Since this processor is designed as word-size scalable: including PAX-32, PAX-64, and 

PAX-128, we would eventually like to have toolsets for PAX-64 and PAX-128. The major work 

necessary to achieve this is to change the data structure definitions from the existing word_t (32-

bit integer) to 64-bit or 128-bit integers. Further, all instructions that manipulate these data 

structures—such as the ALU instructions—must be changed accordingly. 

 Finally, as we have shown, the SimpleScalar simulator makes it very convenient to add 

new simulation modules. To thoroughly analyze PAX, we will need to write new modules in the 

future.  
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B.3 Design of VHDL for the PTLU functional unit for the PAX Processor 

Fig B-7 shows the architectural block diagram for a 5-stage pipelined PAX processor. An 

important feature of PAX is the Parallel Table Look-Up (PTLU) module, which was designed to 

accelerate the table lookups used in symmetric key ciphers. The PTLU module is scalable for 

PAX-32, -64, and -128. It consists of w/8 small blocks of memory that can be read in parallel, 

where w is the wordsize of the processor. A PTLU instruction reads two source registers and 

writes one result register.  

 
Fig B-7 PAX 5-Stage Pipeline Architectural Block Diagram 
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The benefits of the PTLU can be seen by running AES-128 on PAX. Using a 32-bit ARM 

processor, one frame of AES-128 encryption takes over 800 cycles. PAX can run a frame of 

AES-128 using much fewer clock cycles as shown in the table B-4.  

 

The more memory that the PTLU uses, the fewer cycles it takes to complete one frame of 

AES-128. However, there is a tradeoff between performance and memory size. As an example, 

the PTLU module for PAX-64 is shown in Fig B-8..  

Processor Type Execution Cycles for 
1 Frame of AES-128 

Encryption 

Memory Increase 

ARM-32 864 0 
PAX-32 248 4 Kbytes 
PAX-64 104 8 Kbytes 
PAX-128 21 16 Kbytes 

 
Table B-4  AES-128 Performance Comparison for ARM and PAX Processor 
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Mapping AES-128 to PAX-32, PAX-64 and PAX-128 

I also performed the detailed mapping of the AES algorithm to PAX-32, PAX-64 and 

PAX-128.  This is non-trivial, since PAX achieves its fast execution time for AES by performing 

byte permutations of the indices into the parallel tables in the PTLU module, before using the 

PTLU to do a parallel table lookup.  The AES tables are different for AES encoding versus AES 

decoding.  Furthermore, the AES table lookup algorithms are different for PAX-32, PAX-64 and 

PAX-128, since they have 4, 8 and 16 parallel PTLU tables, respectively, each 32-bits wide.  

B7 B6 B5 B4 B3 B2 B1 B0
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Fig B-8 PAX-64 PTLU Block 
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Performing the mapping required detailed understanding of how the AES cipher works, so as to 

combine 3 steps per AES round (Substitute Byte, Mix Columns, and Add Round Key) into a 

table lookup operation with the PTLU read instruction.  Then the cyclical Shift Rows step of 

AES has to be translated into byte permutation operations over the registers, for the next round.  

This is quite difficult for the different sized registers for PAX-32 and PAX-64.  The 6 sets of 

PAX code for AES encrypt and decrypt for PAX-32, PAX-64 and PAX-128 are available at the 

PAX web-pages (palms.ee.princeton.edu/PAX). Also, Fig B-9 compares how one frame of AES-

128 is implemented using its standard operations and how it is done through PAX.     

        9
   Rounds

          ptr.x4

Plaintext

Cipertext

      Final
     RoundRound

Key 10

1-SubBytes

2-ShiftRows

XOR

     Initial
    RoundXOR

Cipher
Key

        9
   Rounds

1-SubBytes

2-ShiftRows

3-MixColumns

XOR Round
Key 1-9

Plaintext

Cipertext

      Final
     Round

     Initial
    RoundXOR

Cipher
Key

XOR Round
Key 1- 9

byte_perm

byte_perm

ptlu table lookup

Standard Implementation
of AES-128 Encryption

PAX PTLU Implementation
of AES-128 Encryption

         ptr.x4.2

XOR Round
Key 10

ptlu table lookup

 
Fig B-9  Mapping AES-128 to PAX PTLU Operations 
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B.4 Implementation of PAX FPGA 

After designing the simulator, assembler, linker, and VHDL code for the PAX processor, 

we implement PAX on a Xilinx Virtex-II Pro FPGA. We note that implementing a full processor 

on an FPGA is not a trivial task.  FPGA in student projects typically implements only a 

functional unit, not a pipelined processor like PAX.  The first milestone is to verify that the PAX 

VHDL code is synthesizable on the FPGA. To achieve this, we initialize the PAX processor with 

an AES-128 encryption program onto the instruction memory and a set of input data onto the 

Xilinx Virtex-II Pro FPGA Development Board

FPGA Chip

PAX
Processor

(Slave)

PowerPC
Processor
(Master)

UART
Controller

USB/JTAG
Controller

SDRAM
Controller

BRAM

On-chip Peripheral Bus (OPB)

SDRAM USB Port UART Port
(RS-232)

 
Fig B-10 PAX FPGA High-level Block diagram 
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data memory. The second milestone is to verify the functionality of PAX by loading and running 

different programs that is generated by PAX assembler.  Fig B-10 shows the high-level hardware 

architecture of the PAX FPGA. The PowerPC processor is used to read the information on the 

data memory and send it to the HyperTerminal screen of an attached computer.  We use the 

PowerPC to provide I/O functions and connections to external memory.  This saves us from 

having to first define all these I/O functions for PAX before we can give it input or debug it by 

seeing information on the display.   

 

B.4.1 Hardware Design 

 The detailed hardware architecture for connecting the PAX processor to the PowerPC on 

the FPGA is shown in Fig B-8. We use PowerPC as peripheral controller for PAX processor and 

user PC. We use the Xilinx provided BUS and control peripherals IP for PAX. We need to write 

VHDL to interface the Xilinx peripheral IP to PAX that connects PAX to PowerPC, and then we 

can use PowerPC to write to control PAX operation. The architecture is organized into three 

major components – the PowerPC and its peripherals, the custom functionality interface, and the 

user peripheral interface. 

 The PowerPC component, shown on the lower portion of Fig B-8, is a processor that is 

integrated into the FPGA chip. There are actually two PowerPC processors on the Virtex-II Pro 

board, but we only need to use one of them. The PowerPC is connected to a set of peripherals 

through the OPB bus. One peripheral is the multi-port memory control, which we use to connect 

to a 512 MB SDRAM. It is also connected to an Ethernet port, which we do not use for the 

moment. Further, PowerPC is connected to a USB port, which we use to upload the bitstream to 

synthesize the FPGA. Finally, it is also connected to a UART port, which we use to send results 



 Appendix B: Implementation of PAX Processor 

75 
 

and debug information to the HyperTerminal screen. Currently, we store all of the PowerPC 

software on the 32 MB BRAM. This is enough for the moment, but if we run out of space, we 

can easily expand the software on the 512 MB SDRAM.  

  The user peripheral interface is shown in the upper right-hand side of Fig B-11. The 

component is coded in the user_logic.vhd file. This component consists of the custom IP, and 

this is the file where we instantiate the data memory and connect it to PowerPC. The 
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Fig B-11 . FPGA Architecture on Xilinx Virtex-II Pro Development Board 
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user_logic.vhd file was initially generated by the Xilinx software with a simple, exemplary 

custom IP that consists of 16 input and 16 output registers. These 16 pairs of registers are 

connected to PAX instruction memory, PAX data memory and other PAX processor ports for 

debugging purposes. These 16 pairs of registers are then connected to the PowerPC processor 

through the user peripheral interface (discussed below). Then, PowerPC can be used to read and 

write to these registers by simply reading and writing to the specific memory addresses of those 

registers. We define the communication link between PAX and PowerPC through the following 

register mapping as show in Table B-5: 

Register Map to PAX port 
Register0_in User sends command to PAX processor. There are 32 bits to define different 

commands such as:  
• Start_PAX 
• Stop_PAX 
• Get_Current_PC 
• Get_Current_Instruction 
• Read_Data_Mem 
• Write_Data_Mem 
• Read_Instruction_Mem 
• Write_Instruction_Mem 

Register0_out PAX reports status to user. It also has 32 bits to define a set of PAX status 
 

Register1_in 
Register1_out 

Map to PAX instruction memory address port for read and write. 

Register2_in 
Register2_out 

Map to PAX instruction memory data port for write. 
Map to PAX instruction memory data port for read. 

Register3_in 
Register3_out 

Map to PAX data memory address port for read and write. 

Register4_in 
Register4_out 
To 
Register7_in 
Register7_out 
 

Map to PAX data memory address port for write. 
Map to PAX data memory address port for read. 
 
    PAX32 needs one 32-bit register (register4) 
    PAX64 needs two 32-bit registers(register4 and register5) 
    PAX128 needs four 32-bit registers (regsiter4 – register7) 

Register8_out Map to PC port to read current instruction address 
Register9-out Read out current PAX VHDL code version 
Others Reserved for developer for debugging purpose.  

Table B-5 Register mapping table for PAX FPGA 
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The connections of the PAX ports described above will connect up the PAX processor to 

the PowerPC processor such that PowerPC would be able to read from and write to the PAX 

components for controlling the PAX operation.  

 Although the registers are created in the user_logic file, the actually memory mapping of 

these registers reside within the user peripheral interface component, shown in the upper left-

hand side of Fig B-8. This component is coded in the pax_ip.vhd code. This component connects 

the custom IP in the user_logic.vhd file to the PowerPC processor. Although there are many 

ports in this component, two ports in particular are important to us, as shown in the Fig  B-8. One 

port carries a 32-bit data signal from the PowerPC to the custom IP, while the other port carries a 

32-bit data signal from the custom IP to the PowerPC. These signals are connected to the correct 

registers based on the mapping defined in the pax_ip.vhd file.  

 

 

B.4.2 Software Design 

 In above FPGA design, we connect the PAX processor to PowerPC through a set of 

“peripheral interfaces”. We also map a set of registers to the PAX processor, through which 

PowerPC can control PAX. Now we look at C programs that are required to allow PowerPC to 

communicate with PAX through the register set. 

 Xilinx FPGA development kit provides an interface file, which I call 

pax128_ip_selftext.c file.  This is the top level C program that instructs how PowerPC should 

communicate with the data memory component. The functions I developed for PAX are listed 

bellow: 



 Appendix B: Implementation of PAX Processor 

78 
 

void InitCmd() 

void SetCmd(Xuint32 flag); 

void ClearCmd(Xuint32 flag); 

void GetPaxVhdlVersion(); 

void GetPAXStatus(); 

void StartPAX(); 

void StopPAX(); 

void WritePaxInstMem(Xuint32 addr, Xuint32 d, Xuint32 disp); 

void ReadPaxInstMem(Xuint32 addr); 

void WritePaxDataMem(Xuint32 addr, Xuint32 d1, Xuint32 disp); 

void ReadPaxDataMem(Xuint32 addr); 

void GetCurrentPaxPC(); 

void GetCurrentPaxInst(); 

void Delay(Xuint32 num); 

void LoadPaxProg(); 

void DetectPaxProgramDone(Xuint32 timeout); 

void ClearPaxDataMemory(); 

These set of utility functions provide a way for a user to load a PAX program, run a PAX 

program, and debug PAX for further improvement. A picture of the FPGA implementation is 

shown in Fig B-12. The PAX FPGA development system is shown in Fig B-13. The FPGA test 

result on Hyper Terminal is shown in Fig B-14. 
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Fig B-12 PAX FPGA Board 
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Fig B-13 PAX FPGA Development System 

 
Fig B-14  Hyper Terminal Screen for PAX FPGA Test 


