
1

A Non-Copyable Disk (NCdisk)
Concept, Architecture, Security Protocol,

and Business Analysis

Michael S. Wang
Advisor: Professor Ruby B. Lee

May 13, 2008

Honor Code

2

This paper represents my own work in accordance with

University regulations

Michael S. Wang

Submitted in partial fulfillment
of the requirements for the degree of
Bachelor of Science in Engineering

Department of Electrical Engineering
Princeton University

Acknowledgements

i

First of all, I would like to thank Professor Ruby Lee for all of the guidance, opportunity,

and help that she has given me throughout the years. Looking back at my Princeton career, I

have to say that the most valuable experience that I got out of it was from the research that I have

done with her. She has always challenged me and given me the opportunity to get involved with

some of her most exciting work. Although the work was quite challenging at times, she was

always there to provide guidance.

I would also like to thank Jeff Dwoskin, Reouven Elbaz, David Champagne, Yedidya

Hilewitz, Yu-Yuan Chen, James Donald, Eric Keller, and Neil Vachharajani. These graduate

students have not only mentored me throughout the years, but have now become some of my

closest friends. Through them, I have learned what it takes to be a great mentor and I hope to

behave the same way as I go off to graduate school.

Further, I would like to thank all of my friends. During the past four years, I have

certainly lived through the entire spectrum of emotions from joy and excitement to anxiety and

frustration. They were the stabilizing force in my life. They helped me to stay afloat during

rough times and also cheered along with me when I was happy.

Last but certainly not least, I like to thank the two most important people in my life. I like

to thank my dad, Jerry, who is my most important role model. When people ask me who I look

up to the most or who I would most like to become, my answer has always been “my dad”. I

would also like to thank my mom, Susan, who has sacrificed so much in order to provide me

with the opportunities that I have today.

Abstract

ii

Piracy of copyrighted digital contents, such as movies and music is rampant in cyberspace. A

piece of digital material may be repeatedly copied and proliferated throughout the Internet with

ease. We examined both software and hardware vulnerabilities in existing digital copy-protection

methods. As a result, we propose a non-copyable disk (NCdisk) that makes it significantly harder

for digital contents to be copied. Any digital content written onto the NCdisk can only be read

through a predefined set of outputs of the NCdisk, and the original plaintext digital form may

never be read out of the NCdisk. We add a minimal set of components based on the Secret-

Protection (SP) architecture to the existing disk’s SoC chipset to attribute the disk with the non-

copyable property. We enhance the original SP architecture with a new instruction and a defined

set of trusted software APIs for the NCdisk application. We further present the security protocol

to be used along with the NCdisk to provide a copy-protected digital movie download scenario.

Finally, we analyze the prospects of marketing the NCdisk for the online movie download

application by devising two different business models and examining their competitiveness and

financial projections.

In the Appendices, we also describe an alternate, more complex ASIC-based architecture for

the NCdisk that we first proposed, and the implementation of the PAX processor that performs

fast cryptographic processing and could be used as the embedded processor in an NCdisk.

Table of Contents

iii

Acknowledgements .. i

Abstract .. iii

Chapter 1: Introduction ...1

1.1 Problem and Motivation ..1

1.2 Threat Model and Assumptions ...2

Chapter 2: NCdisk Concept ...4

Chapter 3: NCdisk Design Based on SP Architecture..7

3.1 NCdisk SoC Architecture ...7

3.2 Use and Enhancement of SP Architecture for NCdisk ...10

3.3 Security Protocol ..14

Chapter 4: Business Models and Analysis ..22

4.1 Application of the NCdisk ..22

4.2 The Business Models ..22

4.3 The Competition ...25

4.4 The Financial Projections ...25

4.5 Next Step for Business ...28

Chapter 5: Conclusions and Future Work ..30

References...31

Table of Contents

iv

Appendix A: Alternative Solution for NCdisk ..34

 ASIC-based NCdisk Architecture ...34

 A.1 Security Assumptions and Definitions ...35

 A.2 Storing and Protecting Keys ..38

 A.3 Controlled Predefined Output...40

 A.4 Comparison for SP-based and ASIC-based NCdisk Architecture...........................44

Appendix B: Implementation of PAX Processor ..46

B.1 Encoding of PAX and PLX Processors ..46

B.2 Development of PAX Assembler, Linker and Simulator ..53

B.3 Design of VHDL for the PTLU functional unit for the PAX Processor.................69

B.4 Implementation of PAX FPGA...73

Chapter 1
Introduction

1

1.1 Problem and Motivation

Today, an immense amount of information exists in digital form. A large percentage of it is

copyrighted contents that should only be available to authorized users. In such cases, the user is

usually permitted to read (or play) the contents but should not be allowed to copy and distribute

the contents. Nevertheless, unauthorized copying and distribution of digital contents occur

frequently and is a major problem for many content providers.

This content-piracy problem is currently a serious concern for the movie and music industry.

Due to the increasing Internet bandwidth and the emergence of more powerful portable player

devices, the demand for directly downloading media contents from the Internet to an end-user’s

player device is on the rise. A typical copy-protection method [1] used to prevent the illegal

copying of these media contents is as follows: a content provider installs his own software onto

the user’s player device, such as a PC, an iPod, etc. Then, the provider sends encrypted contents

to the user’s device. In order to obtain the keys used to decrypt and read the encrypted contents,

the user must authenticate with the content provider or with a third party licensing clearinghouse.

Next, the keys are sent to and hidden on the user’s device. Only the content provider’s installed

software on that device can find and use the keys to decrypt the encrypted contents. Hence, this

copy-protection method restricts the copying of contents by sending only encrypted contents

over public networks, hiding keys on the user’s devices, and allowing only the provider’s special

software to find and use these keys.

Chapter 1: Introduction

2

A major weakness with the existing copy-protection method described above is that the

encrypted contents are sent to various kinds of player devices that do not have secure processing

architectures to hide the decryption keys. In the underlying processor architectures, machine

instructions, registers, memories and buses are open resources that can be controlled or accessed

by the operating system (OS), application software and also by malicious software. Furthermore,

since both the application software and the OS can have bugs and software vulnerabilities,

hackers can use these software weaknesses to find the hidden decryption keys.

We propose a non-copyable disk (NCdisk), which is a storage device that automatically

encrypts all data written into it and does not allow the plaintext form of the data to leave it except

through controlled display outputs. We propose a minimal set of changes to an existing disk

controller System-on-Chip (SoC) to attribute the disk with the non-copyable property. Our

proposal is based on the Secret-Protection (SP) secure processor architecture [2][3][4], which

provides a secure environment to store critical secrets and allows only a trusted software module

to access these critical secrets. Further, our proposal enhances the original SP architecture with a

new instruction to simplify secure embedded storage. We also define a set of trusted software

APIs for the NCdisk application.

1.2 Threat Model and Assumptions

We assume that the content provider can write a trusted software module that will be allowed

to use and access critical secrets like envryption keys, but does not leak these secrets out.

Further, we assume that any other software is un-trusted and should not be allowed to access

critical secrets. This includes the Operating System and other applications of the personal

computer or handheld computing or entertainment device. The attacker is able to mount software

Chapter 1: Introduction

3

attacks. He can monitor all network transactions. He can also mount some hardware attacks, such

as probing external memories and buses. We assume that physically probing inside a chip, such

as a System-on-Chip (SOC) is more difficult without destroying functionality, and hence this is

not in our threat model. We also do not consider side-channel attacks on a SoC, or denial of

service attacks.

Chapter 2

NCdisk Concept

4

Figure 2-1 shows a flowchart of the NCdisk concept. The NCdisk is a data storage device, in

which any digital content written into the device is automatically encrypted using a key that is

generated by the NCisk that never leaves the NCdisk. All data stored on the NCdisk are in such

an encrypted form, and the stored data can only be read through a set of predefined outputs, such

that the digital plaintext form of the data never leaves the NCdisk.

Both plaintext data and encrypted data may be written onto the NCdisk. Each encrypted data

is encrypted using a secret key, called the Content-Provider Media Key (CMK), which is known

only by the content provider and the NCdisk. The CMK is never actually stored anywhere but is

NCdisk

Input Output
Plain Text (m)

Encrypted
Text ECMK(m)

Integrated
Display

(m) Analog Display
A(m)

Trusted Digital
Display EPMK(D)

SP enhanced Disk Controller SoC

SP

SP

EDMK(m)

Fig 2-1. NCdisk Concept

Chapter 2: NCdisk Concept

5

instead generated using a shared key between the content provider and the NCdisk. We examine

the detailed key management protocol in Chapter 3. Both the content provider and the NCdisk

must have a secure location to generate and use the CMK so that it is not revealed to anyone else.

We assume that the content provider has such a secure location, and we show in Chapter 3 how

the NCdisk achieves this. If the CMK is kept secret, then the plaintext form of the encrypted data

will not be leaked out during the network communications phase, where the encrypted version of

the movie is transferred from the content provider across the public networks and input into the

NCdisk.

Either plaintext data or CMK-encrypted data can be input into the NCdisk. Plaintext data

input is first encrypted using the Device Media Key (DMK). For CMK-encrypted data input, the

NCdisk first decrypts the data using the CMK and then re-encrypts the data using the DMK. The

DMK is generated within the NCdisk and it never leaves the disk. We discuss in Chapter 3 how

to keep the DMK secret from everyone, including the user of the disk. Note also that each input

data to the NCdisk is encrypted using a different DMK, as described in detail in Chapter 3.

Encrypting all the data stored on the NCdisk using a DMK protects the storage phase of the data,

by ensuring that the plaintext version of the digital data never resides on the disk.

Any data stored on the NCdisk can only be read out of the disk through a pre-defined set of

output channels. An encrypted digital data can be decrypted and converted to an analog format,

which can then be sent out of the NCdisk. Alternatively, an encrypted digital data can be

decrypted using the DMK and re-encrypted using a Player Media Key (PMK), which is only

known by a trusted digital display and the NCdisk. Both the trusted digital display and the

NCdisk must have a secure location to generate and use the PMK so that it is not revealed to

anyone else. The PMK-encrypted data is sent out of the NCdisk. Third, if the NCdisk has an

Chapter 2: NCdisk Concept

6

integrated display, such as a built-in LCD screen like in handheld entertainment devices (e.g., the

iPod), then the NCdisk may decrypt the stored data and send the digital streaming data to the

integrated display. It is assumed that it is hard for a casual attacker to siphon off information on

the internal link connecting the NCdisk and its integrated display. Note that this integrated

display is not foolproof against more dedicated attackers. Nevertheless, this integrated display

raises the bar against possible attacks to siphon off information. In all three pre-defined output

channels, the high-fidelity, digital plaintext version of the data never leaves the NCdisk in the

output phase of the NCdisk. To summarize, the NCdisk ensures that no one, not even the

legitimate user of the NCdisk, can obtain a copy of the digital plaintext version of the data stored

on the disk.

The NCdisk addresses some of the weaknesses of existing copy-protection methods. Instead

of sending copyrighted movie or music contents to insecure PCs or portable media players, a

content provider can instead send these contents to a user’s NCdisk. In a way, the NCdisk

functions like a book in that only those people who have physical possession of the NCdisk can

view the contents stored on it. Just as it would be very inconvenient for a person to copy a bound

book, a user would have a very difficult time trying to copy the original digital plaintext data

stored on the NCdisk. However, unlike a book, the NCdisk provides the convenience of directly

downloading and viewing copyrighted digital contents without the need to physically travel to a

store. Also, with the growing storage densities, an NCdisk can store many items of digital

multimedia content.

Chapter 3

 NCdisk Design Based
on the SP Architecture

7

 In this chapter, we show how the NCdisk design can be achieved using an adaptation of

the Secret-Protection (SP) architecture targeted for general-purpose microprocessors [2,3]. We

simplify the SP architecture for use in an embedded system like a commodity disk controller, but

we also expand upon its reduced-mode version proposed for sensor-nodes in [4] by providing a

more flexible secure scratchpad memory. We define new SP registers and a new SP instruction

for this. The work reported in this chapter has been published in our conference paper [5]. This

chapter takes material from, and expands upon, material from [5].

3.1 NCdisk SoC Architecture

The NCdisk concept ultimately boils down to achieving two security goals. The first goal is

to enable the NCdisk to be able to store secret keys and ensure that these keys never leak out of

the NCdisk. The second goal is to fully predefine how data can be read out of the NCdisk such

that the original digital plaintext data is never leaked out. We do not achieve these two goals by

redesigning a completely new disk architecture from scratch. Instead, we only need to be

concerned with the disk controller components (shown shaded in yellow in Figure 3-1), which

control how data is written in or read out of a disk. We achieve these two goals by implementing

a SoC consisting of existing disk controller components, plus a minimal set of additions. This

Chapter 3: NCdisk Design Based on the SP Architecture

8

new SoC can then be connected to the rest of the existing disk components to turn an existing

disk [6] into an NCdisk. Figure 3-2 shows the new SOC with enhancements described below.

The existing disk controller components in the SoC include a disk controller processor, a

read/write buffer control, and some RAM and ROM memory. The additions are divided into two

types. The first type of additions comes from the Secret-Protection (SP) architecture[2][3][4],

which provides a secure environment for a set of trusted software modules (TSM) to access

critical secrets, while preventing these secrets from leaking out of the SoC. We enhance the

original SP architecture with a new instruction. SP enhancements are shown in green in Figure

3.2. The SP additions include new SP registers and hardware support for new SP instructions.

Also, portions of the RAM and ROM are dedicated for SP software. As we examine below, the

processor used in the SoC will perform a significant amount of cryptographic functions.

 PCBHead Disk Assembly

Preamp Read/Write
Channel

Disk Controller
Processor

Buffer Memory
(DRAM)

Buffer Controller,
Sequencer, ECC

Host Interface

Code Memory &
Variable Store

Server Control
& Demodulator

Motion &
Motor Control

Spindle
Motor

Voice
Coil

Motor
SCSI,
ATA,
USB,
etc.

Buffer Controller,
Sequencer, ECC

Fig 3-1. Existing Hard Disk Architecture

Chapter 3: NCdisk Design Based on the SP Architecture

9

Appendix B describes our work on a parallel project involving the PAX processor, which has

special features for accelerating cryptographic processing. The PAX processor seems like a good

fit for the NCdisk SoC.

The second type of additions is the output interface. There are three different output

interfaces, which encompass the predefined set of outputs. These are shown in blue in Figure 3.2.

We also define a set of trusted software APIs for the NCdisk application that restricts the

input and output functions with respect to the NCdisk. Other software can only invoke the

NCdisk through this set of trusted software APIs.

Next, we examine how this SP-based SoC achieves the two goals of the NCdisk.

Data Storage

NCdisk SP SoC Module

Disk Controller
Processor

StartAddr
EndAddr

ROM *

RAM

TSM Flexible
Scratchpad

R/W Buffer
Control

Device Key (128 bits *)

Output to
Integrated

Display

CEM (1 bit)

(32 bits)
(32 bits)

SP Enhancements

Hash Checked Encrypted Existing Componenents

* Write-Once Memory

SP Registers

DTE DispTypeEnab (3 bits)

User & Content
Provider Keys

Extended TSM SW Output to
Analog
Display TSM Software

NCdisk Output Control

Digital I/O
(trusted)

Fig 3-2. SP SoC for NCdisk (not drawn to scale)

Chapter 3: NCdisk Design Based on the SP Architecture

10

3.2 Use and Enhancement of SP Architecture for NCdisk

A. Storing and Protecting Keys

The SP-based SoC stores keys in two places. First, the SoC stores a 128-bit key called the

Device Key in a non-volatile on-chip register. The Device Key is not pre-set by the NCdisk

manufacturer. Instead, each NCdisk generates its own Device Key upon initialization for

deployment. This can be done by the owner of the NCdisk. The protocol for initialization will be

described in a later section. This Device Key never leaves the NCdisk. (Note that this Device

Key is called the Device Master Key, DMK, in the authority-mode SP architecture described in

[3]. This is not to be confused with our DMK which is a different Device Media Key generated

from the Device Key for each movie stored in the NCdisk.)

Second, user and content provider keys can all be stored off-chip, encrypted with the Device

Key. Since the protection of the off-chip keys hinge on the protection of the Device Key, we

focus on efforts to protect this on-chip Device Key.

The Trusted Software Module (TSM) of the SP architecture plays an important role in

protecting the Device Key. No software, except the TSM, can access the Device Key register.

Only the TSM software stored in the on-chip ROM can get a key that is derived from the device

key. Table 3-1 contains SP instructions used for protecting the TSM and its execution. Note that

the SecureMem_Set instruction is a newly defined instruction that I have added to the SP

architecture, which provides more flexible secure scratchpad memory for TSM execution. This

is described further below.

Chapter 3: NCdisk Design Based on the SP Architecture

11

The SP instruction Begin_TSM turns on the Concealed Execution Mode (CEM) status bit

register, while the End_TSM instruction turns off the CEM status bit register. The Begin_TSM

instruction can only be invoked by programs stored on the on-chip TSM ROM. Also, the other

SP instructions, such as End_TSM, SecureMem_Set, and DK_Derive_Key may only be invoked

when the CEM status bit is turned on. This implies that the TSM software stored in ROM can

execute the SP instructions only after the Begin_TSM instruction is invoked first. Further, this

TSM ROM code can call more complicated TSM code that is stored off-chip. This extended

TSM code must be integrity-checked before it is run. Note that since all TSM software must start

off with the Begin_TSM instructions, which can only be invoked from the ROM, no other

external software can call the DK_Derive_Key instruction to derive an encryption key using the

device key. The DK_Derive_Key is the only instruction that can use the Device Key. Even this

instruction cannot read out the value of the Device Key to another register or memory. Instead, it

can only use the Device Key to derive different encryption keys (Device Media Keys, DMKs)

for encrypting different files stored on the NCdisk.

SP Instruction Description
Begin_TSM
(on-chip ROM)

Begins execution of the TSM
(Enables access of TSM scratchpad
memory)

End_TSM
(TSM only)

Ends execution of the TSM
(Disables access of TSM
scratchpad memory)

SecureMem_Set
(TSM only)

Sets the StartAddr and EndAddr
registers to define the TSM

scratchpad memory
DK_Derive_Key
(TSM only)

Derive a new encryption key using
the device key and an input key id

Table 3-1. SP Instructions used for NCdisk

Chapter 3: NCdisk Design Based on the SP Architecture

12

To ensure that no non-TSM software may run during CEM, we disable interrupts during

CEM mode, similar to [4]. This also allows us to simplify the SP architecture by eliminating the

SP registers used to save the hash of the encrypted general registers, and the interrupt return

address register needed to protect the saved TSM state upon interrupts [2,3].

Simply disallowing non-TSM software to access the Device Key register is not enough to

prevent its contents from leaking out of the SoC. The run-time data generated by the TSM

software in ROM must not be leaked out of the SoC because this data may include information

that can reveal the device key. Similar to the sensor-mode SP architecture [4], we propose to

dedicate a portion of RAM as TSM scratchpad memory. This scratchpad memory can only be

accessed when the CEM status bit is on.

Enhancement of SP architecture:

We propose a new SP instruction called SecureMem_Set, which can set the start and end

addresses of the scratchpad memory. The start address and end address are stored in the new

32-bit StartAddr and EndAddr registers (see Figure 3.2). The SecureMem_Set instruction can

change the values of these registers. When the SoC is in the CEM mode, the memory location

between the StartAddr and EndAddr becomes accessible to the TSM software, which is the

only software that can run during the CEM mode. However, when the SoC is not in the CEM

mode, this scratchpad memory will not be accessible by any instructions. This enables a

flexible-sized TSM scratchpad memory, which gives the TSM software programmer the ability

to decide how to allocate the RAM between TSM trusted access and general access (untrusted)

areas.

Chapter 3: NCdisk Design Based on the SP Architecture

13

Further, not allowing any software to directly access the Device Key register and preventing

the run-time data of the TSM software from leaking out of the SoC still does not ensure that the

Device Key will not leak out of the SoC. The TSM software must be carefully written to ensure

that this trusted software does not send any information that can be used to detect bits of this key,

outside of the SoC. Towards this goal, we define a fixed set of API functions (see Table 3-2) to

be implemented by the TSM software for the NCdisk. Any other software or external control can

only use the NCdisk by calling one of these predefined functions. None of these API functions

will output the Device Key, or plaintext digital data, from the SoC.

B. Controlled Predefined Output

The second goal of the NCdisk is to predefine how data can be read out of the NCdisk such

that the original digital plaintext data is never leaked out. This part of the problem is not defined

by the previous SP architecture papers in [2,3,4]. (In [2] and [3], trusted input/output

mechanisms are assumed to exist in the trust model, but not explicitly defined.)

We achieve this goal of controlling the output of the NCdisk by carefully defining its TSM

API functions. There are three API functions for reading data out of the NCdisk. Each API

function reads data out through a different output interface on the SoC. These three API

functions provide the only way for software or external control to read data out of the NCdisk

and none of these API functions will leak out the original digital plaintext data.

API Function Description
TSM_Write Write data into NCdisk

TSM_Read_Analog Output to analog channel
TSM_Read_Trusted Output to trusted display

TSM_Read_Integrated Output to integrated display

Table 3-2. TSM API

Chapter 3: NCdisk Design Based on the SP Architecture

14

The TSM_Read_Analog function decrypts the stored data, converts it into an analog format

through the D/A converter, and sends it out of the NCdisk. This API function performs the

analog conversion immediately after the decryption, and since interrupts are disabled, the

plaintext digital data (e.g., the high fidelity movie) will not leak out.

The TSM_Read_Trusted function decrypts the stored data with the DMK, re-encrypts it with

the PMK, and sends encrypted digital data out of the NCDisk. Each data has its own DMK, and

each trusted display may have its own PMK. The DMKs, CMKs, and PMKs are never stored

anywhere. Instead, they are deleted right after encryption and re-derived upon decryption by a

shared secret key or the Device Key by the trusted software.

Finally, the TSM_Read_Integrated function decrypts the stored data and sends it to an

integrated display through the integrated display interface. Since the display is integrated with

the NCdisk, we assume that it is much harder for an attacker to siphon off the data on the internal

link connecting the integrated display to the NCdisk.

While we have defined these three controlled output interfaces, it is left to future work to

further strengthen their secure implementations. For example, the TSM_Read Integrated

function should be implemented by some integrated mechanism that defeats siphoning of

plaintext data between the NCdisk and the integrated display in a handheld multimedia device

(e.g., an iPod device).

3.3 Security Protocol

Before presenting the NCdisk security protocol, we first examine an online movie download

scenario for using the NCdisk, as shown in Figure 3-3.

Chapter 3: NCdisk Design Based on the SP Architecture

15

At stage 1, a content provider has a database of movies. The content provider sends the

movies in encrypted form to its users through the public Internet (insecure) at stage 2. At stage 3,

the users receive this encrypted movie. In existing DRM systems, users store these encrypted

movies, along with the decryption keys on their PC or portable media players, which typically do

not provide adequate protection for these keys. As a result, these movies may be easily copied

and proliferated through the Internet. However, if the users store these movies onto their

NCdisks, then those movies will not be easily copied in their original high-quality digital

plaintext form. Instead, the movies can only be viewed through the NCdisk and one of three pre-

defined type of outputs.

The NCdisk can provide both security for the content providers and convenience for the

users. The NCdisk can be used to replace the current DVD-by-mail rental services such as

Netflix™ and Blockbuster™. These service providers currently mail millions of DVDs to their

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Analog
Display

NCDisk 2
Trusted
DisplayIntegrated

Display

Analogy or
Encrypted

Digital Display
Channel

Internet

SP

Content
Provider

SP SoCSP

NCDisk 1

Integrated
Display SP

Fig 3-3. Online Movie Download Scenario using NCdisk

Chapter 3: NCdisk Design Based on the SP Architecture

16

users each week. Instead, these service providers could mail to each user a single NCdisk. Using

this NCdisk, the users can download their desired movies without having to wait for DVDs by

mail, and the content providers will have the assurance that their movies cannot be mass copied

in their original plaintext digital form.

We present a security protocol to use along with the NCdisk for an online movie download

application, as shown in Table 3-3. When the NCdisk is manufactured, it is completely empty. It

has no movies stored on it, and its SoC registers and memory are void of keys and software. The

manufacturer ships these blank NCdisks to the movie content distributor, who is the “trusted

third party (TTP)” in our model. The 5 paragraphs below refer to parts (a) through (e) in Table 3-

3. This is also further illustrated by Figures 3-4 through 3-7.

In Table 3.3(a), the content provider first installs initialization software on the NCdisk that

will self-generate a random Device Key and store it in the Device Key register, load up the

trusted TSM software, write in a unique serial number (SNj) identifying the NCdisk (Dj), and

load up the shared key that the content provider shares with the NCdisk. Afterwards, the content

provider can remove the initialization software. Note that since the Device Key and TSM

software are in ROM (write-once Flash) memory, no one can re-program the NCdisk in the

future. This prevents an attacker from tampering with the NCdisk. After the NCdisk is

initialized, it can be deployed to users.

Chapter 3: NCdisk Design Based on the SP Architecture

17

NCdisl Security Protocol

C: content provider.

M: movie content; i: ith movie.

D: NCdisk; Dj : jth NCdisk; SNj: serial number for jth NCdisk.

Manufacturer provides a blank Dj

Manufacturer builds a blank NCdisk Dj that does not have any software or keys stored inside.

(a) Manufacturer sends Dj to C for initialization

1.C loads secure installation software into NCdisk RAM.

2. This initialization software does the following:

a. Generates a random Device Key, DKj. and writes DKj into the Device Key register,

which is a non-volatile register (e.g., write-once Flash memory).

b. Loads TSM software into the write-once memory area.

c. Generates a keyed hash of the extended TSM software and stores this extended

TSM software and its keyed hash in the off-chip data storage area.

d. Stores a unique SNj into the write-once memory area.

e. Generates a random key CDKj, which it shares with Dj. It encrypts CDKj using the

device key and stores it in the off-chip storage area.

3.Finally, C removes the initialization software, disables the writing of the on-chip Flash

memory, and the NCdisk is fully initialized.

(b) C distributes Dj to user j

1. User j buys Dj from a store, or C sends Dj to user j.

2. User j connects Dj online to C’s website

3. C reads SNj from Dj. C has a database that associates each SNj with a CDKj, which C shares

with Dj. Using CDKj, C securely sends data to Dj.

Chapter 3: NCdisk Design Based on the SP Architecture

18

(c) C builds a movie database

1. C generates a random movie encryption key CMKi for each movie Mi.

2. C encrypts movie Mi with CMKi.

3. C saves)(i
CMK ME i and CMKi in movie database.

4. C periodically re-encrypts Mi with a new CMKi

(d) C prepares Mi to send to Dj

1. For a given Mi, C prepares a different Mi bundle for each Dj as follows:

 a. C searches up the CDKj that it shares with Dj

 b. C generates a MIDi
j identifying Mi and Dj

 c. C derives a key Ki
j = MACCDKj(MIDi

j)

 d. C encrypts CMKi with Ki
j

 e. C sends the bundle for Mi to Dj: }),(),({ i
j

i
K

i
CMK MIDCMKEME i

j
i

(e) Dj processes bundle before storing it

1.Dj first decrypts the bundle to obtain plaintext Mi:

 a. Dj re-derives Ki
j = MACCDKj(MIDi

j)

 b. Dj decrypts CMKi =))((i
KK CMKED i

j
i
j

 c. Dj decrypts Mi =))((i
CMKCMK MED ii

2. Dj then re-encrypts Mi for storage

 a. Dj generates a random IDi
j identifying Mi and Dj

 b. Dj uses device key DKj and IDi
j to derive a new movie encryption key:

 DMKi
j = MACDKj(IDi

j)

 c. Dj encrypts Mi with DMKi
j

 d. Dj throws away DMKi
j

 e. Dj stores Mi bundle, which is now non-copyable },)({ i
jIDME i

DMK i
j

Table 3-3. NCdisk Security Protocol

Chapter 3: NCdisk Design Based on the SP Architecture

19

As shown in Fig 3-4 and the protocol summary in Table 3-3(b), when a user connects the

NCdisk Dj to the content provider through the Internet, the content provider can read off the SNj

on Dj. The content provider has a database that associates each SNj with the corresponding key

that it shares with that Dj. Using this shared key, the content provider can securely send movie

contents to Dj. (The Shared Key j shown in Fig, 3-4 is the CDKj in Table 3-3(b).)

Further, the content provider builds a movie database, where each movie Mi is encrypted

using a different movie encryption key CMKi. These movies and their keys are assumed to be

stored in a secure location on the content provider’s server, as shown in Fig 3-5 and Table 3-3(c).

 A particular movie Mi is sent to numerous NCdisks. The content provider prepares a

different bundle for each NCdisk Dj (see Table 3-3(d).) The bundle consists of three

components. The first component is the encrypted movie, which is encrypted (once) with the

movie encryption key CMKi. The second component is the encrypted CMKi. For different Dj,

the CMKi is encrypted using a different key Ki
j. This key is always derived upon use and

immediately deleted afterwards. Only the content provider and the NCdisk can re-derive Ki
j. The

User Database
(Trusted)

 SN1 Shared Key 1
 SN2 Shared Key 2
 SN3 Shared Key 3

 SNn Shared Key n

NCdisk Dj
(SNj, Shared Key j)

Content Provider (CP) NCdisk User

(1). User buys a NCdisk from store

(2). User connects the NCdisk online

(3). CP reads serial number SNj

(4). CP communicates with NCdisk
 with the Shared Key j

Fig 3-4. NCdisk Establishes a Secure Communication with Content Provider

Chapter 3: NCdisk Design Based on the SP Architecture

20

third component is a random value MIDi
j that identifies that particular movie Mi and that

particular NCdisk Dj. This value plays a role in re-deriving Ki
j, but it is only useful to the content

provider and the NCdisk. This process is described in Fig 3-6.

Table 3-3(e) describes how an NCdisk processes the encrypted movie before storing it in the

NCdisk. When an NCdisk receives a movie bundle, it re-derives Ki
j and uses Ki

j to obtain the

original movie encryption key CMKi, which can be used to obtain the plaintext movie Mi. Next,

the NCdisk re-encrypts Mi using a new movie encryption key DMKi
j, which is derived using the

NCdisk’s unique device key, Dj, as shown in Fig 3-7. At this point, no one can copy the original

digital plaintext movie from the NCdisk. Using the predefined API functions, the NCdisk

provides a set of controlled outputs to ensure that the original digital plaintext movie does not

leak out during the output phase.

Server Generates a
Movie Key CMKi
for Each Movie

CMK1 CMK2

CMK3 CMKi

Server Movie Database

* Movie keys are securely stored on the server.
** Movie keys will be updated periodically

CMKi

Fig 3-5. Content Provider Builds a Secure Movie Database

Chapter 3: NCdisk Design Based on the SP Architecture

21

CMKi

User Database
(Trusted)

 SN1 Shared Key 1
 SN2 Shared Key 2

 SNn Shared Key n

Movie Key Database
(Trusted)

 Movie #1 CMK1
 Movie #2 CMK2

 Movie #n CMKn

Radom
Number

Generator

Key ID
for this User
& this Movie

Deriving a
new Key

Encryption

Key ID Shared Key j

Derived Key
for this User
& this Movie

Encrypted CMKi
for this User
& this Movie

CMKi

CMKi

Key ID,
E(CMKi)

To the NCdisk

Fig 3-6. Content Provider Prepares a Movie for NCdisk

NCdisk
Shared Key jDeriving Key

Decryption

Derived Key
to Decrypt the

Movie Key CMKi

Movie ID

MKi

Key ID,
E(CMKi)

CMKi DMKi
DMKi

Movie ID

Store in
NCdisk

Key ID

E(CMKi)

NCdisk
Device Key

NCdisk
Radom Number

Generator

Deriving a
new Key

Fig 3-7. NCdisk Downloads a Movie and Stores it on NCdisk

Chapter 4

Business Models and Analysis

22

4.1 Application of the NCdisk

In chapter 3, we examine that the NCdisk can be used in the online movie download

application. It can be used to replace the current DVD-by-mail rental services such as Netflix™

and Blockbuster™. These service providers currently mail millions of DVDs to all their users

each week. Instead, these service providers could mail to each user a single NCdisk. Using this

NCdisk, the users can download their desired movies without having to wait for DVDs by mail,

and the content providers will have the assurance that their movies cannot be mass copied in

their original plaintext digital form. In this chapter, we analyze the prospects of turning the

NCdisk technology into a business. In the sections below, we examine two different types of

business models for using the NCdisk in the online movie download application and compare

their competitiveness and financial projections.

4.2 The Business Models

 Just having the NCdisk technology is not enough for the online movie download

business. We must also provide high quality digital movie contents that can be delivered to the

NCdisk. There are two viable business models for achieving this.

 Chapter 4: Business Models and Analysis

23

Business Model 1: Market NCdisk to content service providers

(1) We form a company to develop the SP-based SoC (System on Chip). This

development mainly involves programming in hardware description language (HDL)

and simulating to test for its correct operation. We partner with a chip manufacturer

to turn our HDL code into an actual chip. This way, as a “fables” company, we do not

need to invest in manufacturing our chip.

(2) We further design the NCdisk system, which involves integrating the SP-based SoC

with an existing disk architecture. We design the entire schematic and documentation.

We also design and test a prototype, preferably on a FPGA. Then, we partner with a

contract or OEM manufacturer, who will make the actual NCdisk product. In this

scenario, the manufacturer will be responsible for the warrantee.

(3) We establish a server that runs the NCdisk security protocol (described in Chapter 3)

used to securely send data content from the content provider to the customer’s

NCDisk. Our server does not hold any contents. We partner with a content service

provider, such as Netflix, who will provide the actual movie selection, user account

maintenance, billing, and customer support. Note in this case, our company does not

directly get involved with the customer.

We analyze this model based on its people, context, opportunity, and deals. From a people

perspective, this business model requires that our company focus on the NCdisk technology. We

would mainly need people who are good in this technology area, but obviously, it would be

beneficial to have people on our team who have experience in the media content industry.

From a context and opportunity perspective, there are two things that make this model

appealing. First, the movie industry wants to get into the online movie download business

 Chapter 4: Business Models and Analysis

24

because they know that this is what consumers will want in the future. However, they are

reluctant to put movies on the Internet because there is insufficient technology to protect the

contents. The NCdisk, if it works, goes a long way in solving this problem. Further, two major

DVD rental companies, Netflix and Blockbuster, have made it public that they wish to enter the

online movie download industry. These two companies are at constant battle with each other for

customers. The NCDisk seems like the appropriate device that will give one company a major

advantage against the other company. This relates to the deal perspective. With the Netflix and

Blockbuster tensions, we may be able to get a good deal if we talk to both sides and take the

better offer. However, this type of business model involves taking money from Netflix or

Blockbuster instead of directly from the end-users. The extra level of separation reduces our

revenue, as shown in financial analysis later.

Business Model 2: Market NCdisk directly to users as a new content service provider

(1) Same as Model 1

(2) Same as Model 1

(3) We establish an online store to sell and rent digital contents, such as movies, TV

shows, music, digital books, etc. We take a revenue sharing model with the content

provider. In this case, we will provide the actual movie selection, user account

maintenance, billing, and customer support. Note in this case, our company directly

sells the service to the end-user. We no longer play a middle-man role.

We analyze this model based on its people, context, opportunity, and deals. From a people

perspective, our company requires three types of skill sets: (1) technical (2) web merchandise

system developer, and (3) marketing and business skills in media content area. Compared to

 Chapter 4: Business Models and Analysis

25

business model 1, this model requires more skill sets and manpower. From context and

opportunity perspective, we will directly compete with existing content service providers, such

as Netflix. We have a good technology, but as we examine below, we are not the first to market

since there are similar types of devices already out there. From a deal perspective, we will be

making deals directly with the content providers and we will hopefully try to enter a revenue

sharing model. We will get a larger cut of the pie than with the business model 1.

4.3 The Competition

 For business model 1, the competition is mainly the content service providers themselves.

For example, if we try to license our NCdisk to Netflix, we face the alternative that Netflix may

wish to develop their own technology. Netflix currently has a 50-engineer team to develop their

online downloading solution. Will they want to partner with us?

 For business model 2, we have direct competition with content service providers, such as

Netflix and Blockbuster, since we will also be a content service provider. Compared to DVD

mailing, the online movie download strategy is more convenient for users and cheaper for us.

The question is when Netflix or Blockbuster will come out with their online download service.

The only way to take a large market share is to beat Netflix or Blockbuster to the market in

developing a secure and convenient online download product and service, and to provide a more

compelling on-going advantage.

4.4 The Financial Projections

 Now we analyze the income statement for both business models 1 and 2.

 Chapter 4: Business Models and Analysis

26

 For model-1, we assume we partner with Netflix. The major revenue comes from selling

the NCdisk at a price of $120. Either Netflix or the end-user customer will pay for this device.

Another major source of revenue is in the 10% revenue share with Netflix. We assume that each

customer on average pays a monthly fee of $15, and we hope to take $1.5 of that fee. The bottom

line is that existing Netflix cost on US mailing fees is $100M/year and existing mailing facilities

and employees is another $100M/year. Our revenue cannot exceed this $200M/year. Note that

even this $200M is not a likely maximum because Netflix will not be completely stopping their

DVD mailing business immediately.

 For model 2, we first analyze several key components of revenue and expense sources in

order to get the numbers for the income statement. The first number is how much we can charge

customers in a monthly fee. By my renting experience from both Netflex and Blockbuster, a

customer can mail about 4-6 times each month. Each mail has 3 DVDs if users sign on a $17.99

program. This is equivalent to $1-$1.5 for each movie. We may set $19.99 for 20 movies per

month, and $1.49 for each movie after the 20 movie limitation.

 The most important number is how much it costs to get movie content from the movie

studios. Based on the marketing study of Wharton, DVD rental companies such as Netflix and

Blockbuster have two ways to get movie contents. One way is to buy a DVD with a copyright of

renting and reselling. The average cost is about $60 for each DVD disk (not each title). Another

way is the revenue-sharing model. DVD rental companies pay about $8 per DVD upfront and

then pay 30-45% of revenue earned from the DVD renting. The Wharton’s study show that, the

revenue-sharing model increases revenue by 75% during the market test period. The reason is

that customers have more titles to select and so they rent more. For business model 2 of the

NCdisk business, we assume a 50% revenue sharing without upfront pay with the movie studios.

 Chapter 4: Business Models and Analysis

27

It is reasonable to assume no upfront fee for our model because our sharing percentage is higher.

Further, note that our sharing revenue is equal to 50% of our renting revenue minus the cost of

the NCdisk.

Moreover, there is more expense for website development and customer support in model

2 than model 1. However, the resources needed are proportional to the customer size and revenue

income. As shown in the income statement, we increase our support staff only as our customer

base increases.

 Note that the breakeven point for both models is less than 100K customers. Also, note

that model 2 is three times more profitable than model 1. The income statements are shown

below.

Model 1 - We provide NCDisk for Netflix 1st year 2nd year 3rd year 4th year 5th year
(assume Netflix or user pays for NCDisk)

Accumulated number of NCDisk users 0 10 100 500 1,000
 New added NCDisk users 10 90 400 500
Sales revenue items:
 NCDisk sales, $120 each 0 1,200 10,800 48,000 60,000
 NCDisk protection, $3.99/mon, 50%
enroll 0 240 2,400 12,000 24,000
 Revenue share with Netflix, 10% of
 $15/mon 0 180 1,800 9,000 18,000
Total revenue 0 1,620 15,000 69,000 102,000
 Less cost of sale, 50% of NCDisk sale
 price 0 600 5,400 24,000 30,000
Gross margin 0 1,020 9,600 45,000 72,000
Operation expense items:
 Employee salary, including benefits 2,000 2,000 3,000 4,000 5,000
 Equipment 500 500 1,000 1,000 1,000
 Office renting 100 100 300 300 500
 NCDisk RMA, 80% of protection
 revenue 0 192 1,920 9,600 19,200
 Web server cost 100 200 500 500 500
 Other cost (travel etc.) 500 500 1,000 1,000 1,000
Total operation expense 3,200 3,492 7,720 16,400 27,200
Incoming before tax -3,200 -2,472 1,880 28,600 44,800
 Provision for income tax, 50% rate 0 0 940 14,300 22,400
Net incoming, in thousand USD -3,200 -2,472 940 14,300 22,400

 Chapter 4: Business Models and Analysis

28

Model 2 - We directly provide Movie
renting 1st year 2nd year 3rd year 4th year 5th year
(assume NCDisk is free)

Accumulated number of NCDisk users 0 10 100 500 1,000
 New added NCDisk users 10 90 400 500
Sales revenue items:
 NCDisk protection, $3.99/mon, 50%
enroll 0 240 2,400 12,000 24,000
 Movie rental revenue, $19.99/mon 0 2,400 24,000 120,000 240,000
 Non-movie rental revenue, 20% of
rental
 revenue 0 480 4,800 24,000 48,000
Total revenue 0 3,120 31,200 156,000 312,000
 Less cost of sale, $60 per NCDisk 0 600 5,400 24,000 30,000
 CP rev share, 50%*(rentRev –
 NCDiskcost) 0 900 9,300 48,000 105,000
Gross margin 0 1,620 16,500 84,000 177,000
Operation expense items:
 Employee salary 2,500 2,500 4,000 6,000 8,000
 Equipment 500 500 1,000 1,000 1,000
 Office renting 100 100 500 500 1,000
 NCDisk RMA, 80% of protection
 revenue 0 192 1,920 9,600 19,200
 Web server 200 300 500 1,000 2,000
 Customer support 0 200 500 1,000 2,000
 Other cost (travel etc.) 500 500 1,000 1,000 1,000
Total operation expense 3,800 4,292 9,420 20,100 34,200
Incoming before tax -3,800 -2,672 7,080 63,900 142,800
 Provision for income tax, 50% rate 0 0 3,540 31,950 71,400
Net incoming, in thousand USD -3,800 -2,672 3,540 31,950 71,400

Table 4-1. Financial Analysis for the NCdisk Business Models (units in thousand USD)

 In table 4-1, the major marketing data is referenced from the Netflix annual report and

University of Pennsylvania Wharlton’s marketing research paper [8-10].

4.5 Next Step for Business

The rough financial analysis shown above suggests that Business Model 2 provides far

greater revenue than Business Model 1. Also, Model 2 provides more control over the company

for the founders than does Model 1. However, Model 2 has greater competition since we will be

 Chapter 4: Business Models and Analysis

29

competing directly with the more established content providers. The exercise of working through

the financial projections above provides a good first step to analyzing the prospects of the

NCdisk business. As our work in Chapters 2, 3, and 4 show, we are fairly confident of the

technology, but in order to better understand the real need of the online movie download market,

the next step should be to talk to real customers, content providers, and content service providers.

Chapter 5

Conclusions and Future Work

30

We propose an NCdisk concept to prevent copying of protected digital content. The NCdisk

concept boils down to implementing two design goals: protecting secrets and providing output

control. We achieve these two goals by implementing a (Secret-Protection) SP-based SoC

architecture that can be added to existing disk architecture to turn that disk into an NCdisk.

Further, we design a security protocol that can be used along with the NCdisk to provide security

and convenience for the online movie download application.

Future work includes extending the NCdisk architecture and security protocol to support

multiple content service providers. This means that the NCdisk has to be shared by mutually-

distrusting content service providers. Future work also includes investigating how the NCdisk

can be extended to support other applications besides online movie download. We would like to

research using the NCdisk to provide more copy-protection and privacy-protection for computer

data.

References

31

[1] “Architecture of Windows Media Rights Manager”, Microsoft Corporation, May 2004.
http://www.microsoft.com/windows/win dowsmedia/howto/articles/drmarchitecture.aspx

[2] Ruby B. Lee, Peter C. S. Kwan, John Patrick McGregor, Jeffrey Dwoskin, and Zhenghong
Wang, “Architecture for Protecting Critical Secrets in Microprocessors,” Proceedings of the
32nd International Symposium on Computer Architecture (ISCA 2005), pp. 2-13, June 2005.

[3] Jeffrey S Dwoskin, Ruby B. Lee, "Hardware-rooted Trust for Secure Key Management and
Transient Trust", ACM Conference on Computer and Communications Security, pp. 389-400,
October 2007.

[4] Jeffrey Dwoskin, Dahai Xu, Jianwei Huang, Mung Chiang, Ruby Lee, "Secure Key
Management Architecture Against Sensor-node Fabrication Attacks", IEEE GlobeCom 2007,
November 2007.

 [5] Michael Wang and Ruby Lee, “Architecture of Non-Copyable Disk (NCdisk) Using Secret-
Protection (SP) SoC Solution”, Forty-First Asilomar Conference on Signals, Systems and
Computers, November 4-7, 2007.

[6] James Jeppesen et al., “Hard Disk Controller: the Disk Driver’s Bain and Body”, 0-7695-
1200-3/01, 2001 IEEE.

[7] Steve Jobs, “Thoughts on Music”, http://www.apple.com/hotnews/thoughtsonmusic/

[8] Knowledge@Wharton, UPenn, “The Home-video Market: Who Rents, Who Buys and

Why”, February 08, 2006.

[9] George Knox, Jehoshua Eliashberg, “The Consumer’s Rent vs. Buy Decision: The Case of

Home-Video”, Marketing Department, The Wharton School,University of Pennsylvania, Feb
2005

[10] Knowledge@Wharton, UPenn, “Now Showing at Blockbuster: How Revenue-sharing

Contracts Improve Supply Chain Performance”, October 16, 2000.

[11] S. W. Smith and S. H. Weingart, "Building a High-Performance, Programmable Secure

Coprocessor," Computer Networks, 31(8), pp. 831-860, April 1999.

[12] Suh, G. E., O'Donnell, C. W., Sachdev, I., and Devadas, S. 2005. “Design and

implementation of the AEGIS Single-Chip Secure Processor Using Physical Random
Functions,” In Proceedings of the 32nd Annual international Symposium on Computer
Architecture (June 04 - 08, 2005).

References

32

[13] J. D. Tygar Bennet Yee “Dyad: A System for Using Physically Secure Coprocessors,”

Carnegie Mellon University Technical Report CMU-CS-91-140R, May 1991.

[14] “TCG Specification Architecture Overview,” Specification Revision 1.3, 28 March 2007,

https://www.trustedcomputinggroup.org/groups/TCG_1_3_Architecture_Overview.pdf

[15] Naor, M.; Pinkas, B.; “Efficient Trace and Revoke Schemes,” Financial Cryptography

’2000, LNCS 1962. Springer-Verlag, New York. 1-20.

[16] Taban, G; Cardenas, A; Gligor, V; “Towards a Secure and Interoperable DRM

Architecture,” DRM ’06, 30 October 2006. Alexandria, Virginia.

[17] Boneh, D., “The Decision Diffie-Hellman Problem,” Proceedings of the Third Algorithmic

Number Theory Symposium, LNCS Vol. 1423, Springer, pp. 48-63, 1998.

[18] Grimm, R, “Privacy for Digital Rights Management Products and their Business Cases,”

University Koblenz and Fraunhofer Institute for Digital Media Technology, 2005.

[19] Anlauff, M; Pavlovic, D.; “Pda – the Protocol Derivation Assistant,” Kestrel Institute, 17

July 2006

[20] Ruby B. Lee and A. Murat Fiskiran, PLX: An Instruction Set Architecture and Testbed for

Multimedia Information Processing, Journal of VLSI Signal Processing 40, 85-108, 2005.

[21] Ruby Lee and Michael Wang, “Resolving Encoding Issues in Combining PAX and PLX

Instruction Sets”, PALMS, EE Dept Princeton University, Technical Report No. CE-L2007-
007.

[22] Michael Wang, Ruby Lee, “PAX-PLX 1.0 Encoding”, PALMS Lab, Princeton University,

July, 2006

[23] Michael Wang, Ruby Lee, “PAX-PLX 1.0 Reference”, PALMS Lab, Princeton University,

July, 2006

[24] Michael Wang, Ruby Lee, “PAX 1.1 ISA Encoding”. PALMS, EE Dept. Princeton,

July, 2006.

[25] Michael Wang, Ruby Lee, “PAX 1.1 ISA Reference”. PALMS, EE Dept. Princeton,
 July, 2006.

[26] Michael Wang, “PAX Simulator, Assembler, and Linker: Building a Toolset for a New

Processor ISA Based on the SimpleScalar Simulator and GNU Toolset”. Junior Independent
Work Final Report, EE Dept. Princeton University, January, 2007.

References

33

[27] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John
 Wiley and Sons 1996.

[28] A Murat Fishiran, Ruby Lee, “PAX: A Tiny Scalable Cryptographic Processor for Wireless

Devices and Servers”, Princeton University Department of Electrical Engineering
Technical Report CE-L2004-002, November 2004.

[29] Austin, Todd; Burger, Doug, “SimpleScalar Toolset, Version 2”,
 <http://www.simplescalar.com/docs/users_guide_v2.pdf>.

[30] Austin, Todd, “A User’s and Hacker’s Guide to the SimpleScalar Architectural Research
 ToolSet”, January, 1997, <http://www.simplescalar.com/docs/hack_guide_v2.pdf>.

[31] Kegel, Dan, “Building and Testing gcc/glibc cross toolchains”,
 <http://www.kegel.com/crosstool/>.

[32] “ARM7TDMI-S Technical Reference Manual”,

 < http://www.arm.com/pdfs/DDI0234A_7TDMIS_R4.pdf >

[33] Xilinx, Inc. “EDK Concepts, Tools and Techniques”, Version 9.1i.

[34] Xilinx, Inc. “Xilinx University Program Virtext Pro Development System Hardware

Reference Manual”, March, 2005.

Appendix A

Alternative Solution for NCdisk

34

 The SP-based SoC design of the NCdisk described in Chapter 3 represents the latest

version of the NCdisk. In this appendix, we describe an earlier design of our NCdisk architecture

that is ASIC-based, and compare it with the SP-based version.

ASIC-based NCdisk Architecture

 This earlier version of the NCDisk Hardware Architecture, Figure 4-1, is an ASIC-based

co-processor design. It was designed for the online movie download application – and hence has

a similar design goal as the SP-based NCdisk described in chapter 3. However, its

implementation is different and more complex. It has a control processor (CProc), which runs

software that controls the input/output of the movie files, as well as other general purpose

routines. The NCdisk also has a secure processor (SProc), which is part of a SoC that runs the

security software. The NCdisk has an untrusted hardware module that consists of a regular disk,

the CProc, a USB controller used to connect the NCdisk to a PC, an Ethernet controller used to

connect the NCdisk to a home network router, and a wireless transceiver used to control the

NCdisk with a remote-control. The movie files are stored on the regular disk. They are encrypted

by security software and critical secrets that are stored on the SoC.

 Appendix A: Alternative Solution for NCdisk

35

A.1. Security Assumptions and Definitions for online movie download application

 Prior to looking at the ASIC-based architecture in detail, it is important that we clearly

define our security assumptions and goals for the online movie download application.

ASIC-based NCdisk Hardware Architecture

NCDisk Coprocessor SoC

untrusted hardware module

Chipset Level-1 Security Components (DSP)

Chipset Level-2 Security Components (ASIC)

CProc
(Control

Processor)

SProc
(Secure Processor)

TV/PC
remote control

memory
ROM/RAM

Disk

Bootup
ROM

fT()

TKKID

iNTK SEEDSN

PRNG

KID

write-enable

Code
Memory

KID

oNTK NTK

USB
control

Encrypted Data

Integrity Checked (Hashing)

Ethernet
Control

PC

Key
Update

Controller

Router

D/A
TV Out

TV

Plain Data

Data
Memory

Registers

SM
(Shared
Memory)

Ctl

Fig A-1 ASIC-based NCdisk Hardware Architecture

 Appendix A: Alternative Solution for NCdisk

36

First, we assume that the existing encryption algorithm, hashing function, and random

key generator that we use are cryptographically strong. We also assume that the standard

cryptographic protocol, such as SSL, for two-party authentication between the server and the

NCdisk is secure. Moreover, we define that an encrypted movie file is broken if the movie

encryption key is compromised by an attacker. We define that an NCdisk is broken if the critical

secret of the NCdisk is compromised by an attacker. Moreover, an attacker can clone a device if

he can obtain the critical secret of the device, in which case the attacker could produce multiple

copies of NCdisks that contain the same broken critical secret.

Further, we assume that physically opening up a SoC chipset and probing the internal bus

without damaging the chipset is a difficult but still feasible task for professionals. If the internal

bus can be probed, then the software and data memory on the chip can be read out. This can be

accomplished by connecting the internal bus to an external processor or instrument. Further, if

the internal processor can be used to run attacker software, then the internal register contents can

be read out through the internal bus. At this point, we are ready to give two security level

definitions:

Chipset Level-1 Security Definition: a particular on-chip component has Chipset Level-1

Security if an attacker has to physically open up the chipset and probe the bus to obtain data

from the component by either running software on the internal processor or external processor.

Chipset Level-2 Security Definition: a particular on-chip component has Chipset Level-2

Security if an attacker may not obtain data from the component even if he physically opens up a

chip, probes the bus, and runs software on the internal processor or external processor. The only

 Appendix A: Alternative Solution for NCdisk

37

way to obtain data from the component is to perform gate level reverse-engineering of the

chipset.

The security goals of the NCdisk architecture are:

(1) Store the critical secrets of the NCdisk in Chipset Level-2 Security hardware. In other

words, an attacker may not obtain the critical secrets of the NCdisk (and thereby

clone the NCdisk) without performing gate level reverse-engineering of the chipset.

(2) Breaking one movie in the server database should not affect the security of other

encrypted movies. In other words, if an attacker obtains the encryption key of one

movie, that key should not leak information about the encryption keys of other

movies.

(3) Breaking one NCdisk should not affect the security of other NCdisks. In other words,

if an attacker obtains the critical secret of one NCdisk, that information should not

leak the critical secrets of other NCdisks.

(4) Breaking one movie file on an NCdisk should not affect the security of other movie

files on the same NCdisk. In other words, if an attacker obtains the encryption key of

one movie file on the NCdisk, that key should not leak information about the

encryption keys of other movie files on the same NCdisk.

(5) Only a predefined a set of player devices are able to receive the NCdisk output data.

(6) When a particular pirated movie file is found, it should be traceable to the specific

NCdisk. Then, that NCdisk should be revoked.

Same as SP-based NCdisk architecture in chapter 3, these security goals also could be narrowed

down to two major points: storing and protecting critical secrets, and controlling of output.

 Appendix A: Alternative Solution for NCdisk

38

A.2. Storing and Protecting Keys

The security measures of storing and protecting keys are provided by the SoC in Fig A-1.

The SoC contains various Chipset Level-1 Security components. It contains a boot-up ROM,

which is the starting point of all code executed by SProc. The SoC also contains RAM that stores

most of the secure software. This software in RAM is integrity-checked each time by ROM code

before being executed. Further, the SoC contains data RAM memory. Part of this memory may

be encrypted to store some long-term secrets. The other part of the memory may contain

intermediate data of currently running security software. The SoC also contains on-chip registers

to store intermediate data of any programs running on the SProc. These register data may spill

over into the RAM data memory. Also, the SoC contains a D/A converter that immediately

converts an unencrypted movie file into analog streams that can be outputted to a TV. Note that

the method of using secure ROM and integrity-checked RAM to secure software is similar to the

method used in extended sensor-node SP [4] and IBM Co-Processor [11].

The security protocol is similar to that in Chapter 3. The NCdisk device key DKj has

three different types of iNTK, NTK, and oNTK. The iNTK is used to secure communication

between the server and the NCdisk. The oNTK is used to secure communication between the

NCdisk and a trusted player device. The NTK is used to protect the movie files on the NCdisk.

The NTK is known only to the NCdisk. Not even the server or the legitimate user of the NCdisk

knows this key. Further, the SoC stores these critical keys (NTK, iNTK, and oNTK) in Chipset

Level-2 Security hardware. These three keys cannot be broken even if the SoC chipset is opened,

or the bus is probed, or the SProc is used to run malicious software. Hence, it prevents cloning

the NCdisk. Further, the iNTK and oNTK are initially installed and may be updateable by the

 Appendix A: Alternative Solution for NCdisk

39

content provider. The updating process is securely executed by the Key Update Controller,

which works as follows:

(1) The iNTK and oNTK may only be updated by the server, who knows the old key.

 (2) The server first inputs the old key value for iNTK (or oNTK).

(3) The server then inputs the new key value for iNTK (or oNTK).

(4) The Key Update Controller uses hardware logic circuits to compare the inputted old

 key value with the existing key value of the iNTK (or oNTK).

(5) If the two key values are the same, then the existing iNTK (or oNTK) value is

 replaced by the new inputted key value.

(6) If the two key values are not the same, then the Key Update Controller runs a

 hardware delay before resetting the controller. This is to ensure that an attacker may

 not feasibly devise an automated way to keep guessing the old key value by brute

 force.

In addition, these three critical keys are never directly used to encrypt a movie file. Instead, they

are used as input of a cryptographic hash function to derive different encryption keys for

different movies. This further ensures that the critical keys are not leaked out.

 The key derivation function is the fT() function block shown in Figure A-1. The fT()

function is same as MAC function in chapter 3. This function takes as input a critical key (iNTK,

oNTK, or NTK) and a movie ID (a random Key ID). Then, the fT() function outputs a derived

key TK for a particular movie. It is important that the TK values are checked to be

cryptographically strong before they are used.

 Appendix A: Alternative Solution for NCdisk

40

A.3. Controlled Predefined Output

 No data and software inside a SoC should be accessible from outside of the SoC. Only a

predefined player device can receive the output data through a set of secure API functions.

Moreover, the CProc and the SProc do not share a common bus. Instead, they are separated by a

shared memory module. The shared memory completely isolates the internal bus of the SoC

from the outside. The communication from the CProc to the SProc is shown in Figure A-2. As

described above, the secure boot up ROM and the integrity-checked RAM code ensures that only

the secure software on the SoC can run on the SProc. The CProc may only call the SoC to

execute a particular function through the shared memory. The CProc only knows the function

IDs and the input/output data formats of the secure software library. The SProc processes the

value in shared memory and outputs its result back into the shared memory. The CProc reads this

result. The step-by-step communication is described as follows:

CProc Shared Memory SProc

Parameters and data
passed to the function

SBusy Flag

C2S function ID
S2C function ID

Control
Processor

Secure
Processor

CBusy Flag
(1), check if SBusy==0

(2), if yes, set CBusy=1

(3), load func id

(4), load func data

SPro Interrupt
CPro Interrupt

(5), issue interrupt to SProc (6), start NCDisk_isr()

(7), set SBusy=1

(8), process func

(9), read input data

(10), send
output data

(11), set SBusy=0

(12), issue interrupt to CProc(13), start interrupt routine

(14), process
return data

Comunication From CProc to SProc Through Shared Memory

NCDisk
Software

Commands

NCDisk
Software

lib functions

Fig A-2. Communication Between CProc and SProc through Shared Memory

 Appendix A: Alternative Solution for NCdisk

41

(1) CProc checks the “SBusy” bit. If this bit is set, then it means that SProc is running and is

using the shared memory. In this case, the CProc must wait until the bit is cleared by

SProc.

(2) CProc sets the “CBusy” “CBusy” bit to claim the ownership of the shared memory.

(3) CProc loads the function ID into the “C2S function ID” word in shared memory.

(4) CProc loads the function parameters and data into shared memory. The data format is

 predefined for each function.

(5) CProc issues an interrupt to SProc, at which point the SProc starts to process the value in

 shared memory. The CProc should now clear the “CBusy” bit to release the use of the

 shared memory to SProc.

(6) SProc runs the interrupt service routine NCdisk_irs(), which is stored in the secure ROM.

(7) The NCdisk_irs() routine sets the “SBusy” bit to claim ownership of the shared memory.

(8) The NCdisk_irs() routine then calls the NCdisk_main() function, which validates the

function ID and data format.

(9) If the shared memory input is validated, the NCdisk_main() function uses the input data

to execute the function.

(10) The output of the function is sent back into shared memory based on a predefined

format.

(11) SProc clears the “SBusy” bit to release the ownership of the shared memory.

(12) Sproc issues an interrupt to CProc

(13) CProc runs an interrupt service routine to process the data returned by SProc.

 Appendix A: Alternative Solution for NCdisk

42

The above steps describe the communication from the CProc to SProc. The

communication can also occur in the other direction. In other words, the SProc may also call the

CProc to execute a particular function, such as error reporting and debugging functions.

The NCdisk software library functions are divided into two subsets. One is the set of core

functions located in ROM. The other is the set of extended functions located in RAM. RAM

functions are not allowed to directly run on SProc. RAM functions can only be called by ROM

functions. The RAM code is integrity-checked by ROM. Since no one can change ROM code,

the security of the system is ensured. Note that attackers are allowed to read the ROM code

(although this is very difficult), but even if they do so, they will not be able to change anything.

A description of some main core functions is detailed below:

• NCdisk_bootup() – SProc boot up function, in ROM

o Perform boot up procedure

o Initialize NCdisk_irs() interrupt routine

o All functions run on SProc must go through the NCdisk_irs() routine.

• NCdisk_irs() – interrupt service routine, in ROM

o This function is called by the interrupt signal issued by CProc

o Set the SBusy flag

o Call NCdisk_main()

• NCdisk_main() – SProc main function. Links to all functions in library, in ROM.

o Validate the command and data format in shared memory

o If the function is in ROM and the data range is correct, call the function

 Appendix A: Alternative Solution for NCdisk

43

o If the function is in RAM, check the function integrity, then call the function

• NCdisk_update() – allows server to add or delete library function in RAM, in ROM

o Parameters

 A flag describing whether function is to be added or deleted from

RAM

 function name and id

 start and end memory address in RAM

 The number of total blocks passing through shared memory to transfer

this new function to the SProc RAM.

 current block index

 hash value of the function using iNTK, block by block

o Functions

 if deleting an existing function from RAM, verify that all parameters

match to the exiting function in RAM

 if add a new function, check if it matches predefined rule (such as

memory mapping etc)

 check hash value for each block in shared memory by using iNTK

 Only server knows how to interface the new function to ROM

function.

• NCdisk_reset() – reset NC Disk to original manufacturer setting, in ROM

o Reset all setting to original manufacturer setting

 Appendix A: Alternative Solution for NCdisk

44

• NCdisk _reencrypt() – decrypts and re-encrypts a movie file

o Parameters

 Input encrypted movie frame

o Functions

 Decrypts and re-encrypts the movie frame in one algorithm such the

intermediate plaintext data is never stored anywhere.

• NCdisk_Convert() – decrypts and converts a movie file to a playable format

o Parameters

 Input encrypted movie frame

o Functions

 Decrypts and converts the movie frame to a playable format in one

algorithm such the intermediate plaintext data is never stored

anywhere.

A.4. Comparison between SP-based and ASIC-based NCdisk Architecture

For both the SP-based and ASIC-based NCdisk architecture, the design goals were the same:

to protect critical secrets and to provide a controlled set of predefined outputs. The SP-based

architecture is able to achieve these goals by taking a single processor and adding a minimal set

of hardware additions onto that processor. On the contrary, the ASIC-based architecture requires

a co-processor design, which is more costly. Further, the SP-based architecture uses a Trusted

Software Module (TSM) that allows the specific application of the SP-based processor to be

flexibly defined. On the other hand, the ASIC-based architecture restricts the application of the

 Appendix A: Alternative Solution for NCdisk

45

SoC to be fixed to the NCdisk application. A benefit of the ASIC-based architecture is that it can

be implemented into an SoC by connecting an existing processor to some ASIC logic. In

contrast, implementing the SP-based SoC architecture requires changing an existing processor,

although the change is only minimal.

A lot of the work done by special-purpose hardware in the ASIC-based architecture is done

by the Trusted Software Module (TSM) in the SP-based architecture. In fact, all the

cryptography processing and disk-controller processing can be done by the single processor in

the SP-based model. We also examined the use of PAX, a general-purpose processor with

special features for acceleration of cryptographic processing for this SP-based NCdisk processor.

We describe the work on implementing PAX in Appendix B.

Appendix B

Implementation of PAX Processor

46

 This appendix describes a two year long project that I have been working on in parallel

with the NCdisk project. It is apparent that the processor used in the SoC of the NCdisk must

perform a significant amount of encryption and decryption of movie contents. At the same time,

the processor must also perform other general purpose functions. This project involves working

on the PAX processor which has special features for accelerating cryptographic processing [21-

26,28] . In the sections below, we examine my work in encoding the ISA of PAX, developing the

software toolset for PAX, designing the VHDL code for the Parallel Table Lookup Unit (PTLU)

of PAX, mapping the AES algorithm to PAX implementations with different word sizes, and

implementing PAX on a Virtex-II Pro FPGA.

B.1 Encoding of PAX and PLX Processors

PAX [28] and PLX[20] are two small, general-purpose instruction set architectures (ISA)

designed by Prof. Ruby Lee and students at Princeton University, Department of Electrical

Engineering. PAX is a word-size scalable processor designed to be a simple yet high-

performance ISA for cryptographic processing, while PLX is a fully subword-parallel processor

designed to be a simple yet high-performance ISA for multimedia information processing. This

section describes the challenge in combining the two processors into one processor, and encodes

a unique ISA set that covers both processors’ instructions.

 Appendix B: Implementation of PAX Processor

47

B.1.1 Background

There are many applications, such as cell phones, laptops, palm pilots, etc, that need both

cryptographic and multimedia processing. Since PAX and PLX are built-from-scratch processors

designed to be fast and power-efficient at these two functions, it is desirable to combine these

two instruction sets into one processor. Further, since the PLX instructions have already been

encoded, we encode the PAX instruction set on top of the existing PLX encoding. Both PAX and

PLX are encoded with 32-bit instructions. Six of the bits are designated for opcodes, giving 64

possible opcodes. The PLX instruction set takes up only a fraction of the 64 available opcodes,

and so the PAX instruction set can be mapped into the remaining empty opcodes and the subops

of the PLX encodings. During the combining of PAX and PLX, some PAX instructions sacrifice

some functionality. Below, we examine the rationale behind the PAX-PLX instruction set

combination. We discuss the two major encoding issues in combining PAX and PLX.

B.1.2. Major Encoding Issues

Making Predication Compatible

 A fundamental problem of combining the PAX and PLX instruction sets is that PLX uses

predication, while PAX does not. The novel predication method used in PLX greatly reduces the

performance degradation caused by conditional branch instructions during multimedia

processing. However, predication is not significantly helpful for the cryptographic processing of

PAX, which uses a simple set of conditional branch instructions. To implement predication, PLX

has 128 1-bit predicate registers, which are divided into sixteen groups. At any one time, only

one group of 8 registers is active. The first three bits of any PLX instruction is used to select one

of the eight active registers. Then, the rest of the instruction executes only if the chosen register

 Appendix B: Implementation of PAX Processor

48

has a value of 1. Since PAX does not utilize predicate registers, it can use the first three bits of an

instruction for something else, such as an additional immediate field or subop field. However, to

combine PAX and PLX instruction sets in one processor, the instructions must be encoded in

such a way that hardware can easily differentiate between predicated and non-predicated

instructions. We explore three different methods of achieving this and rationalize our method of

choice.

Instructions How is it affected?
ALU Immediate:

addi
subi
andi
ori
xori

Memory Access:
load
store

PLX version only requires 13-bit immediate field:

Non-predicated PAX version requires 16-bit immediate field:

(Imm16 = Imm16a || Imm16b)

Pred(3) Opcode(6) Rd(5) Rs1(5) Imm13

Imm16b Opcode(6) Rd(5) Rs1(5) Imm16a

Loadi (see section 2.2)

PLX requires 2-bit selection field:
(Subop2 = S1 || S2)

PAX requires 3-bit selection field:

(Subop3 = S1 || S2 || S3)

Pred(3) Opcode(6) Rd(5) S1 S2 Imm16

x x S1 Opcode(6) Rd(5) S2 S3 Imm16
Table B-1. How Predication of PLX affects some PAX instruction encodings

 One method is to make all PAX instructions predicated. This method has the advantage

that all instructions in the PAX-PLX combined processor are predicated, and so, the hardware

has no need to differentiate between predicated and non-predicated instructions. The

disadvantage is that the first three bits of any PAX instruction will have to be used to specify

predicate registers. Since these three bits could have been used for something more important, a

predicated version of PAX may sacrifice some performance. Table B-1 illustrates these issues.

First, the ALU immediate and memory access instructions require a 13-bit immediate field in

PLX. However, these instructions in PAX would benefit from a 16-bit immediate field. If the

 Appendix B: Implementation of PAX Processor

49

first 3 bits of the instruction are used to specify predicate registers, then there is not enough room

for a 16-bit immediate field. Second, the loadi instruction (See Section 2.2) in PLX requires a 2-

bit selection field to specify one of four possible locations, while the PAX versions of loadi

requires a 3-bit selection field to specify one of eight possible locations. Once again, there is not

enough room for the extra bit of selection because of the space taken up by the 3 bit predicate

field.

A second method to make predication compatible between PAX and PLX is to create a

new predication mode. Prior to examining an instruction, first check the mode. If the mode is

predication-enabled, then the instruction is treated as a PLX instruction. In this case, treat the

first 3 bits as a predicate field, and examine the opcode field only if the predicate register is true.

If the mode is predication-disabled, then the instruction is treated as a PAX instruction. In this

case, bypass the predicate-check and look directly at the opcode. Depending on the opcode, the

first three bits can be either an immediate field or a subop field. The advantage of this solution is

that many pairs of PAX and PLX instructions can share the same opcodes, although they use the

first three bits differently. Also, it is very simple to switch between the PLX and PAX

instructions in a single program. The following pseudo-code explains this convenience:

pred_on // instruction that switch to predication-enabled mode
P0 addi Rd, Rs, 0x16 // addi treated as PLX instruction. Hence, addi

 // executes only if P0 (predicate register) is true and it has a
 // 13-bit immediate field.

pred_off // instruction that switch to predication-disabled mode
addi Rd, Rs, 0x16 // addi treated as PAX instruction. Hence, addi

 // has a 16 bit immediate field.
addi PLX version

P (3) Op (6) Reg (5) Reg (5) Imm13

addi PAX version. Imm16a and imm16b are concatenated to form Imm16.
Imm16b Op (6) Reg (5) Reg (5) Imm16a

 Appendix B: Implementation of PAX Processor

50

Another advantage of this solution is that the two processors maintain their original

properties: all PLX instructions are predicated, while all PAX instructions are non-predicated.

The disadvantage of this solution is that a 32-bit instruction does not include all information

needed to execute this instruction. We must look at the predication mode prior to examining any

instruction.

The two methods examined so far are, in a sense, polar opposites. Method 1 calls for

making all PAX instructions predicated, while method 2 calls for maintaining the non-predicated

property of all PAX instructions. The third method is a compromise between the first two

methods and is suitable for the PAX-PLX combined instruction set. Some PAX instructions are

predicated, and the rest remain non-predicated. Of the 64 possible opcodes, eight opcodes are

selected to be non-predicated, Table B-2, and the other opcodes are all predicated. The eight non-

predicated opcodes are specially chosen so that the processor only has to examine three of the six

opcode bits to differentiate between predicated and non-predicated opcodes. If bits 1, 3, and 4 are

all ones, then the opcode is non-predicated, and the first three bits of the instruction are treated as

either an immediate field or a subop field. If bits 1, 3, and 4 are not all ones, then the opcode is

predicated, and the first three bits of the instruction are treated as a predicate register field.

The eight non-predicated opcodes do not cover all PAX instructions. Many PAX

instructions are mapped into the predicated opcodes. The advantage of this method is that with

opcode
Bit
1

Bit
2

Bit
3

Bit
4

Bit
5

Bit
6

2C 1 0 1 1 0 0

2D 1 0 1 1 0 1

2E 1 0 1 1 1 0

2F 1 0 1 1 1 1

3C 1 1 1 1 0 0

3D 1 1 1 1 0 1

3E 1 1 1 1 1 0

3F 1 1 1 1 1 1

Table B-2. 8 non-predicated
d

 Appendix B: Implementation of PAX Processor

51

the eight un-predicated opcodes, we can cover most of the important PAX opcodes. Further, it is

much simpler to implement than method 2. We choose this method to map the PAX and PLX

instruction set into one opcode set, Section 3.

 Use of the loadi instruction

PAX has a load immediate instruction, which loads a 16-bit immediate to an aligned 16-

bit field of Rd. Since PAX is wordsize scalable up to 128 bits, there are up to 8 possible positions

to load the 16-bit immediate field in Rd. Furthermore, PLX has a different version of the load

immediate instruction, which can only load a 16-bit immediate to one of four aligned 16-bit

fields in the lower 64 bits of Rd. The PAX-PLX instruction set needs to support both types of

load immediate instructions. There are two methods. The first method is to have a 3-bit subop,

which gives 8 different possibilities, one for each of the positions in a 128-bit Rd. Using this

instruction, PAX can load a 16-bit immediate to any of the 8 locations in Rd, and PLX can load

to any of the 4 locations in the lower 64 bits of Rd. The other method is to have only a 2-bit

subop, which gives 4 different possibilities. In this case, loadi can only load to the lower 64 bits

of Rd, which is suitable for PLX. For PAX, to completely load a 128-bit register, one would load

the lower 64 bits of two separate registers and then use the “mix 8 byte” instruction to combine

the two registers into one. The two methods are illustrated below:

Method 1: loadi has a 3-bit subop. Loading an entire 128-bit register R1 requires 8
instructions, as shown in assembly language below:

loadi.z.0 R1 7 6 5 4 3 2 1 0
loadi.z.1 R1 7 6 5 4 3 2 1 0
loadi.z.2 R1 7 6 5 4 3 2 1 0
loadi.z.3 R1 7 6 5 4 3 2 1 0
loadi.z.4 R1 7 6 5 4 3 2 1 0
loadi.z.5 R1 7 6 5 4 3 2 1 0
loadi.z.6 R1 7 6 5 4 3 2 1 0
loadi.z.7 R1 7 6 5 4 3 2 1 0

 Appendix B: Implementation of PAX Processor

52

Method 2: loadi has a 2-bit subop. Loading an entire 128-bit register R3 requires 8 loadi
instructions and a mix instruction, as shown in assembly language below:

loadi.z.0 R1 7 6 5 4 3 2 1 0
loadi.z.1 R1 7 6 5 4 3 2 1 0
loadi.z.2 R1 7 6 5 4 3 2 1 0
loadi.z.3 R1 7 6 5 4 3 2 1 0

loadi.z.4 R2 7 6 5 4 3 2 1 0
loadi.z.5 R2 7 6 5 4 3 2 1 0
loadi.z.6 R2 7 6 5 4 3 2 1 0
loadi.z.7 R2 7 6 5 4 3 2 1 0

mix.8.r R3, R1, R2 7 6 5 4 3 2 1 0

As illustrated above, these two methods only differ by one instruction. To use method 1,

we have to use 8 non-predicated opcodes to encode the loadi instructions with 3-bit subops.

Since there are only 8 non-predicated opcodes, method 1 is wasteful. To save opcodes, we use

method 2 and share the loadi instruction between PAX and PLX.

B.1.3 The Encoding Results

The solution is published as a technical report [21]. The full version of PAX encoding is

described in document [24,25], and the complete encoding and references for the PAX-PLX

instruction set is in document [22,23].

 Appendix B: Implementation of PAX Processor

53

B.2 Development of PAX Assembler, Linker and Simulator

This section discusses the development of the PAX-32 toolset, which consists of a

simulator, assembler, and linker. The PAX simulator is based on the SimpleScalar simulator, and

the PAX assembler and linker are based on the GNU toolset. The development method of the

PAX toolset discussed in this section can be extended to develop similar toolsets for other new

processor ISAs. The more detailed results are described in the technical report [26]. We used this

toolset to write assembly code for one round of the AES-128 encryption algorithm, assemble and

link it, and simulate it on the SimpleScalar simulator. Then, we ran a similar program with an

ARM toolset. We noticed a 10.84 times speedup in the PAX-32 processor compared to the ARM

processor when running the encryption algorithm.

B.2.1 Introduction

 After the ISA of PAX has been designed and encoded, the next step is to develop a

toolset consisting of a simulator, compiler, assembler, and linker. There are two approaches to

creating the toolset. One approach is to construct the toolset from scratch, and the other approach

is to port PAX onto an existing toolset. The advantage of the first approach is that it is often

easier to write the toolset from scratch rather than to learn the code structure of an existing

toolset. Nevertheless, in an effort to make PAX as portable as possible, we chose to build the

PAX toolset based on a popular toolset that has an easily portable code structure.

The goals of this research are three-fold. First, we describe the development of the PAX

toolset, which is based on the GNU toolset and SimpleScalar Simulator [29,30]. This section

discusses the development of the simulator, assembler, and linker, but does not discuss the

compiler. Second, although the file names and code structures discussed in this paper are specific

 Appendix B: Implementation of PAX Processor

54

to PAX, the development technique used may be generalized to write a toolset for any processor

ISA. Finally, we examine the performance results that are obtained for PAX from using this

toolset.

B.2.2 Methodology of Building a Toolset for a New Processor ISA

An ISA toolset allows researchers to study the performance of a processor ISA by using

only software. The main framework of the toolset is shown in Fig B-1. Using this toolset,

researchers can write c-code or s-code, then produce executable code, and finally run the code on

the simulator. There are many variations of simulators, and each one is implemented as a

simulation module. Types of simulation modules range from functional simulators, which

implement the architecture of the processor, to complex performance simulators that implement

the micro-architecture of the processor. By using various types of simulation modules,

researchers can study the performance of the processor ISA from many different perspectives.

Compiler Assembler SimulatorLinker

GNU ToolSet

Crosstool script to create cross compilers for different
machines

SimpleScalar Simulator

*.c file *.s file *.o file exec. file simulation
module 1

simulation
module 2

simulation
module 3

.

.

.

Fig B-1: Structure of toolset for a new processor ISA that is based on

GNU toolset and SimpleScalar simulator.

 Appendix B: Implementation of PAX Processor

55

This way, the strengths and weaknesses of the processor may be carefully analyzed before

committing the time and money necessary to design and manufacture the hardware version of the

processor. In this paper, we do not cover the development of a compiler for a processor ISA, but

this is a necessary part of future research. This paper discusses the development of an ISA toolset

that allows researchers to write s-code, assemble it, link it, and simulate it on a functional

simulator1. The rest of this section discusses the reason for choosing the GNU toolset and the

SimpleScalar simulator [29,30] as the base platform, and how to set up the base platform.

Base Platform of the Toolset

The reason we chose the GNU toolset as the base platform for the compiler, assembler,

and linker is that GNU is a free, open source software2 that is widely used in both academia and

industry. Currently, the GNU Compiler toolset (which includes the compiler, assembler, and

linker), called GCC, supports a long list of commonly used machines, including ARM, i386,

MIPS, PowerPC, etc. The code structure of GCC is designed so that it can be easily ported to

different machines.

Next, the reason we chose the SimpleScalar simulator as a base platform for the simulator

is that SimpleScalar is a popular, well-respected simulator used in the academic arena.

SimpleScalar was originally written to simulate a sample ISA called PISA, which stands for

Portable ISA. PISA is a 64-bit processor that includes a set of commonly used instructions.

SimpleScalar is popular for its powerful set of simulation modules, Table B-3. The code

structure of SimpleScalar is designed so that researchers who want to use the simulator can

conveniently port their processor ISA to SimpleScalar. Currently, SimpleScalar supports a wide

1 This paper does not emphasize the design of different simulation modules, but instead focuses on the design of the
overall structure of a software toolset for a processor ISA.
2 http://www.gnu.org/

 Appendix B: Implementation of PAX Processor

56

selection of machines ranging from specialized processors designed in universities to popular

processors used in industry such as ARM and PowerPC.

Simulator Function
Sim-safe Functional simulator
Sim-fast Functional simulator. Optimized version of Sim-safe
Sim-profile Generates program profiles, by symbol and by address
Sim-cache Generates one- and two-level cache hierarchy statistics and profiles
Sim-outorder Detailed performance simulator

Table B-3 SimpleScalar Simulator Suite

In order to port a processor to this base platform, one must first pick an existing

processor—supported by the base platform—that is most beneficial to use as the starting point.

In the case of PAX, that processor is ARM [32]. Then, in both the GNU toolset and the

SimpleScalar simulator, we find the ARM related files, create a copy of them, and change them

to fit PAX exactly. See Sections B-3 and B-4. Note that each step of the toolset in Fig B-1 can be

independently designed. One can pick different processors as the starting points for each stage of

the toolset.

One important similarity between ARM and PAX is that they both have 32-bit

instructions3. This is important because it allows the two processors to share a similar structure in

the assembler, linker, and SimpleScalar loader, which is responsible for loading an executable

file into the simulator memory. The ARM assembler converts ARM assembly language to ELF-

format object files. If we use ARM as a starting point in writing the PAX assembler, then our

major task in porting the PAX assembler is to code the PAX instructions, instead of worrying

about the structure and format of the object file. On the contrary, if I based PAX on a 64-bit

processor, then I would have to change the assembler such that it generates 32 bit instructions in

3 Note that although PAX is wordsize scalable to 32, 64, and 128 bits, the instruction size is always 32 bits.

 Appendix B: Implementation of PAX Processor

57

the object file rather than 64-bit instruction. This is not a trivial task. Further, if PAX and ARM

have similar object file formats, then the PAX linker would be the same as the ARM linker. This

is a major benefit of using ARM as a starting point. Similarly, if PAX and ARM share the same

linker, then the resulting executable file would be very similar, and this in return means that the

ARM SimpleScalar loader and the PAX SimpleScalar loader could be the same.

Moreover, ARM uses the TIS standard ELF file format, which defines the format of the

object files. The ELF file format is widely used and has better support in GNU compared to other

object file formats such as ECOFF. Since I will have to write a PAX assembler in GNU, it is a

good idea to use the well-supported ELF file format.

Now that we have chosen ARM as the starting point processor, the next step is to build

the SimpleScalar ARM simulator and the GNU-ARM toolset. SimpleScalar ARM or other

SimpleScalar simulators can be downloaded from the SimpleScalar 4.0 website4. The readme file

included in the download fully describes how to install the simulator.

Building a Cross-Compiler for Target Processor

Next, building the GNU-ARM toolset requires the construction of a cross-compiler,

which allows one to compile software for a target machine on a host machine of a different type.

This is because we are running the GNU-ARM toolset on a linux machine, instead of an actual

ARM machine. More importantly, GNU-ARM is only the starting point, and we ultimately need

to have a GNU-PAX toolset. Since PAX does not yet exist as hardware, we must use a cross-

compiler to run it on a host machine.

Creating a cross-compiler can be a very tricky task. One way to obtain the ARM cross-

compiler is to download the version on the SimpleScalar 4.0 website4. Currently, this cross-

4 http://www.simplescalar.com/v4test.html

 Appendix B: Implementation of PAX Processor

58

compiler does not use the newest version of the GNU toolset. Another way is to use the

Crosstool script [31] created by Dan Kegel to build the cross-compiler. Users simply specify

which machine to target and what version of GNU to use and Crosstool script automatically

builds the GNU cross-compiler toolset in a couple of hours.

 The results of Crosstool include executables programs for the GCC compiler, assembler,

and linker, as well as the source codes from the GNU toolset. We change the ARM-specific files

in the GNU assembler source code to port it to PAX. Afterwards, we need to rebuild the GNU

assembler. Note that we do not need to rebuild the entire cross-compiler since only the assembler

files are changed. Instead of re-running the time-consuming Crosstool script each time that we

need to rebuild the assembler, we write a new script that simply rebuilds the assembler in about

one minute. We write this script by noting that building a GNU assembler will require the

following standard sequence of codes that build the GNU binary utilities:

${BINUTILS_DIR}/configure $CANADIAN_BUILD --target=$TARGET --host=$GCC_HOST
-- prefix=$PREFIX --disable-nls ${BINUTILS_EXTRA_CONFIG}
$BINUTILS_SYSROOT_ARG

make $PARALLELMFLAGS all

make install

All of the capitalized parameters above are processor- and system-specific variables that are

needed to build the binary utilities. The Crosstool script detects and generates the values for

these parameters during run-time. We dump these values to a file and use them for our own

script to only build the binary utilities, without running the entire Crosstool script. Now that we

have built the GNU-ARM toolset and the SimpleScalar ARM simulator for the base platform, we

are ready to port the GNU-ARM toolset to PAX.

 Appendix B: Implementation of PAX Processor

59

B.2.3 Building the Assembler

GNU Assembler File Structure

The Crosstool folder contains the GNU Toolset source codes that were used to build the

cross compiler. The file structure of these source codes is show in Fig B-2. The root directory is

subdivided into subfolders such as binutils-2.16.1/ and gcc-4.1.0/. The gcc-4.1.0/ folder contains

the source code for the GNU Compiler version 4.1.0. The binutils-2.16.1/ folder contains the

source code for the GNU Binary Utility version 2.16.1. The Binary Utility consist of the

assembler, linker, files that take care of the object file formats, configuration files, and more. The

GNU assembler related files are contained in the gas/ folder of binutils-2.16.1/. Further, all the

GAS target machine configuration files, which is used to port a target machine to the GNU

assembler, is contained within the config/ folder under gas/. To port the GNU-ARM assembler to

PAX, we create another copy of the existing tc-arm.c file, which is the ARM configuration files

for GAS; change the file name to tc-pax.c; and edit this file so that it fits the PAX design exactly.

tc-pax.c
target

configuration file
for PAX processor

other assembler-
specific files

GNU Toolset Source Code Root Directory:
~\crosstool-0.42\build\arm-unknown-linux-gnu\gcc-4.1.0-glibc-2.3.2

binutils-2.16.1/
folder containing source

code for GNU binary
utility

gcc-4.1.0/
folder containing source
code for GCC compiler

other GNU source
codes

gas/
folder containing
GNU assembler

source code

ld/
folder contaning

GNU linker source
code

other binary utility
files

config/
folder containing
target machine

configuration files

tc-arm.c
target

configuration file
for ARM processor

Fig B-2 GNU Toolset File Structure

 Appendix B: Implementation of PAX Processor

60

GNU Assembler Code Structure

Fig B-3 shows the code structure for the GNU assembler. Although the code is specific to

PAX, the code structure can be generalized to any processor ISA. Further, we wish to explain the

code structure of the GNU assembler with an emphasis on how to port a processor ISA. This is

not a complete discussion of the GAS code structure.

The main GAS program is contained in as.c. This program contains a main function,

which calls the perform_an_assembly_pass function to carry out the actually assembling process.

The assembling process can be roughly subdivided into two parts. One part deals with reading in

an assembler file, figuring out the object file format of the target processor, and setting up and

configuring the output object file accordingly, such as initializing the various object file sections

and taking care of symbol relocation. The other part involves actually translating a line of

assembly code such as “addi r8, r8, #0” to a sequence of binary code “0x10210000”. Since PAX

and ARM share the same object file format, we do not concern ourselves with the first part of the

assembling process.

The perform_an_assembly_pass function calls the md_begin function in tc-pax.c to store

the PAX instruction names and the registers into symbol hash tables. The purpose of this will be

clear soon. Afterwards, the read_a_source_file function in read.c is called to read in an assembler

file and assemble it. Besides configuring the object file format, the read_a_source_file function

parses individual lines of the assembler file and sends it as input to the md_assemble function in

tc-pax.c, which converts the line of assembler code into binary code. This process is best

illustrated with an example. Assume that the md_assemble function takes as input the following

PAX instruction:

 addi r2, r3, #0x08

 Appendix B: Implementation of PAX Processor

61

This instruction tells the processor to add 8 to the content of r3 and send the result to r2. At this

point, the instruction name and register hash table created by the md_begin function becomes

useful. The instruction name hash table stores all the PAX instructions with their corresponding

binutils-2.16.1/gas/as.c:

main()

- main function for gas
- parse arg, init for section, relocation etc.

binutils-2.16.1/gas/as.c:

perform_an_assembly_pass()

- main function for assembly
- initialize and set segment: .txt, .data, .bss etc.

binutils-2.16.1/gas/read.c:

read_a_source_file()

- read and process an assembly file

binutils-2.16.1/gas/include/tc-pax.c:

md_assemble()

- assemble an individual line of instruction

binutils-2.16.1/gas/include/tc-pax.c: md_assemble()

opcode = (const struct asm_opcode *)
 hash_find (arm_ops_hsh, str);
inst.instruction = opcode->value

- assemble opcode and subopcodes for the instruction
- note that the function names in tc-pax.c are still
 labeled as 'arm'. This does not affect the function of
 the PAX configuration file.

binutils-2.16.1/gas/include/tc-pax.c: md_assemble()

opcode->parms (p);

- assemble registers & other operands for the
 instruction. Different types of opcodes require
 different functions to do this assembling.

binutils-2.16.1/gas/include/tc-arm.c:

md_begin ();

- build hash tables for opcode, regs, cpu type etc

static CONST struct asm_opcode insns[] =
{
 /* PAX Instructions */
{"store.4", 0x0d000000, 0, PAX_1, do_PAX_Type_2},
{"addw", 0x1c000000, 0, PAX_1, do_PAX_Type_3a},
}

binutils-2.16.1/gas/include/tc-pax.c:
do_parms()

i.g. for addw, do_PAX_Type_3a

- assemble registers, subops, & operands for the
 instruction

Fig B-3 GNU GAS Code Structure for PAX Processor

 Appendix B: Implementation of PAX Processor

62

opcodes, subopcodes, instruction types, and more. The md_assemble function searches the

“addi” instruction from the hash table to assemble the opcode and subopcode for “addi”. Then,

given that the “addi” instruction has the instruction type 2, the do_PAX_Type_2 function is

called to assemble the operands. The assembling of the register operands r2 and r3 requires the

use of the register hash table.

As discussed above, the only part of the GAS source code that we need to change is the

part that involves translating individual lines of assembly code into binary code. After studying

the code structure of GAS, it seems like we only need change tc-arm.c to tc-pax.c by replacing

the ARM-specific configurations with PAX-specific configurations

B.2.4 Building the Simulator

SimpleScalar File Structure

The root directory of the SimpleScalar simulator is ~/simplesim-pax/5, as shown in Fig

B-4. Directly under this root directory, there is a program called main.c, which is the starting

point for the simulator. There is also a separate program for each of the simulation modules that

SimpleScalar supports, Table B-3.

Further, there is a sub-directory for each target processor that SimpleScalar supports.

These sub-directories contain a standard set of files that should be changed or written to port the

target to SimpleScalar. For example, the target-arm/ directory contain the ARM-specific

configuration files, and the target-pax/ directory contain the PAX-specific configuration files.

The file pax.h is the header file for the target processor that defines the data structure of the

5 I added the “pax” in the directory name to signify that this is the version of SimpleScalar that is ported to PAX.

 Appendix B: Implementation of PAX Processor

63

processor, including the register structure, the functional units, and different instruction bit fields.

These definitions in the header file are used by pax.c and pax.def, as well as the simulator files.

The file pax.def contains a list of macro functions and definitions that define the PAX instruction

set, the instruction format, and the implementation functions (decoder). The file pax.c contains a

set of utility functions that is related to the instructions, registers and disassembler. In addition,

the files loader.c loads an executable program into the simulator memory, and the files elf.c and

symbol.c take care of the object file format of the target processor.

In order to port PAX to SimpleScalar, we need to use the target-arm/ directory as a

starting point for the target-pax/ directory. We modify the arm.h, arm.c, and arm.def files by

adding in PAX-specific code to create the pax.h, pax.c, and pax.def files. Since PAX and ARM

share the same object file format, we do not need to edit the loader.c, elf.c, and symbol.c files.

Finally, we make some minor changes in the simulation module files.

 Appendix B: Implementation of PAX Processor

64

SimpleScalar Code Structure

Fig B-5 shows the code structure for the main.c file, which is the starting point of the

simulator. First, main.c initializes register statistics, which include a set of variables that record

run-time data about the register. Also, each simulation module may require various command

line options, and so the main.c file initializes these options. Further, a decode table, which is

used in decoding input instructions, is generated using the pax.c, pax.h, and pax.def files. Next, a

particular simulation module is initialized. This involves creating the register memory of the

SimpleScalar Root Directory:
~/simplesim-pax/

Target-ARM Directory

Target-PAX Directory

main.c:
define main() rountine for SimpleScalar
simulator. The code struction is target
independent. (I have added PAX code for
debugging purpose.)

pax.h:
define PAX register structure; define PAX
instruction bit fields (opcode, immediate,
subop, and register field) ; define PAX
SimpleScalar global variables and functions

pax.def:
define pax instruction set for all opcodes and
subops; define PAX instruction format and
instruction implementation function (decoder)

pax.c:
build opcode table for all PAX opcode and
subop instruction set; define register operation
functions; define instruction processing
functions; disassembler processing functions

loader.c, elf.h, symbol.c:
define PAX linker and loader function for
SimpleScalar simulator; same as ARM, which
uses the ELF format

arm.def,arm.h,arm.c,loader.c,elf.c,symbol.c:
ARM specific code, same structure as PAX.

sim-safe.c, sim-profile.c, sim-cash.c, sim-
fast.c, sim-outorder.c, etc:
define sim-main() routine for each simulation
mode. Need to change some code from ARM
to PAX, and add debug code for PAX.

makefile:
build multiple SimpleScalar simulation modes.
Need to modify to suit PAX.

Fig B-4 SimpleScalar File Structure for Porting PAX

 Appendix B: Implementation of PAX Processor

65

processor. Note that the main.c file is compiled separately for each simulation module. Then, the

executable program is loaded into memory. Finally, main.c initializes more simulation statistics,

sets the simulator start time, runs the simulation by calling a simulation module, and prints out

the log data.

The simulation modules differ in the way they analyze the run-time information, but the

code structure is similar. We examine the code structure for the functional simulator sim-safe.c,

as shown in Fig B-6. Many of the initialization functions called in main.c actually belong in the

simulation module file (main.c calls functions in these files). After initializations are complete,

sim-safe.c enters a while loop that fetches an instruction from memory, decodes it, updates the

simulator and register statistics, and fetches another instruction. Other more complicated

simulation modules analyze the data in more detail, but this while loop is always needed.

The main.c and sim-safe.c code structure presents a good overview of how the

SimpleScalar simulator is organized. As we have seen, all the processor-specific information

resides in pax.c, pax.h, and pax.def.

B.2.5 Extending the Toolset

In the previous Sections, we have demonstrated how to build a GNU assembler, GNU

linker, and SimpleScalar simulator for a new processor ISA. Although we ported the PAX

processor by using the ARM processor as the starting point, the methodology can be generalized

to build a toolset for other processors. Using the steps described above, we can further extend

upon the existing toolset to add new instructions, define new register memory, and create new

functional units and instruction flags.

 Appendix B: Implementation of PAX Processor

66

 initialize architected state
sim_load_prog ();

Initialize simulator options:
sim_reg_options(); // set sim options. from sim-safe.c
opt_process_options(); // parse simulator options
sim_check_options(); // check valid options

start
main ()

Initialize registers:
to set reg value, flag, output to file etc.
opt_reg_flag (); opt_reg_int (); opt_reg_string (), etc

simplesim-pax / main.c

end
main()

Initialize simulator I/O options:
fflush(stderr);
if (!freopen(sim_simout, "w", stderr))

initialize the instruction decoder */
md_init_decoder();

initialize all simulation modules
sim_init();

Initialize all simulator stats
sim_sdb = stat_new();
sim_reg_stats(sim_sdb);

set simulator start time
sim_start_time = time((time_t *)NULL);

Run simulator
running = TRUE;
sim_main();

End simulator and log data
exit_now(0); // finish simulator and print out results

SimpleScalar
simulation mode:
~/simplesim-pax/

sim-safe.c,
sim-fast.c,
sim-cash.c,

sim-profile.c,
sim-outorder.c,

etc

~/simplesim-pax/
target-pax/

pax.c

Fig B-5 SimpleScalar Main() Code Structure for PAX Porting

 Appendix B: Implementation of PAX Processor

67

simplesim-pax / sim-safe.c
(or other sim-[model].c)

innitialize the sim-safe model :
sim_reg_options(), sim_check_options(), sim_init(),
sim_load_prog (), sim_reg_stats();

start
sim-main ()

initialize default next PC
regs.regs_NPC = regs.regs_PC + sizeof(md_inst_t);

synchronize register files...
regs.regs_R[MD_REG_PC] = regs.regs_PC;

initialize DLite debugger
dlite_main();

loop while(true)

loop end

end
sim-main()

fetch a new instruction and get op code
MD_FETCH_INST(inst, mem, regs.regs_PC);
MD_SET_OPCODE(op, inst); // from am.h or pax.h

execute the instruction
 switch (op)
{
 #define DEFINST(OP, MSK, NAME...) case OP: \
 SYMCAT(OP, IMPL); break;
 #include "machine.def"
}

log data and output to file
 myfprintf(); md_print_insn();dlite_main();
go to next instruction for PC and NPC, if any
 regs.regs_PC = regs.regs_NPC;
 regs.regs_NPC += sizeof(md_inst_t);

simplesim-pax/
main.c

simplesim-pax/
dlite.c

simplesim-pax/
target-pax/

pax.def
pax.c
pax.h

simplesim-pax/
dlite.c

Fig B-6 SimpleScalar Sim-Safe Code Structure for Porting PAX

 Appendix B: Implementation of PAX Processor

68

 Moreover, many processors come in different word-sizes, and so, an interesting task is to

extend the existing toolset to different word-sizes. For example, the current toolset supports

PAX-32. Since this processor is designed as word-size scalable: including PAX-32, PAX-64, and

PAX-128, we would eventually like to have toolsets for PAX-64 and PAX-128. The major work

necessary to achieve this is to change the data structure definitions from the existing word_t (32-

bit integer) to 64-bit or 128-bit integers. Further, all instructions that manipulate these data

structures—such as the ALU instructions—must be changed accordingly.

 Finally, as we have shown, the SimpleScalar simulator makes it very convenient to add

new simulation modules. To thoroughly analyze PAX, we will need to write new modules in the

future.

 Appendix B: Implementation of PAX Processor

69

B.3 Design of VHDL for the PTLU functional unit for the PAX Processor

Fig B-7 shows the architectural block diagram for a 5-stage pipelined PAX processor. An

important feature of PAX is the Parallel Table Look-Up (PTLU) module, which was designed to

accelerate the table lookups used in symmetric key ciphers. The PTLU module is scalable for

PAX-32, -64, and -128. It consists of w/8 small blocks of memory that can be read in parallel,

where w is the wordsize of the processor. A PTLU instruction reads two source registers and

writes one result register.

Fig B-7 PAX 5-Stage Pipeline Architectural Block Diagram

 Appendix B: Implementation of PAX Processor

70

The benefits of the PTLU can be seen by running AES-128 on PAX. Using a 32-bit ARM

processor, one frame of AES-128 encryption takes over 800 cycles. PAX can run a frame of

AES-128 using much fewer clock cycles as shown in the table B-4.

The more memory that the PTLU uses, the fewer cycles it takes to complete one frame of

AES-128. However, there is a tradeoff between performance and memory size. As an example,

the PTLU module for PAX-64 is shown in Fig B-8..

Processor Type Execution Cycles for
1 Frame of AES-128

Encryption

Memory Increase

ARM-32 864 0
PAX-32 248 4 Kbytes
PAX-64 104 8 Kbytes
PAX-128 21 16 Kbytes

Table B-4 AES-128 Performance Comparison for ARM and PAX Processor

 Appendix B: Implementation of PAX Processor

71

Mapping AES-128 to PAX-32, PAX-64 and PAX-128

I also performed the detailed mapping of the AES algorithm to PAX-32, PAX-64 and

PAX-128. This is non-trivial, since PAX achieves its fast execution time for AES by performing

byte permutations of the indices into the parallel tables in the PTLU module, before using the

PTLU to do a parallel table lookup. The AES tables are different for AES encoding versus AES

decoding. Furthermore, the AES table lookup algorithms are different for PAX-32, PAX-64 and

PAX-128, since they have 4, 8 and 16 parallel PTLU tables, respectively, each 32-bits wide.

B7 B6 B5 B4 B3 B2 B1 B0

Rs1

A_XMUX3 A_XMUX2 A_XMUX1 A_XMUX0

B_XMUX1 B_XMUX0

XOR

64

Rd

PTLU
module

PT
L

U
 control

O
pcode &

 Subop from

instruction w
ord64

1

2

2

32

8

256
entries

X_MUX64

Rs2

64

Fig B-8 PAX-64 PTLU Block

 Appendix B: Implementation of PAX Processor

72

Performing the mapping required detailed understanding of how the AES cipher works, so as to

combine 3 steps per AES round (Substitute Byte, Mix Columns, and Add Round Key) into a

table lookup operation with the PTLU read instruction. Then the cyclical Shift Rows step of

AES has to be translated into byte permutation operations over the registers, for the next round.

This is quite difficult for the different sized registers for PAX-32 and PAX-64. The 6 sets of

PAX code for AES encrypt and decrypt for PAX-32, PAX-64 and PAX-128 are available at the

PAX web-pages (palms.ee.princeton.edu/PAX). Also, Fig B-9 compares how one frame of AES-

128 is implemented using its standard operations and how it is done through PAX.

 9
 Rounds

 ptr.x4

Plaintext

Cipertext

 Final
 RoundRound

Key 10

1-SubBytes

2-ShiftRows

XOR

 Initial
 RoundXOR

Cipher
Key

 9
 Rounds

1-SubBytes

2-ShiftRows

3-MixColumns

XOR Round
Key 1-9

Plaintext

Cipertext

 Final
 Round

 Initial
 RoundXOR

Cipher
Key

XOR Round
Key 1- 9

byte_perm

byte_perm

ptlu table lookup

Standard Implementation
of AES-128 Encryption

PAX PTLU Implementation
of AES-128 Encryption

 ptr.x4.2

XOR Round
Key 10

ptlu table lookup

Fig B-9 Mapping AES-128 to PAX PTLU Operations

 Appendix B: Implementation of PAX Processor

73

B.4 Implementation of PAX FPGA

After designing the simulator, assembler, linker, and VHDL code for the PAX processor,

we implement PAX on a Xilinx Virtex-II Pro FPGA. We note that implementing a full processor

on an FPGA is not a trivial task. FPGA in student projects typically implements only a

functional unit, not a pipelined processor like PAX. The first milestone is to verify that the PAX

VHDL code is synthesizable on the FPGA. To achieve this, we initialize the PAX processor with

an AES-128 encryption program onto the instruction memory and a set of input data onto the

Xilinx Virtex-II Pro FPGA Development Board

FPGA Chip

PAX
Processor

(Slave)

PowerPC
Processor
(Master)

UART
Controller

USB/JTAG
Controller

SDRAM
Controller

BRAM

On-chip Peripheral Bus (OPB)

SDRAM USB Port UART Port
(RS-232)

Fig B-10 PAX FPGA High-level Block diagram

 Appendix B: Implementation of PAX Processor

74

data memory. The second milestone is to verify the functionality of PAX by loading and running

different programs that is generated by PAX assembler. Fig B-10 shows the high-level hardware

architecture of the PAX FPGA. The PowerPC processor is used to read the information on the

data memory and send it to the HyperTerminal screen of an attached computer. We use the

PowerPC to provide I/O functions and connections to external memory. This saves us from

having to first define all these I/O functions for PAX before we can give it input or debug it by

seeing information on the display.

B.4.1 Hardware Design

 The detailed hardware architecture for connecting the PAX processor to the PowerPC on

the FPGA is shown in Fig B-8. We use PowerPC as peripheral controller for PAX processor and

user PC. We use the Xilinx provided BUS and control peripherals IP for PAX. We need to write

VHDL to interface the Xilinx peripheral IP to PAX that connects PAX to PowerPC, and then we

can use PowerPC to write to control PAX operation. The architecture is organized into three

major components – the PowerPC and its peripherals, the custom functionality interface, and the

user peripheral interface.

 The PowerPC component, shown on the lower portion of Fig B-8, is a processor that is

integrated into the FPGA chip. There are actually two PowerPC processors on the Virtex-II Pro

board, but we only need to use one of them. The PowerPC is connected to a set of peripherals

through the OPB bus. One peripheral is the multi-port memory control, which we use to connect

to a 512 MB SDRAM. It is also connected to an Ethernet port, which we do not use for the

moment. Further, PowerPC is connected to a USB port, which we use to upload the bitstream to

synthesize the FPGA. Finally, it is also connected to a UART port, which we use to send results

 Appendix B: Implementation of PAX Processor

75

and debug information to the HyperTerminal screen. Currently, we store all of the PowerPC

software on the 32 MB BRAM. This is enough for the moment, but if we run out of space, we

can easily expand the software on the 512 MB SDRAM.

 The user peripheral interface is shown in the upper right-hand side of Fig B-11. The

component is coded in the user_logic.vhd file. This component consists of the custom IP, and

this is the file where we instantiate the data memory and connect it to PowerPC. The

FPGA

Custom Coprocessor

User Peripheral (CIP Files)

IPIF (pax_ip.vhd)

OPB Bus

PAX Functionality Interface
 (user_logic.vhd) (tb_pax.vhd) (pax vhdl)

Slave
Attach-
ment

Address
Decoder

map
regsters

to

inst mem
data mem
dbg ports

and
ports for
pax-user
command

PowerPC

32KB BRAM

O
n-chip P

eripheral Bus (O
PB)

Interrupt
Controller

UART

USB 2.0

Multi Port Memory
Controller

DMA

Ethernet MAC

JTAG Debug

SDRAM
512MB

Ethernet USB

UART

JTAG

Reg 0

Reg 1

Reg 2

Reg
15

... ...

PowerPC to IP (31:0)

IP to PowerPC (31:0)

M
em

or
y

M
ap

pi
ng

 o
f R

eg
is

te
rs

PAX Core

Fig B-11 . FPGA Architecture on Xilinx Virtex-II Pro Development Board

 Appendix B: Implementation of PAX Processor

76

user_logic.vhd file was initially generated by the Xilinx software with a simple, exemplary

custom IP that consists of 16 input and 16 output registers. These 16 pairs of registers are

connected to PAX instruction memory, PAX data memory and other PAX processor ports for

debugging purposes. These 16 pairs of registers are then connected to the PowerPC processor

through the user peripheral interface (discussed below). Then, PowerPC can be used to read and

write to these registers by simply reading and writing to the specific memory addresses of those

registers. We define the communication link between PAX and PowerPC through the following

register mapping as show in Table B-5:

Register Map to PAX port
Register0_in User sends command to PAX processor. There are 32 bits to define different

commands such as:
• Start_PAX
• Stop_PAX
• Get_Current_PC
• Get_Current_Instruction
• Read_Data_Mem
• Write_Data_Mem
• Read_Instruction_Mem
• Write_Instruction_Mem

Register0_out PAX reports status to user. It also has 32 bits to define a set of PAX status

Register1_in
Register1_out

Map to PAX instruction memory address port for read and write.

Register2_in
Register2_out

Map to PAX instruction memory data port for write.
Map to PAX instruction memory data port for read.

Register3_in
Register3_out

Map to PAX data memory address port for read and write.

Register4_in
Register4_out
To
Register7_in
Register7_out

Map to PAX data memory address port for write.
Map to PAX data memory address port for read.

 PAX32 needs one 32-bit register (register4)
 PAX64 needs two 32-bit registers(register4 and register5)
 PAX128 needs four 32-bit registers (regsiter4 – register7)

Register8_out Map to PC port to read current instruction address
Register9-out Read out current PAX VHDL code version
Others Reserved for developer for debugging purpose.

Table B-5 Register mapping table for PAX FPGA

 Appendix B: Implementation of PAX Processor

77

The connections of the PAX ports described above will connect up the PAX processor to

the PowerPC processor such that PowerPC would be able to read from and write to the PAX

components for controlling the PAX operation.

 Although the registers are created in the user_logic file, the actually memory mapping of

these registers reside within the user peripheral interface component, shown in the upper left-

hand side of Fig B-8. This component is coded in the pax_ip.vhd code. This component connects

the custom IP in the user_logic.vhd file to the PowerPC processor. Although there are many

ports in this component, two ports in particular are important to us, as shown in the Fig B-8. One

port carries a 32-bit data signal from the PowerPC to the custom IP, while the other port carries a

32-bit data signal from the custom IP to the PowerPC. These signals are connected to the correct

registers based on the mapping defined in the pax_ip.vhd file.

B.4.2 Software Design

 In above FPGA design, we connect the PAX processor to PowerPC through a set of

“peripheral interfaces”. We also map a set of registers to the PAX processor, through which

PowerPC can control PAX. Now we look at C programs that are required to allow PowerPC to

communicate with PAX through the register set.

 Xilinx FPGA development kit provides an interface file, which I call

pax128_ip_selftext.c file. This is the top level C program that instructs how PowerPC should

communicate with the data memory component. The functions I developed for PAX are listed

bellow:

 Appendix B: Implementation of PAX Processor

78

void InitCmd()

void SetCmd(Xuint32 flag);

void ClearCmd(Xuint32 flag);

void GetPaxVhdlVersion();

void GetPAXStatus();

void StartPAX();

void StopPAX();

void WritePaxInstMem(Xuint32 addr, Xuint32 d, Xuint32 disp);

void ReadPaxInstMem(Xuint32 addr);

void WritePaxDataMem(Xuint32 addr, Xuint32 d1, Xuint32 disp);

void ReadPaxDataMem(Xuint32 addr);

void GetCurrentPaxPC();

void GetCurrentPaxInst();

void Delay(Xuint32 num);

void LoadPaxProg();

void DetectPaxProgramDone(Xuint32 timeout);

void ClearPaxDataMemory();

These set of utility functions provide a way for a user to load a PAX program, run a PAX

program, and debug PAX for further improvement. A picture of the FPGA implementation is

shown in Fig B-12. The PAX FPGA development system is shown in Fig B-13. The FPGA test

result on Hyper Terminal is shown in Fig B-14.

 Appendix B: Implementation of PAX Processor

79

Binary Field

Multiplier

ALU

SPU

64

64

64

Register File
(32 registers) T7

T6

T5

T4

T3

T2

T1

T0

Combinational Logic

Fr
om

 M
em

or
y

PTLU
Module PAX Processor Core

PAX Peripherals and Controller

PAX FPGA VHDL Hardware Module

Fig B-12 PAX FPGA Board

 Appendix B: Implementation of PAX Processor

80

Fig B-13 PAX FPGA Development System

Fig B-14 Hyper Terminal Screen for PAX FPGA Test

