Improving Cyber Security

Ruby B. Lee

Cyber security is essential given our growing dependence on cyberspace
for all aspects of modern societies. However, today, attackers have the up-
per hand. In this chapter, I discuss the security properties needed, and
some key strategies that may have the potential to level the playing field
between attackers and defenders. These research strategies were developed
at the National Cyber Leap Year summit, with experts from industry, aca-
demia, and government working collaboratively. These broad research
thrusts can be interpreted at different levels of the system, and in different
application domains. Because a promising direction explored at the sum-
mit is the use of hardware architecture to enhance security, I provide a
hardware-enhanced interpretation of the proposed research thrusts, with
the goal of illustrating how new security features can be built into future
commodity computers to improve system security. The goal is to be able to
ensure essential security features for critical tasks, even in the presence of
malware and software vulnerabilities in the system, and users who are not
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security-savvy. Feasibility examples are given to show how new hardware
security features can help improve software security and also how hard-
ware itself can be designed to be more trustworthy. These examples illus-
trate that by rethinking the fundamental design of computers with security
as one of the key requirements, we can design future secure, trustworthy
computers without necessarily sacrificing performance and other goals.

Cyber Security Today

In its early days, the Internet was used as a means of enhancing research
among collaborating scientists. Internet protocols were designed to enable
seamless inter-network communications between sender and receiver across
heterogeneous networks, resulting in the name “Internet.” Researchers
worked hard to define the basic Internet protocols! and make them work,
hiding the physical complexity of the different physical network technolo-
gies being used while allowing full flexibility to implement arbitrary appli-
cations across heterogeneous networks. The success of this design can be
seen today in the various applications built on top of the Internet, such as
the World Wide Web, search, web mail, e-commerce, e-banking, and so-
cial network applications. Today, our social lives, our economic competi-
tiveness, our national security, and in fact all aspects of our lives depend on
the correct functioning and ubiquitous availability of the Internet and
wireless networks. This dependence on the Internet and on cyberspace
transactions is increasing at the same time cyber attacks are escalating.
With society’s growing dependence on cyberspace, cyber security be-
comes a critical issue. The technologies that make up cyberspace were not
designed with security in mind. Internet protocols were designed for
friendly parties to communicate and collaborate with each other—they
were not designed with malicious adversaries in mind. Similarly, computer
technology, both hardware and software, was not designed with attackers
in mind. Hence, it should not be surprising that the basic network, soft-

1. For example, supporting the TCP/IP (Transmission Control Protocol/Internet
Protocol) protocols enables the fundamental interoperability across different rypes of
networks.
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ware, and hardware technologies underlying eyberspace are full of security
vulnerabilities that can be exploited by malicious parties. In addition, at-
tackers only need to find one path into the system to infiltrate it, whereas
defenders have to defend on all fronts. Furthermore, since most computer
systems use the same systems software and hardware, the attacker will also
have found a way to infiltrate a large majority of today’s computers.

AN EXAMPLE OF AN INTERNET~SCALE ATTACK

An example of an Internet-scale attack is a distributed denial-of-service (DDoS)
attack. In a DDoS attack, an army of zombies (also called a botned) is har-
nessed to attack a primary victim, which could be a website, cotnputer, or
network (see Figure ra). The zombies are actually secondary victins, since
they are innocent computers whose owners are unaware that their ma-
chines have been infected with malware that can turn their machines into
“zombies” (also called “bots” or “agents”) that can be used in a DDoS attack
on a primary victim.

Such stealthy infiltration of computers and installation of zombie pro-
grams can be done months before an actual DDoS attack is launched. They
are possible due to security vulnerabilities, most often in the software, that
can be exploited by an attacker to infiltrate 2 computer and silently install a
zombie program without being detected. They even allow for updating
such bot code in the zombie computer and sending the computer’s configu-
ration updates to the adversary, During a DDo$ attack, the zombie pro-
grams are invoked to send innocuous requests to the primary victim website.
Such requests are essentially indistinguishable from legitimate requests to
this website. However, a flood of zombie requests from a large number of
computers to a victim website can overwhelm it and its surrounding net-
work, making it unable to provide service for legitimate requests (see Fig-
ure 1b). Hence, this is a denial-of-service (DoS) attack on the availability of
services. It is called a diszribured denial-of-service (IDDoS) attack because
the flood of requests comes from frontline zombie computers, which can
be distributed all over the world, making it hard to drop traffic from just a
few sources.

A DDoS attack is disturbing because it is like using innocent citizens
without their consent to form an ad-hoc army to cause damage to one’s
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(a) Attacker

Handler
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@ Service request from zombie computer
- Lagitimate request for service

Frgure 1, Distribured denial-of-service {DDoS) attack: (a) Example of a DDoS attack
network; (b) DDoS attack flooding a primary victim site.

own country or other countries, Tracing the true attacker is difficult, since
he will typically hide behind many levels of indirection, using handlers
(which are themselves infected computers) to infiltrate other computers
and install handler or zombie code on them. The zombie code and the ac-
tual requests made during a DDoS attack often use very little storage,
computing, and networking resources, so they essentially run “under the
radar” and are invisible to the user of the zombie computer, With software
and networking enabled in trillions of devices and embedded systems, rather
than just millions of computers, IXDoS attacks can become orders of magni-
tude more potent in flooding network bandwidth and computer resources.
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FUNDAMENTAL SECURITY FROPERTIES

There are many security properties required or desired in computer and
communications systems. ‘Three such properties have been called corner-
stone security properties: confidentiality, integrity and availability; their
acronym, CIA, is the same as a famous U.S. agency and hence is easy to
remember. Confidentiality is the prevention of the disclosure of secret or sen-
sitive information to unauthorized users or entities. Inzegrity is the pre-
vention of unauthorized modification of protected information without
detection. Avazlability is the provision of services and systems to legitimate
users when requested or needed. This is similar to providing reliability (or
fault-tolerant systems), except that availability, in the security sense, is harder
because it has to also consider intelligent atrackers with malevolent intent
whose behavior cannot be characterized by a probability distribution—
unlike device failures and faults,

In addition to the fundamental CIA triad, there are many other impor-
tant aspects of security, some of which I define briefly here. Aecess control,
comprising both euthentication and authorization, is essential to ensure that
only authenticated users who are authorized to access certain information
can in fact access that material, while denying access to unauthorized par-
ties. Attribution support should ideally be built into secure systems in order
to find the real attackers when a security breach has occurred. Accountability
support holds vendors, owners, users, and systems responsible for vulnera-
bilities that enable successful attacks. Non-repudiation is desirable to ensure
that a user cannot deny that he has made a certain request or performed a
certain action. Attestation is the ability of a system to provide some non-
forgeable trust evidence of its hardware and the software it is currently
running. Anonymity is the ability to perform certain actions without being
identified or tracked. Privacy is the right to determine how one’s personal
information is disseminated, or redistributed by an authorized recipient.
Confidentiality and privacy are different in the sense that confidentiality is
the obligation to protect secret information, while privacy is the right to
protect one’s personal information. However, it is possible that they may
share similar defense mechanisms.

1 define a secure computer system as one that provides at least the three
cornerstone security properties of confidentiality, integrity and availability.
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A trustworthy computer is one that is designed to be dependable and to pro-
vide such security properties, to do what it is supposed to do and nothing that
may harm itself or others. In contrast, what has conventionally been pro-
posed is a trusted comsputer—one that is depended on to enforce security poli-
cies, but if it is infiltrated, then all bets are off for enforcing security policies.
More precisely, this has been described as a computer with a trusted compur-
ing base (TCB), which if violated means that security policies may not be
enforced. Unfortunately, no COTS (commodity off the shelf) computer
system today can achieve a dependable trusted computing base. In fact, com-~
modity computers just have not been designed to be trustworthy. Security
has typically been bolted on, after the fact, resulting in degradation of per-
formance, cost, time-to-market, and ease-of-use. Furthermore, security
issues are not even in the core computer architecture, hardware or software
curricubum in colleges in the United States today, whereas they were more
routinely tanght thirty to forty years ago. This has created a crisis in edu-
cated manpower in the research, design and development of secure and
trustworthy computer systems that are so sorely needed for cyber security.
Hence, there is an urgent need to remedy this and to consider both the re-
search and the educational needs for improving cyber security.

Strategies for Improving Cyber Security

Today, cyber attackers have a highly asymmetric advantage over defenders.
How can we level the playing field so that attackers do not have such an up-
per hand? How can we increase the work factor for mounting successful
cyber attacks by orders of magnitude?

Among many publicand private sector initiatives, there was a government-
sponsored initiative called the National Cyber Leap Year (NCLY) initia-
tive, whose goal was to find game-changing strategies for improving cyber
security, leaping ahead of current incremental or reactive strategies. Mul-
tiple rounds of calls for proposals for research directions were issued, and
hundreds of responses came from both companies and universities. From
these, a few major research directions were honed and discussed in an NCLY
summit held in August 2009 to which security experts from industry and
academia were invited. The summit was hosted by NITRD, representing
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thirteen government agencies, with many security experts from these gov-
ernment agencies present. It promoted constructive discussion of five re-
search directions that were considered to have game-changing potential;
hardware-enabled trust, digital provenance, nature-inspired cyber health,
moving target defense, and cyber economics. The findings were summa-
rized in the NCLY Summit Co-Chairs’ Report [x]. While these approaches
were considered to be promising directions where cyber security research
is required, this does not in any way imply that other approaches are not
promising.

The summit brought together experts from industry, academia, and
government, with very different hackgrounds and viewpoints, to rally un-
der the common goal of improving cyber security. As an invited co-chair, I
found the collaboration promoted by the summit quite refreshing, as did
other co-chairs and participants, Indeed, such collaboration is needed to
make real inroads in improving cyber security. More importantly, it is
gratifying to note that this summit has had significant impact on govern-
ment funding for cyber security research. Within about eighteen months,
many government agencies, including NSF, DARPA, DHS, and DOD, to
name g few, put out calls for proposals for rescarch funding in these and
related cyber security research areas.

Some of the promising research directions discussed at the summit can
be combined under a broader umbrella of what might be termed “proactive
design strategies” to:

enable tailored trustworthy spaces within the generally untrusted
cyberspace;

thwart attackers with moving target defenses; and

reward responsible behavior with economic and other incentives.

‘These three major thrusts were presented at the NCLY kickoff meeting
in May 2010 [2]. Below, T will first discuss these three strategies, in general,
for improving cyber security. Then, to illustrate how these research strate-
gies can be applied not only to the more visible layers of software and net-
working, but also to fundamenta! hardware design, 1 will give some
feasibility examples on how to build future trustworthy computers that can
help improve cyber security with hardware-enhanced trust.
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ENABLING TAILORED TRUSTWORTHY SPACES

The goal of this research direction is to create technology that can pro-
vide trustworthy spaces on demand, tailored to the needs of the usage
scenario.

This is in contrast to the conventional strategy where a sandbox is set up
for executing untrusted applications. A sandbox is a constrained execution
environment where the untrusted application is unable to use all the re-
sources normally available on the computer system. While this may pre-
vent it from accessing or modifying critical system resources, it also means
that many existing applications will not run as they did before, leading to
user dissatisfaction with such “security-upgraded” systems.

The fundamental difference of the proposed strategy is that untrusted
applications run as before, with the same access to the system resources
that they had before, However, trusted applications that are security-
critical should be enabled to run in newly created trustworthy spaces, tai-
lored to their needs. This recognizes that there is no one-size-fits-all
trustworthy space. Instead, different trustworthy spaces should be created
based on the security requirements of the particular application, or of the
secure, sensitive, or proprietary data that are to be accessed. For example, the
confidentiality levels required are different for protecting YouTube videos,
movie rentals, online medical records, bank accounts and nuclear weapons.
Similarly, confidentiality, integrity, availability, and privacy requirements
differ from one application to another, from one environment to another,
and {rom one use-case to another. Hence, the goal is to provide a secure
execution environment for trusted applications without constraining un-
trusted applications, which can then run as before and also use the full
functionality provided by commodity systems.

While this can be achieved in many ways, one approach is to set up a
secure execution compartment, tailored to the security needs of the particular
application, user, environment, and context. The security-critical part of
an application then runs only in this secure execution compartment, where
it is protected from other applications and also from system software such
as the operating system or hypervisor, which might want to snoop on its
confidential data or code. In addition to secure setup and secure execution,
it is also important to provide secure termination of such secure execution
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compartments, to prevent an a posteriori leak of confidential information or
contamination that may affect its future use.

An example of how small changes to the hardware and software archi-
tecture can enable this is discussed later, in the Bastion Security Architecture
section.

In another approach, it would be great if we could enable se/f-protecting
data—that is, data that can protect themselves from security breaches. This
can be interpreted as data that have an attached security policy that cannot
be violated no matter what application uses the data. Hence, the application
does not have to be certified as trusted before it can be allowed to access
protected data. Such data would have confidentiality and integrity policies
that are either predefined, or can vary dynamically based on the context, the
time, the location, the application, the system, and the user accessing the
data. New hardware may be needed to enforce such policies, but for older
computers without this new hardware, the self-protecting data might be
accessible only in encrypted form, for example, with no access to the de-
cryption key.

Data provenance, where the chronological history of the ownership of the
data can be reliably obtained, is also highly desirable, both to establish data
authenticity and to track adversaries when security has been breached.

It is also desirable for the system to be able to give some trust evidence to
users that the protections they requested for their trustworthy spaces have
indeed been set up and are being enforced. This may require the system to
be able to perform tatlored attestations [3] to give unforgeable assurances to
the requester of the identity, type, or properties of the hardware and the
software that is running on the system.

These are just a few examples of some promising research directions
that may help enable the dynamic establishment of tailored trustworthy
spaces within the untrusted cyberspace—without crimping the flexibility
and functionality of existing applications or future applications that do not
need such security.

It is not easy to set up such tailored trustworthy spaces, on demand, over
the public Internet in insecure cyberspace. But if it can be done, it can
enable the resilient execution of security-critical tasks, even in the pres-
ence of active attacks or malware previously introduced into the computer
system.,
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THWARTING ATTACKERS WITH MOVING TARGET STRATEGIES

"The goal of this research direction is to significantly increase the attacker’s
work factor for a successful attack and to reduce the number of machines
that succumb to the same attack path.

One problem with today’s homogeneous computing environments is
that once an attacker finds a penetration path into a system, he can pene-
trate a huge number of similar systems. The majority of today’s desktop
and notebook computers use the Microsoft Windows operating system and
Intel microprocessors, and the same web browsers, e-mail programs, and
database software. Hence, many computers will have the same security
vulnerabilities in either the software or the hardware. The idea of a moving
target defense strategy is to have each system look different to an attacker,
and even have a single system look different over time. This means that the
attacker must learn to penetrate each system separately, and relearn how
to penetrate a system he has already found a path into before—thus signifi-
cantly increasing the attacker’s work factor for a successtul attack. A major
challenge is to ensure that the system is as easy for legitimate users to use
as it was before, while making it orders of magnitude harder for attackers.
This moving target defense strategy also changes the game from today’s
reactive defense posture triggered by new attacks, to a preemptive posture
where systems are specifically designed to look like moving targets to po-
tential attackers.

A promising approach in moving target defense strategies is to use
randomization in system design. This could potentially improve both
the security and the performance of the system, rather than trading off one
for the other. Randomness between systems, and within a system, can
thwart would-be attackers from doing vulnerability mapping attacks that
apply to many machines, or to one machine over a long period of time.
Past research has also shown how randomization in algorithms can -
prove its performance. If we can combine these benefits by applying ran-
domization theory in the creative design of new systems that have built-in
moving target defenses, we can indeed achieve the previously conflicting
goals of improving security and improving performance at the same time.
In the Hardware Security Examples section, I show an example of applying
the moving target defense strategy to design hardware cache architectures
that improve both the performance and the security of cache memories.
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Another approach is to use biologically-inspired defenses, where diver-

sity helps prevent the extinction of a species due to rapidly-spreading vi-

ruses and diseases. Concepts of diversity, randomness, and moving target

defenses could all be explored, as well as their potential and real impact on
improving cyber security.

REWARDING RESPONSIBLE BEHAVIOR

The goal in this research thrust is to realign cyber economic incentives for
promoting socially responsible behavior in cyberspace and for deterring
malicious behavior.

Today, cyber crime pays: small investments of money and time can yield
a large return on investment (ROI). How can we turn the tables so that
cyber crime does not pay—or at least does not pay so well? How can we
reward responsible behavior in cyber space that may prevent someone else
from being attacked, even if we ourselves are not affected? It is said that
fear and avarice are the greatest motivators. Since we do not want to wait
for a “cyber 911" attack (fear) to trigger improvements in cyber security,
can we use economic incentives (avarice) instead to strongly encourage
software, hardware, and network vendors and cloud computing providers
to build more secure products using the best security design principles and
practices? Also, what economic incentives will persuade individual users,
companies, and organizations to buy—and even demand-—secure comput-
ers and services, and to implement security best practices?

Improving cyber security is a bit like improving the environment—
although no single entity is ultimately responsible, everyone should be made
aware of the consequences and should do their part. For example, the DDoS
attacks discussed earlier in this chapter can be significantly mitigated if
individual users and corporations do their best to prevent their machines
from being used as zombies or bots in such attacks. It may be possible for
fines to be levied on corporations with zombie machines, or more generally,
for machines where the “security health” metrics are unacceptable. Exhorta-
tion alone may not work; note that legislation was needed to enforce car seat
use to protect infants in car accidents. However, rather than punitive legisla-
tion, the spirit of this research thrust is more toward rewarding responsible
behavior. What legislation could provide economic incentives for responsible
cyber security behavior, comparable to incentives for using alternative energy
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sources for conserving energy in “green” buildings and automobiles? But
even without any legislation, if the general public is made aware of the secu-
rity risks, their costs and their potentially disastrous outcomes, they may
provide the market pull for vendors to provide more secure I'T (Information
Technology) products and systems as competitive advantages.

In addition to economic incentives, research into other incentives for
responsible cyber security practices is also highly encouraged. This may
include the incentive to protect one’s reputation in cyberspace. Fear of Jos-
ing future business if one’s reputation is damaged seems to have worked
well in promoting responsible behavior when selling goods through web-
based sites like eBay.

Hardware Security Examples

General strategies are good, but it is always helpful to see some actual ex-
amples. Also, since hardware-enhanced security solutions are less familiar
to the general public, and even to the security commaunity, it may be inter-
esting to see some hardware feasibility examples using these general re-
search strategies.

Hardware security mechanisms can satisfy one of the fundamental NCLY
cyber security goals—it can significantly increase the work factor for at-
tackers, since it is often orders of magnitude harder to launch 2 successful
attack on hardware than on software. Hence in this section, I discuss the
Bastion and Newcache architectures, where hardware security features can
be built into future commodity computing devices to enable the construc-
tion of more secure computer systems. ‘The Bastion architecture provides
hardware and software mechanisms to facilitate the creation of tailored
trustworthy spaces, while the Newcache architecture uses a moving target
defense strategy to provide more trustworthy hardware that cannot be
used to leak confidential information.

ARCHITECTURAL SUPPORT FOR TAILORED TRUSTWORTHY SPACES

Software virtualization technology can be used to protect a trusted appli-
cation from untrusted applications, and is the core technology underlying
cloud computing. Software virtualization ereates virtual machines (VMs),
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which run on a system software layer called a virtual machine monitor
{(VMM), also called a hypervisor. This hypervisor manages all the hard-
ware resources and isolates one virtual machine from another, giving each
the illusion that it has the machine to itself. Trusted virtual machines can
be used to run security-critical applications, while untrusted virtual ma-
chines run untrusted applications. This allows existing programs to run as
normal, using a commodity (untrusted) operating system in the untrusted
VM. Meanwhile, trusted applications are isolated by the hypervisor in a
new trusted VM.

While software virtualization can provide adequate security for many
applications and use cases, it has some unresolved security and perfor-
mance issues. First, it requires that the entire software stack, including the
operating system, be trusted in the trusted virtual machine. However,
commodity OSes that are publicly available today with the functionality
demanded by applications, are not trusted. While there are some verified
OS microkernels like seL4 (4], or ones designed to be trusted like selinux
[5], they are not widely deployed. Second, performance is degraded as
costly world switches are needed to switch from an untrusted virtual ma-
chine to the hypervisor to the trusted virtual machine and back. Third, the
isolation of virtual machines executing on the same physical machine pro-
vided by software virtualization cannot prevent the leaking of confidential
information through the shared hardware resources (e.g., through cache-
based side-channel attacks, discussed in the “Mitigating Hardware Infor-
mation Leaks” section later in this chapter). This can leak secret encryption
keys with correctly functional hardware resources, thus defeating any
cryptographic protection for confidentiality or integrity.

Furthermore, typically only a small part of an application is security-
critical. Rather than trying to certify that the entire large application is
trusted, it may be easier to verify only the security-critical modules, i.e.,
verify that they perform the required functions correctly, do not leak con-
fidential information, and do not contain bugs (security vulnerabilities)
that can be exploited by attackers. These security-critical modules are
typically much smaller in size than the entire application, and therefore
amenable to advances made in static code analysis techniques and theo-
rem proving techniques used to verify their trustworthiness [4]. Fre-
quently, these security-critical modules must run in the same virtual
address space as the untrusted application as, for example, in a security
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monitor running alongside the untrusted application it is monitoring.
Hence, a virtual machine may be too coarse granularity for a trustwor-
thy space; we may need a finer granularity trustworthy space within a vir-
sual machine. Possible hardware solutions to these problems are discussed

below.

Bastion Security Architecture

Bastion is a hardware-software architecture (3, 6] that can provide secure
execution environments for executing trusted software modules in an un-
trusted software stack. The trusted software modules encapsulate security-
critical tasks and must be used to access protected data. Tn a Bastion system,
the operating system. in a virtual machine need not be trusted; only the
microprocessor and the hypervisor must be trusted in order to enforce the
security policies for confidentiality and integrity, for the trusted software
modules and their data.

Figure 2 shows a block diagram of the Bastion architecture in a typical
virtualized environment. It shows a computer with a hypervisor managing
the hardware resources for two virtual machines: one running a Windows
OS and the other running a Linux OS. Bastion leverages this virtualized
environment, since it is very common in both client computers and cloud
computing servers today. Rather than expect the entire hardware platform
to be trusted, Bastion only requires that the microprocessor chip be trusted.
In particular, the main memory is not trusted (unlike the assumptions for
the systens using the Trusted Platform Module (TPM) chip [7], where the
entire hardware box is considered trusted, including the main memory
and buses). Similarly, rather than requiring the entire software stack to be
trusted, Bastion only requires the hypervisor to be trusted. In particular,
the guest OS in the VM is not required to be trusted to rusn the trusted
software modules A, B, and C (shown in gray) within untrusted applica-
tions on an untrusted commodity OS.

For example, module A could be a security monitor running inside the
virtual address space of Application 1, which it is monitoring for secarity
breaches. Clearly, it is important to protect the security monitor itself—-
that is, protect module A from an attacker exploiting some security vulner-
ability in Application 1, some other application, or the OS to infiltrate the



Improving Cyber Security 51
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Figure 2. Bastion hardware-software security architecture.

system and attack module A. In general, an application writer may be very
motivated to write a secure application (or secure modules within a large
application) to protect his security-critical data, but he has no control
over other applications or the OS, While OS vendors are highly motivated
to secure their OS, it is such a large and complex piece of code that this is
an extremely difficult task. Frequent security updates are evidence of the
continuing vulnerability of an OS to attacks, despite the best efforts of
OS providers. Bastion thus does not require the OS to be bug-free, but in-
stead protects trusted software modules (e.g., A, B, and C) from a compro-
mised OS.

Bastion architecture also provides module A with its own secure storage
(shown in Figure 2 as a grey component A, in the local disk or remote stor-
age). This is not a fixed contiguous portion of the disk or online storage,
but rather the secure storage consists of any portions of the regular storage
medium that are cryptographically secured (i.e., encrypted for confidenti-
ality and hashed for integrity). Only module A has access to the keys to
deerypt and verify the hash of its secure storage A. These keys are pro-
tected by the trusted hypervisor, which is itself directly protected by the
trusted microprocessor in Bastion. This secure storage is persistent (a non-
volatile memory resource) in that it survives power on-off cycles.
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Secure and authenticated memory is also provided to module A during
its execution. This is volatile memory that does not survive power on-off
cycles, but must be protected in order to provide a secure execution envi-
ronment for a trusted software module like A BorCin Figure 2. This and
other hardware mechanisms 13, 6] provide a fine-grained, dynamicaily in-
stanttated, secure execution compartment for trusted software, Hence,
Bastion can be used to enable tailored trustworthy spaces within a seq of
untrusted software, with hardware-hypervisor architectura] support,

Figure 2 also illustrates that Bastion can Support any number of trusted
software modules from many different trust domains simultaneously. For
example, Bastion supports trusted software modules in ejther application
space (modules A and C) or QS space (module B). Module B can also have
its own secure storage B, which is not accessible to the rest of the OS or any
other software, Module C is another trusted software module iy 3 different
virtual machine.

Bastion also provides trustworthy tailoved attestation [3], which enables a
temate party to query the state of the trusted components it requires to
perform a security-critical task. "This can provide an unforgeable report of
the integrity measurements of the trusted software modules required for
the security-critical task, and of the hypervisor. Input parameters, configu-
rations, and output results of a secure computation can also be included in
the attestation reporr, Attestations can be requested any time, and are very
fast.

Minimal Trust Chains and Secure Trust Anchors

An important difference with conventional TPM-based systems (7] is the
minimal trust chain used by Bastion, which can skip layers of untrusted
software, like the OS and some middleware. Bastion only requires that the
microprocessor, the hypervisor, and the relevant trusted software modules
form a secure trust chain, skipping layers of untrusted software in between.
This minimal trust chain is illustrated on the bottom in Figure 3, while the
traditional full trust chain where every layer of software must be trusted
and unmodified is shown on the top. Minimal trust chaing can enable more
resilient execution of security-critical tasks, since they will not be pre-
vented from executing due to updates or malware in unrelated software,
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Figure 3. Conventional and minimal trust chains.

However, it is the responsibility of the applications designer to ensure that
all the needs of the security-critical task are encapsulated in the trusted
software modules and the hypervisor. The integrity of this minimal chain
of trusted hardware and software components can then be reported upon a
tailored attestation request,

While not every software layer has to be verified and attested to in a
minimal trust chain, it is important that this chain is securely rooted. In
Bastion, this is securely rooted in the trusted hypervisor and the new hard-
ware registers and mechanisms used to protect the trusted hypervisor.

The concept of minimal, layer-skipping trust chains was first proposed
in an earlier secure processor architecture called the Secret Protection
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(SP) architecture {8, 9]. Here, a trusted hypervisor is not needed, and the
antrusted OS runs directly on hardware. SP uses only two new registers as
hardware trust anchors to anchor a minimal trust chain for protecting a
crusted software module, as shown in Figure 3. Itis a simpler security ar-
chitecture than Bastion, useful for embedded or closed systems, but is not
scalable as Bastion for simultaneously protecting multiple, mutually-
suspicious trust domains,

MITIGATING HARDWARE INFORMATION LEARS

New hardware architecture can be used to enhance the security provided
by software. For example, hardware can assist software in providing tai-
lored trustworthy spaces and secure trust anchors, as illustrated above by
the Bastion and SP architectures. In addition, hardware itself should also
be designed to be more trustworthy. For example, it should not leak secret
information when operating correctly. Below, I discuss how this can hap-
pen, and show an example where a moving target defense is used in hard-
ware design, to design leak-free caches that also improve performance.

Tn hardware design today, a fundamental strategy used for performance
optimization is what I will characterize as a strategy to “make frequent
paths fast, but allow infrequent paths to be slow.” This enables the aver-
age execution time taken to be much closer to the fast path. For example,
the frequently referenced memory items are stored in a fast cache mem-
ory that is much faster but smaller than the main memory. If the pro-
cessor wants an item from memory, it gets this item very quickly if the
item is found in the fast cache (called a cache hit). Otherwise, a cache miss
occurs and it takes a long time (currently hundreds of processor cycles) to
fetch the item from the main memory. This simple strategy has worked well
for hardware performance optimizations, reducing the execution time
taken.

Unfortunately, the two possibilities of a fast path and a slow path, which
can be observed by anyone, or any program, that can time such operations,
can be used to encode a binary “0” or “1.” Hence, such performance opti-
inization hardware mechanisms can be used to leak secret information
through both covert channels and side channels. In a covert channel attack,
an authorized insider leaks secret information to an unauthorized recipient
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using mechanisms not intended to be communications channels. In a side-
channel artack, an insider is not even needed——for example, correctly func-
tioning hardware can leak information without violating any usage or
security policies,

In a power analysis side-channel attack [xo], for example, an attacker can
measure the power consumption of a program, and thus infer secret infor-
mation such as a secret cryptographic key embedded inside the computing
device. While most hardware side-channel attacks require physical access
or proximity to the device, cache-based side-channel attacks do not. They
can be triggered remotely, and they also do not need any special equipment
to obtain the side-channel information [11, 12, 13, 14]. For example, a sim-
ple software side-channel attack using the cache can be constructed easily
by having a “listener” program run on the same computer as a victim pro-
gram, accessing data in a large data structure that uses up all the cache
lines in the shared hardware cache, and timing each access. When the vic-
tim program is scheduled to run, it will replace some of these cache lines
with the data it needs. When the listener programn is scheduled to run
again, it will access its large data structure again and time each access: a fast
cache hit indicates his data has not been replaced in the cache, but a slow
cache miss indicates that it has been replaced—most likely by the victim
program’s data. This can be used to leak information about which memory
locations the victim program has accessed, since all computers use a static,
fixed, memory-to-cache mapping for all programs. From this, the attacker
can deduce which table entries were used by the victim program. If the
victim program was an encryption program like the Advanced Encryption
Standard (AES) [15], the attacker can then deduce which AES table entries
were accessed in the cipher and hence what key bits were used to index
these tables. This can be used to infer some or all of the bits of the secret
encryption key.

Such cache-based side-channel attacks can undermine the strong crypto-
graphy used to encrypt secret information to protect its confidentiality.
They can also undermine the isolation of different virtwal machines pro-
vided by hypervisors. In general, the attacker’s strategy is simple: exploit
shared hardware performance optimization mechanisms like caches or
branch prediction mechanisms to leak information. Hardware power opti-
mization mechanisms can also be exploited similarly. Hence, we recommend
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that new strategies for performance optimization should be researched that
can improve performance without sacrificing security.

Newcache: Moving Target Defense in Hardware

"The Newcache architecture uses a new moving target strategy in hardware
cache design to achieve both performance and security improvements si-
multaneously [16]. In particular, rather than use the conventional fixed,
static mapping of memory addresses to cache lines, it uses a dynamic, ran-
domized mapping of memory addresses to cache lines. Hence, even if the
same program is executed on the same computer, it will have a different
memory-to-cache mapping each time it executes. Also, the same program
executing on a different machine of identical configuration will have a dif-
ferent and unpredictable memory-to-cache mapping. Hence, even if the
attacker can observe which physical cache lines hit or miss, he or she can-
not deduce any information about the memory locations actually used by a
victim program. This thwarts these fast and dangerous cache side-channel
attacks-—without requiring any software changes in the application pro-
grams, nor any changes in the compiler or the instruction set architecture
(ISA) of the microprocessor executing the programs. Hence, it is a hard-
ware solution for 2 hardware information leakage vulnerability. It is also an
example that shows that hardware can itself be designed to be more secure
and trustworthy; in this case, to not leak information.

In the past, design for security has been at odds with design for perfor-
mance. One had to choose either a secure system or a high performance
system. The Newcache example shows that this need not be the case if we
are willing to rethink some basic aspects of computer design. Here, per-
mitting the freedom to do a clean-slate design is needed, although the re-
sulting design may in fact not need to change too much of established
designs. In Newcache, we only need to change the address decoder-
something that has not been changed in the multitude of cache optimiza-
tion designs proposed in the last three to four decades.

Newcache architecture also shows that vsing randomization in hard-
ware design can in fact improve both security and performance. This is a
surprising result, since cache performance is actually improved due to re-
thinking the design of caches for security [16]. It is especially surprising in
such a marture area as cache design, which has been thoroughly studied by
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both researchers in academia and practitioners in industry, since caches are
perhaps the most important component in the performance of modern
computer systems,

Conclusion

With the growing complexity of distributed computer systems and also of
computing devices like smartphones, it is impractical to assume that we can
achieve perfectly secure systems, Rather, tomorrow’s systems must operate
securely in the presence of vulnerabilities and malware in the system. They
should be resilient and should provide availability of systems and services
to security-critica) tasks, even under attack.

"This chapter discusses some promising game-changing strategies for
improving cyber security: enabling tailored trustworthy spaces, thwarting
attackers with proactive moving target strategies, and rewarding responsi-
ble behavior in cyberspace with economic or other incentives. Ir is impor-
tant for academia, industry, and government to work together to research,
develop, and incentivize the ubiquitous use of more secure and trustworthy
computer products.

Some concrete examples are given to show that these strategies can be
used in hardware design to significantly improve cyber security: by either
using hardware to enhance the security provided by software, or improv-
ing the trustworthiness of the hardware itself. For example, the Bastion
hardware-software architecture can be used to help software systems achieve
tailored trustworthy spaces, while the Newcache architecture shows how
to build more trustworthy hardware-—in this case, secure caches that can-
not be used to leak information to adversaries—by using a moving target
defense in hardware design. Surprisingly, Newcache can improve perfor-
mance and power-efficiency at the same time as it improves security,

These hardware feasibility examples demonstrate that it i possible to
build new hardware features into future commodity processors to enhance
cyber security. They are research architectures that should be further
evalnated for their validity in different application domains, their robust
ness against new attacks, and the impact they will have on the current soft-
ware and hardware ecosystems. Industrial-strength design validation and
security verification by teams of professionals are needed before deployment.
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The good news is that it may be possible to build security into the hardware
and software of future commodity computing and communication devices
that can be used to improve cyber security significantly, without degrading
their performance or versatility.
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