
A New Basis for Shifters in General-Purpose
Processors for Existing and Advanced

Bit Manipulations
Yedidya Hilewitz, Member, IEEE, and Ruby B. Lee, Fellow, IEEE

Abstract—This paper describes a new basis for the implementation of the shifter functional unit in microprocessors that can

implement new advanced bit manipulations as well as standard shifter operations. Our design is based on the inverse butterfly and

butterfly data path circuits, rather than the barrel shifter or log-shifter designs currently used. We show how this new shifter can

implement the standard shift and rotate operations, as well as more advanced extract, deposit, and mix operations found in some

processors. Furthermore, it can perform important new classes of even more advanced bit manipulation instructions like arbitrary bit

permutations, bit gather (or parallel extract), and bit scatter (or parallel deposit) instructions. Thus, our new functional unit performs the

functionality of three functional units—the basic shifter, the multimedia-mix unit, and the advanced bit manipulation functional unit,

while having a latency only slightly longer than that of the log-shifter. For performing only the existing functions of a shifter, it has

significantly smaller area.

Index Terms—Shifter, rotation, shift, permutation, butterfly, inverse butterfly, bit manipulation, bit gather, bit scatter, microprocessor,

instruction set architecture, processor architecture, circuit design, extract, deposit, mix, multimedia, arithmetic, parallel operations.

Ç

1 INTRODUCTION

BIT manipulation operations for microprocessors have
not been studied as thoroughly as integer and floating-

point arithmetic. Since a microprocessor is optimized
around the processing of words, it is not surprising that
bit-level operations are typically not as well supported by
current word-oriented microprocessors. Simple bit-parallel
operations such as AND, OR, XOR, and NOT are typically
supported as the “logical” operations of the Arithmetic-
Logic Unit (ALU), the most fundamental functional unit of
a microprocessor. However, only very simple non-bit-
parallel operations are supported like shift and rotate
operations, in which all bits of an operand move by the
same amount. These non-bit-parallel operations are typi-
cally supported by a separate shifter functional unit. In this
paper, we propose a new basis for the shifter functional unit
that can perform these basic shift and rotate operations
together with more advanced non-bit-parallel operations
described below.

A few processor Instruction Set Architectures (ISAs) also
have more advanced bit operations implemented in an
enhanced shifter or another functional unit. These include
subword extract and deposit operations (e.g., pextrw and
pinsrw in IA-32 [1]), field extract and deposit operations

(e.g., extr and dep in PA-RISC [2] or IA-64 [3]), or rotate and
mask (e.g., rldimi in PowerPC [4]). These can be viewed as
variants of the basic shift or rotate operations, with certain
bits masked out and set to zeros, or sign bits replicated, or
bits from a second operand merged into the result.
Additionally, some instruction sets have multimedia per-
mute operations that rearrange the subwords packed into
one or more registers (e.g., mix in PA-RISC 2.0 [5], [6] and
IA-64 [3]).

In addition, there are many emerging applications, such
as cryptography, imaging, and bioinformatics, where even
more advanced bit manipulation operations are needed.
While these can be built from the simpler logical and shift
operations or performed using programming tricks
(cf. Hacker’s Delight [7]), the applications using these
advanced bit manipulation operations are significantly
sped up if the processor can support more powerful bit
manipulation instructions. Such operations include arbi-
trary bit permutations, bit gather operations (performing
multiple bit-field extract operations in parallel), and bit
scatter operations (performing multiple bit-field deposit
operations in parallel). In earlier work, we have shown that
these advanced bit manipulation operations can be im-
plemented in a single new permutation functional unit [8],
[9], utilizing two simple data paths—an inverse butterfly
circuit and a butterfly circuit.

In this paper, we propose using this new permutation
functional unit as a new basis for shifters, rather than
simply adding it to a processor core, or enhancing the
current shifter to also support the above advanced bit
manipulation functions. We propose replacing two existing
functional units (the shifter and the multimedia-mix
functional units in the IA-32 and IA-64 processors) with
the new permutation functional unit and performing all the
operations previously done on these existing shifters as well

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009 1035

. Y. Hilewitz is with the Massachusetts Microprocessor Design Center, Intel
Corp., 77 Reed Road, HD2-374, Hudson, MA 01749.
E-mail: yedidya.hilewitz@intel.com.

. R.B. Lee is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544. E-mail: rblee@princeton.edu.

Manuscript received 30 July 2007; revised 27 Dec. 2007; accepted 15 Sept.
2008; published online 10 Dec. 2008.
Recommended for acceptance by P. Kornerup, P. Montuschi, J.-M. Muller,
and E. Schwarz.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-07-0394.
Digital Object Identifier no. 10.1109/TC.2008.219.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

as the advanced bit permutation, bit gather, and bit scatter

operations on the same data path [10]. Our new design

represents an evolution of the shifter from the classical

barrel shifter and log shifter to a new Shift-Permute

functional unit which can perform both basic shift opera-

tions and sophisticated bit manipulations.
The contributions of this paper are as follows:
First, we propose a new basis for the design of shifters,

based on the inverse butterfly (or butterfly) circuit. This
new basis implements a much more powerful set of shift
and advanced bit manipulation instructions, previously
requiring two existing functional units and a new permuta-
tion functional unit.

Second, we describe a recursive algorithm for determin-
ing the control bits for existing shift instructions like rotate,
shift, extract, deposit, and mix operations on the inverse
butterfly (or butterfly) data path circuits.

Third, we describe an algorithm to obtain the control bits

for new advanced bit manipulation instructions like the bit

gather (pex) and bit scatter (pdep) instructions.
Fourth, we demonstrate the implementation of this

powerful shift-permute unit and compare its complexity

to that of an ordinary log-shifter functional unit showing
only a minimal increase in the latency (1.18�) and a
reduction in area (0.69�) for the basic shift/rotate circuit.
When advanced bit manipulation instructions are added,
the increase in latency is still small (1.18�-1.20�) with a
moderate increase in area (1.29�-1.87�).

In Section 2, we describe the basic and advanced bit
manipulation instructions. In Section 3, we describe the new
functional unit and show how to obtain the control bits for
the inverse butterfly (or butterfly) data path for both
existing shifter instructions as well as new advanced bit
manipulation instructions. In Section 4, we compare the
implementation to that of the barrel shifter and the log
shifter. Section 5 concludes this paper.

2 BASIC AND ADVANCED BIT MANIPULATION

OPERATIONS

In this section, we define the set of basic shifter instructions
and the set of advanced bit manipulation instructions
considered in the rest of this paper. These are also
summarized in Table 1.

1036 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

TABLE 1
Instructions Supported by New Shift-Permute Functional Unit

2.1 Basic Shifter Instructions

The basic bit manipulation instructions consist of two
groups. The first group consists of the shift and rotate
instructions supported in essentially all microprocessors.
These instructions include right or left shifts (with zero or
sign propagation), and right or left rotates. While a few
microprocessors support only shifts but not rotates, we will
consider rotate as a basic supported operation in this paper.

The second group of instructions exists in a few ISAs
such as PA-RISC [2], [5], [6], and IA-64 [3]. This group
includes extract, deposit, and mix instructions.

The extract operation selects a single field of bits of
arbitrary length from any arbitrary position in the source
register and right justifies that field in the result (Fig. 1a).
Extract is equivalent to a shift right and mask operation.
Extract has both unsigned and signed variants. In the latter,
the sign bit of the extracted field is propagated to the most-
significant bit of the destination register.

The deposit operation takes a single right justified field of
arbitrary length from the source register and deposits it at
any arbitrary position in the destination register (Fig. 1b).
Deposit is equivalent to a left shift and mask operation.
There are two variants of deposit: the remaining bits can be
zeroed out (as shown in Fig. 1b), or they are supplied from a
second register, in which case a masked-merge operation is
required.

The mix operation is a subword permutation operation,
initially designed to accelerate multimedia applications
operating on subwords of 8, 16, or 32 bits, packed into a
word [5], [6], [3]. Mix_left selects the left subwords from each
pair of subwords, alternating between the two source
registers r2 and r3 (Fig. 2a). Mix_right does the same on the
right subwords of the two source registers (Fig. 2b). The mix
instruction was first introduced in PA-RISC for multimedia
acceleration [6], and also appears in IA-64 (Itanium) [3], [11],
where it is implemented in a separate multimedia functional
unit. No ISA currently supports mix for subwords smaller
than a byte, although this is very useful, e.g., for bit matrix
transposition and fast parallel sorting [12]. In our proposed
new functional unit, mix for bits—and for all subword sizes
that are powers of 2—are supported. This includes 12 mix
operations: mix_left and mix_right for each of six subword

sizes of 20, 21, 22, 23, 24, and 25, for a 64-bit processor. Note
that mix for 20, 21, and 22 are new operations for current
processors, although we refer to all mix instructions as basic or
existing operations in the rest of this paper.

2.2 Advanced Bit Manipulation Instructions

New classes of bit manipulation instructions have been
proposed for accelerating various applications ranging from
cryptography to bioinformatics. These include instructions
for performing bit permutations, and for performing bit
gather and bit scatter operations.
Bit permutations. For bit permutations, several instructions
have been proposed [13], [14], [15], [16], [17], [18], [19], most
notably the group (grp) permutation instruction [13], [14],
and the butterfly (bfly) and inverse butterfly (ibfly)
permutation instructions [16], [17], [18]. An arbitrary
permutation of the n bits within a register can be performed
by a sequence of at most lgðnÞ grp instructions, or by a
sequence of at most two instructions using bfly and ibfly
instructions. Since the latter (bfly and ibfly) achieve
arbitrary n-bit permutations in O(1) cycles rather than
OðlgðnÞÞ cycles, we focus on them in this paper.

The bfly and ibfly instructions route their inputs through
butterfly and inverse butterfly circuits, respectively. The
concatenation of these two circuits forms a Benes circuit, a
general permutation network [20]. Thus, a single execution of
bfly followed by ibfly (or vice versa) can achieve any of the
n! permutations of n bits in at most two cycles [16], [17], [18].

The structure of the circuits is shown in Fig. 3, which shows
8-bit circuits, requiring three stages. The n-bit circuits consist
of lgðnÞ stages, each stage composed of n=2 2-input switches.
Each of these circuits takes at most one cycle, since they are

HILEWITZ AND LEE: A NEW BASIS FOR SHIFTERS IN GENERAL-PURPOSE PROCESSORS FOR EXISTING AND ADVANCED BIT... 1037

Fig. 1. (a) extr.u r1 ¼ r2, pos, len. (b) dep.z r1 ¼ r2, pos, len.

Fig. 2. (a) mix.left r1 ¼ r2, r3. (b) mix.right r1 ¼ r2, r3.

Fig. 3. Eight-bit butterfly (a) and inverse butterfly (b) circuits.

less complicated than an ALU of the same width. (We
normalize a processor cycle to the latency of an ALU.)
Furthermore, each switch is composed of two 2 : 1 multi-
plexers, totalingn� lgðnÞmultiplexers for each circuit, which
results in small circuit area.

In the ith stage (i starting from 1), the paired bits are
n=2i positions apart for the butterfly network and
2i�1 positions apart for the inverse butterfly network. A
switch either passes through or swaps its inputs based on
the value of a control bit. Thus, the operation requires
n=2� lgðnÞ control bits. For n ¼ 64, four 64-bit registers are
required to hold the 64 data bits and the 32 � 6 control bits.

Our preferred implementation for bfly and ibfly instruc-
tions, in an architecture that has only two source operands
per instruction, utilizes three Application Registers (ARs)
ðar:b1; ar:b2; ar:b3Þ associated with the functional unit to
supply the control bits during the execution of these
instructions. ARs are already available in some ISAs, e.g.,
IA-64 [3]. The control bits are determined either statically by
the compiler, or dynamically by software. The need for
additional ARs can be a disadvantage for processor ISAs
that do not already have these. Alternative ISA solutions are
discussed in [17] and [18]. Other permutation primitives
like grp discussed below do not need ARs.

The grp instruction [13], [14], is a permutation primitive
that gathers to the right the data bits selected by “1”s in the
mask, and to the left those selected by “0”s in the mask (see
Fig. 4). Arbitrary bit permutations can be accomplished by
a sequence of at most lgðnÞ of these grp instructions. Its
advantage over the faster sequence of two instructions (bfly
followed by ibfly) for achieving arbitrary n-bit permutations
is that it does not need additional (control or application)
registers to configure its data path. However, it is costly to
implement, in terms of both area and latency. Instead, we
implement “half” of a grp instruction efficiently in a parallel
extract (pex) instruction.
Bit gather and bit scatter. The parallel extract (pex) and
parallel deposit (pdep) instructions [8], [9] can be viewed as
generalizations of the extract and deposit instructions.
Parallel extract performs a bit gather operation; it extracts
and compacts bits from one source register from positions
selected by “1”s in a second source register (see Fig. 5a). The
rest of the bits in the result register are cleared to “0”s. Thus,
the parallel extract operation can also be thought of as the
right half of the grp operation (grp_right) [21].

Parallel deposit performs a bit scatter operation; it deposits
right-aligned bits from one source register to positions
selected by “1”s in a second source register (see Fig. 5b).
The remaining bits in the result register are cleared to “0”s.

We remark that in our implementations of both parallel
extract and parallel deposit instructions, if the unselected bits
are not cleared to "0"s, they are exactly reversed. We call

these bit gather flip and bit scatter flip operations. They are
also available with our shifter design, but we do not discuss
them further in this paper.

3 NEW SHIFT-PERMUTE FUNCTIONAL UNIT

Our new shift-permute functional unit consists of an inverse
butterfly data path (or a butterfly data path) enhanced with
an extra multiplexer stage. In Section 3.1, we show that this
functional unit can perform any of the basic shifter
instructions listed in Section 2.1 (and Table 1). The hard
part is determining how the controls of the lgðnÞ stages of
the circuit should be set, and we give definitive algorithms
for this in Sections 3.1.1 and 3.1.2. Then in Section 3.2, we
show how the advanced bit manipulation instructions
defined in Section 2.2 (and Table 1) are performed on these
data paths. Again, since determining the control bits is
nonobvious, we illustrate this with a specific algorithm for
determining the control bits to implement parallel extract
(pex) on an inverse butterfly data path in Section 3.2.1. In
Section 3.3, we discuss the alternative architectures of the
entire shift-permute unit, and tradeoffs in terms of
functionality and cost.

3.1 Basic Shifter Operations on the Inverse
Butterfly Data Path

The key conceptual insight comes from recognizing that the
set of basic shifter and mix operations in the top part of
Table 1 is based on minor variations on a rotation operation,
and that any rotation operation can be achieved on an
inverse butterfly circuit (or on a butterfly circuit.)

Theorem 1. An inverse butterfly circuit can achieve any rotation
of its input.

A proof of this can be found in [22], where rotations are
called cyclic shifts.

Corollary 1.1. An enhanced inverse butterfly circuit can perform
on its input:

a. right and left shifts,

1038 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 4. grp r1 ¼ r2, r3.

Fig. 5. (a) pex r1 ¼ r2, r3. (b) pdep r1 ¼ r2, r3.

b. extract operations,
c. deposit operations, and
d. mix operations.

Proof. This follows from Theorem 1, with these operations
modeled as a rotate with additional logic handling zeroing
or sign extension from an arbitrary position, or merging
bits from the second source operand (for deposit). Mix is
modeled as a rotate of one operand by the subword size
and then a merge of subwords alternating between the
two operands.

As the inverse butterfly circuit only performs permu-
tations without zeroing and without replication, the
circuit must be enhanced with an extra 2 : 1 multiplexer
stage at the end that either selects the rotated bits as is or
other bits which are computed as either zero, or the sign
bit (replicated), or the bits of the second source operand,
depending on the operation. tu

Corollary 1.2. Theorem 1 and Corollary 1.1 are true for the
butterfly network as well.

Proof. The butterfly and inverse butterfly networks exhibit
a reverse symmetry of their stages from input to output.
Thus, a rotation on the inverse butterfly network is
equivalent to a rotation in the opposite direction on the
butterfly network when the flow through the network is
reversed (see Fig. 6). Hence, a butterfly circuit can also
achieve any rotation of its inputs. As in Corollary 1.1, a
butterfly network enhanced with an extra multiplexer
stage at the end is needed to handle zeroing or sign
extension, or merging bits from the second source
operand. tu

Next, we show how control bits are obtained for rotations
on an inverse butterfly circuit in Section 3.1.1, then for the
other operations in Section 3.1.2.

3.1.1 Determining the Control Bits for Rotations

To achieve a right (or left) rotation by s positions, for
s ¼ 0; 1; 2 . . .n� 1, using the n-bit wide inverse butterfly
circuit with lgðnÞ stages, the input must be right (or left)
rotated by smod 2j within each 2j-bit wide inverse
butterfly circuit at each stage j. This is because from
stage jþ 1 on, the inverse butterfly circuit can only move
bits at granularities larger than 2j positions (so the finer

movements must have already been performed in the
prior stages). We first give a conceptual explanation of
this, then a formal constructive proof to obtain the actual
control bits for a rotation.

An n-bit inverse butterfly circuit can be viewed as two
ðlgðnÞ � 1Þ-stage circuits followed by a stage that swaps or
passes through paired bits that are n=2 positions apart
(see Fig. 3). To right_rotate the input finn�1 . . . in0g by
s positions, the two ðlgðnÞ � 1Þ-stage circuits must have
right_rotated their half inputs by s0 ¼ smod n=2 and the
input to stage lgðnÞ must be of the form

inn=2þs0�1. . . inn=2inn�1. . . inn=2þs0 j j ins0�1. . . in0inn=2�1. . . ins0
� �

:

ð1Þ

We show this is true for s less than or greater than n=2.
When the rotation amount s is less than n=2 then the bits

that wrapped around in the ðlgðnÞ � 1Þ-stage circuits (cross-
hatched) must be swapped in the final stage to yield the
input right_rotated by s (Fig. 7a):

ins0�1. . . in0inn�1. . . inn=2þs0 j j inn=2þs0�1. . . inn=2inn=2�1. . . ins0
� �

:

ð2Þ

When the rotation amount is greater than or equal to n=2
then the bits that do not wrap in the ðlgðnÞ � 1Þ-stage circuits
(solid) must be swapped in the final stage to yield the input
right_rotated by s (Fig. 7b):

inn=2þs0�1. . . inn=2inn=2�1. . . ins0 j j ins0�1. . . in0inn�1. . . inn=2þs0
� �

:

ð3Þ

For example, consider the 8-bit inverse butterfly
network with right rotation amount s ¼ 5, depicted in
Fig. 8. As s ¼ 5 is greater than n=2 ¼ 4, the bits that did
not wrap in stage 2 are swapped in stage 3 to yield the
final result.

As the rotation amount through stage 2, smod 22 ¼
5 mod 4 ¼ 1, is less than n=4 ¼ 2, the bits that did wrap in
stage 1 are swapped in stage 2 to yield the input to stage 3.

As the rotation amount through stage 1, smod 21 ¼
5 mod 2 ¼ 1, is equal to than n=8 ¼ 1, the bits that did not

HILEWITZ AND LEE: A NEW BASIS FOR SHIFTERS IN GENERAL-PURPOSE PROCESSORS FOR EXISTING AND ADVANCED BIT... 1039

Fig. 6. Left rotate by three on inverse butterfly is equivalent to right rotate

by three on butterfly.

Fig. 7. Rotation (a) by s < n=2 and (b) by s � n=2.

wrap in the input, i.e., all the bits, are swapped in stage 1 to
yield the input to stage 2.

We can mathematically derive recursive equations for
the control bits, cbj, j ¼ 1; 2; . . . lgðnÞ, for achieving rotations
on an inverse butterfly data path. These equations yield a
compact circuit (shown in Fig. 9) for the rotation control bit
generator.

From (1)-(3) and Fig. 7, we observe that the pattern for
the control bits for the final stage, which we call cblgðnÞ, for a
rotate of s bits, is

cblgðnÞ ¼ 1s k 0n=2�s; s < n=2
0s�n=2 k 1n=2�ðs�n=2Þ; s � n=2;

�
ð4Þ

where ak is a string of k “a”s, “1” means “swap,” and “0”

means “pass through.” Note that s ¼ smod n=2 when

s < n=2 and s� n=2 ¼ smod n=2 when s � n=2:

cblgðnÞ ¼
1s mod n=2 k 0n=2�ðs mod n=2Þ; smod n < n=2

0 s mod n=2 k 1n=2�ðs mod n=2Þ; smod n � n=2

(

cblgðnÞ ¼
1s mod n=2 k 0n=2�ðs mod n=2Þ; smod n < n=2

� 1s mod n=2 k 0n=2�ðs mod n=2Þ� �
; smod n � n=2;

(

ð5Þ

where � indicates negation.
Furthermore, due to the recursive structure of the inverse

butterfly circuit, we can generalize (5) by substituting j for

lgðnÞ, 2j for n, and 2j�1 for n=2:

cbj ¼
1s mod 2j�1 k 02j�1�ðs mod 2j�1Þ; smod 2j < 2j�1

� 1s mod 2j�1 k 02j�1�ðs mod 2j�1Þ
� �

; smod 2j � 2j�1:

(

ð6Þ

There are j bits in smod 2j, with the most significant bit

denoted sj�1. The condition smod 2j < 2j�1 is equivalent to

sj�1 being equal to 0 and the condition smod 2j � 2j�1 is

equivalent to sj�1 being equal to 1:

cbj ¼
1s mod 2j�1 k 02j�1�ðs mod 2j�1Þ; sj�1 ¼ 0

� 1s mod 2j�1 k 02j�1�ðs mod 2j�1Þ
� �

; sj�1 ¼ 1:

(
ð7Þ

1040 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 8. Right rotate by 5 on 8-bit, three-stage inverse butterfly network.

Fig. 9. Control bit generator circuit for rotations on inverse butterfly (first five stages).

Equation (7) can be rewritten as the pattern XORed

with sj�1:

cbj ¼ 1s mod 2j�1 k 02j�1�ðs mod 2j�1Þ
� �

� sj�1: ð8Þ

Since smod k � k� 1, k� ðsmod kÞ � 1 and hence the

length of the string of zeros in (8) is always � 1 ðk ¼ 2j�1Þ.
Consequently, the least significant bit of the pattern (prior

to XOR with sj�1) is always “0”:

cbj ¼ 1s mod 2j�1 k 02j�1�1�ðs mod 2j�1Þ k 0
� �

� sj�1

cbj ¼ 1s mod 2j�1 k 02j�1�1�ðs mod 2j�1Þ
� �

� sj�1

� �
k sj�1:

ð9Þ

We call the bit pattern inside the inner parenthesis of (9)

fðs; jÞ, a string of 2j�1 � 1 bits with the s mod 2j�1 leftmost

bits set to “1,” and the remaining bits set to “0.” This

function is only defined for j � 2 and returns the empty

string for j ¼ 1:

fðs; jÞ ¼ 1s mod 2j�1 k 02j�1�1�ðs mod 2j�1Þ; j � 2
fg; j ¼ 1

�
ð10Þ

cbj ¼ fðs; jÞ � sj�1

� �
k sj�1: ð11Þ

Note that we can derive fðs; jþ 1Þ from fðs; jÞ:

fðs; jþ 1Þ ¼ 1s mod 2j k 02j�1�ðs mod 2jÞ: ð12Þ

If bit sj�1 ¼ 0, then smod 2j ¼ smod 2j�1:

fðs; jþ 1Þ ¼ 1s mod 2j�1 k 02j�1�ðs mod 2j�1Þ

¼ 1s mod 2j�1 k 02j�1�1�ðs mod 2j�1Þk 02j�1

fðs; jþ 1Þ ¼ fðs; jÞk 02j�1

:

ð13Þ

If bit sj�1 ¼ 1, then smod 2j ¼ 2j�1 þ smod 2j�1:

fðs; jþ 1Þ ¼ 12j�1þs mod 2j�1 k 02j�1�ð2j�1þs mod 2j�1Þ

¼ 12j�1 k 1s mod 2j�1 k 02j�1�1�ðs mod 2j�1Þ

fðs; jþ 1Þ ¼ 12j�1 k fðs; jÞ:

ð14Þ

Combining (13) and (14), we get

fðs; jþ 1Þ ¼
fðs; jÞ k 02j�1

; sj�1 ¼ 0

12j�1 k fðs; jÞ; sj�1 ¼ 1

(

fðs; jþ 1Þ ¼
fðs; jÞ k 0 k 02j�1�1; sj�1 ¼ 0

12j�1�1 k 1 k fðs; jÞ; sj�1 ¼ 1:

(ð15Þ

Since fðs; jÞ is a string of 2j�1 � 1 bits, we can replace the

string of ones and zeros in (15) by fðs; jÞ ORed ðþÞ with 1

and ANDed ð�Þ with 0, respectively:

fðs; jþ 1Þ ¼
fðs; jÞ þ 0 k 0 k fðs; jÞ � 0; sj�1 ¼ 0

fðs; jÞ þ 1 k 1 k fðs; jÞ � 1; sj�1 ¼ 1

�
fðs; jþ 1Þ ¼ fðs; jÞ þ sj�1

� �
ksj�1k fðs; jÞ � sj�1

� �
:

ð16Þ

From (10) and (16), we obtain a simple recursive
expression for fðs; jÞ:

fðs; jÞ¼ fðs; j� 1Þ þ sj�2

� �
ksj�2k fðs; j� 1Þ � sj�2

� �
; j � 2

fg; j ¼ 1:

�
ð17Þ

Fig. 9 depicts the hardware implementation of the
control bit generator for rotations. Equation (17) is used to
derive fðs; 2Þ, fðs; 3Þ, fðs; 4Þ, and fðs; 5Þ. Also, the control
bits for rotations, cb1, cb2, cb3, cb4, and cb5, are obtained
using (11). This implementation is based on sharing of gates
by reusing fðs; jÞ for both cbj and fðs; jþ 1Þ.

We now illustrate the use of these equations with the
example of Fig. 8, the 8-bit inverse butterfly network with
right rotation amount s ¼ 5 ðs2s1s0 ¼ 101Þ. The first-stage
control bit, cb1, replicated for the four 2-bit circuits, is given
by (11) and (17):

cb1 ¼ fð5; 1Þ � s0ð Þk s0 ¼ fg � s0 k s0 ¼ s0 ¼ 1:

The second-stage control bits, cb2, replicated for the two
4-bit circuits, are given by

cb2 ¼ fð5; 2Þ � s1ð Þk s1

¼ fð5; 1Þ þ s0 k s0 k fð5; 1Þ � s0ð Þ � s1ð Þk s1

¼ fg þ s0 k s0 k fg � s0ð Þ � s1ð Þk s1

¼ðs0 � s1Þk s1

¼ð1� 0Þk 0

¼ 10:

Note that fð5; 2Þ ¼ 1 in the above. The final-stage control
bits, cb3, are given by

cb3 ¼ fð5; 3Þ � s2ð Þk s2

¼ fð5; 2Þ þ s1 k s1 k fð5; 2Þ � s1ð Þ � s2ð Þk s2

¼ 1þ s1 k s1 k 1 � s1ð Þ � s2ð Þk s2

¼ 1þ 0 k 0 k 1 � 0ð Þ � 1ð Þk 1

¼ �ð100Þk 1

¼ 0111:

Fig. 8 shows that this configuration of the inverse
butterfly circuit does indeed right rotate the input by
5 mod 8 (and that the outputs of stage 2 are rotated
by 5 mod 4 ¼ 1 and that the outputs of stage 1 are rotated by
5 mod 2 ¼ 1).

3.1.2 Determining the Control Bits for Other Shift

Operations

The other operations (shifts, extract, deposit, and mix) are
modeled as a rotation part plus a masked-merge part with
zeroes, sign bits, or second source operand bits. The rotation
part can use the same rotation control bit generator
described above to configure the inverse butterfly network
data path. We achieve the masked-merge part by using an
enhanced inverse butterfly data path with an extra multiplexer
stage added as the final stage. The mask control bits are “0”
when selecting the rotated bits and “1” when selecting the
merge bits. We now describe how this is used to generate
these other operations: shift, extract, deposit, and mix.

HILEWITZ AND LEE: A NEW BASIS FOR SHIFTERS IN GENERAL-PURPOSE PROCESSORS FOR EXISTING AND ADVANCED BIT... 1041

For a right shift by s, the s sign or zero bits on the left are

merged in. This requires a control string 1sk0n�s for the

extra multiplexer stage. From the definition of fðs; jÞ, (10),

we see that fðs; lgðnÞ þ 1Þ is the string 1sk0n�1�s. Thus, the

desired control string is given by fðs; lgðnÞ þ 1Þk0. (Recall

that s < n, therefore the least significant bit is always “0,”

i.e., the least significant bit is always selected from the

inverse butterfly data path.) fðs; lgðnÞ þ 1Þ can easily be

produced by extending the rotation control bit generator by

one extra stage. For left shift, which can be viewed as the

left-to-right reversal of right shift, the control bits for the

extra stage are obtained by reversing left-to-right the right

shift control string to yield 0n�sk1s.
For extract operations, which are like right shift opera-

tions with the left end replaced by the sign bit of the

extracted field or zeros, our enhanced inverse butterfly

network selects in its extra multiplexer stage the rotated bits

or zeros or the sign bit of the extracted field, i.e., the bit in

position posþ len� 1 in the source register (see Fig. 1a). The

bit can be selected using an n:1 multiplexer. The control bit

pattern for this stage is n-len “1”s followed by len “0”s

ð1n�lenk0lenÞ to propagate the sign bit of the extracted field in

the output (which is in position len-1) to the high-order bits.

Note that cblgðnÞþ1ðlenÞ is 1lenk0n�len (as len ranges from 0 to n).

So reversing left-to-right cblgðnÞþ1ðlenÞ yields 0n�lenk1len and

then negating it produces 1n�lenk0len, the correct bit pattern

for stage lgðnÞ þ 1.
For deposit operations, which are like left shift opera-

tions with the right and left ends replaced by zeros or bits

from the second operand, our enhanced inverse butterfly

network selects in its extra multiplexer stage the rotated bits

or zeros or bits from the second input operand. The correct

pattern is a string of n-pos-len “1”s followed by len “0”s

followed by s ¼ pos “1”s ð1n�pos�lenk0lenk1posÞ to merge in

bits on the right and left around the deposited field.

cblgðnÞþ1ðposþ lenÞ is 1posþlenk0n�pos�len. Reversing left-to-

right this string yields 0n�pos�lenk1posþlen and then negating

it produces 1n�pos�lenk0posþlen. Bitwise ORing this with the

left shift control string, 0n�posk1pos, yields 1n�pos�lenk0lenk1pos,

the correct pattern for the masked-merge part of the deposit

operation is produced.
For mix operations, the enhanced inverse butterfly

network selects in its extra multiplexer stage the rotated

bits or the bits from the second input operand. The control

bit pattern is simply a pattern of alternating strings of “0”s

and “1”s, the precise pattern depending on the subword

size and whether mix left or mix right is executed. These

patterns can be hard coded in the circuit for the 12 mix

operations (6 operand sizes � 2 directions).
These mask-merged bit patterns are summarized in

Fig. 16. Block diagrams of the functional unit are shown in

Figs. 14 and 15, where only part of the nondotted blocks are

needed for implementing these basic shifter and mix

operations. The other parts of the blocks are needed for

the advanced bit manipulations (bottom half of Table 1). We

describe how these are implemented on an inverse butterfly

circuit (or butterfly circuit) below, before describing the

whole functional unit.

3.2 Parallel Extract on the Inverse Butterfly
Data Path

In this section, we describe how an inverse butterfly data
path can perform the parallel extract (pex) operation, which
is unpublished work [23]. We have described in earlier
published work [8] how a parallel deposit (pdep) operation
can be performed on a butterfly network.

Since it is not obvious that the pex instruction can be
implemented by a butterfly or inverse butterfly data path,
we first give a conceptual explanation for mapping pex
onto an inverse butterfly circuit. (In fact, pex cannot be
implemented by a butterfly circuit [9], [23]).

First, we describe how an individual bit is routed on the
inverse butterfly circuit based on its desired destination
(Fact 1). Given this routing method, we then state how to
determine whether an arbitrary permutation of a set of bits
can be routed on the inverse butterfly circuit without path
conflict (Fact 2). Finally, we show in Theorem 2 that the pex
operation indeed satisfies this criterion and thus that pex
can be mapped onto an inverse butterfly circuit.

The inverse butterfly circuit is decomposed into even
and odd subcircuits. In Fig. 10, the even subcircuits are
shown with dotted lines and the odd subcircuits with solid
lines. These can also be called Right and Left subcircuits.
For simplicity and clarity of notation, we refer to even
subcircuits as R (right) and odd as L (left).

Fact 1. Any single data bit can be moved to any result position by
just moving it to the correct R or L subcircuit of the
intermediate result at every stage of the inverse butterfly
circuit.

Proof. This can be proved by induction on the number of
stages. At stage 1, the data bit is moved to its final
position mod 2 (i.e., to R or L). At stage 2, it is moved to
its final position mod 4, and so on. At stage lgðnÞ, it is
moved to its final position mod 2lgðnÞ ¼ n, which is its
final result position. tu

Fact 2. A permutation is routable on an inverse butterfly circuit if
the destinations of the bits constitute a complete set of residues
mod m (i.e., the destinations equal 0; 1; . . . ;m� 1 modm) for
each subcircuit of width m.

Proof. Based on Fact 1, bits are routed on the inverse
butterfly circuit by moving them to the correct position

1042 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 10. Even or Right (dotted or R) and odd or Left (solid or L)

subcircuits of the inverse butterfly circuit.

mod 2 after the first stage, mod 4 after the second
stage, etc. Consequently, if the two bits entering stage 1
(with 2-bit wide inverse butterfly circuits as shown in
Fig. 10) have destinations equal to 0 and 1 mod 2 (i.e.,
one is going to R and one to L), Fact 1 can be satisfied for
both bits and they are routable through stage 1 without
conflict. Subsequently, the four bits entering stage 2
(with the 4-bit wide butterfly circuits) must have
destinations equal to 0, 1, 2, and 3 mod 4 to satisfy
Fact 1 and be routable through stage 2 without conflict.
A similar constraint exists for each stage. tu

Theorem 2. Any parallel extract instruction on n ¼ 2lgðnÞ bits
can be implemented with one pass through an inverse butterfly
circuit of lgðnÞ stages without path conflicts (with the
unselected bits on the left zeroed out).

Proof. The pex operation compresses bits in their original
order into adjacent bits in the result. Consequently, two
adjacent selected data bits that enter the same stage 1
subcircuit must be adjacent in the output. In other words,
one bit has a destination equal to 0 mod 2 and the other has
a destination equal to 1 mod 2—the destinations consti-
tute a complete set of residues mod 2 and thus are routable
through stage 1. The selected data bits that enter the same
stage 2 subcircuit must be adjacent in the output and thus
form a set of residues mod 4 and are routable through
stage 2. A similar situation exists for the subsequent
stages, up to the final n-bit wide stage. No matter what the
bit mask of the overall pex operation is, the selected data
bits will be adjacent in the final result. Thus, the
destinations of the selected data bits will form a set of
residues mod n and the bits will be routable through all
lgðnÞ stages of the inverse butterfly circuit. tu

We do not formally prove here that parallel deposit can
be performed using the butterfly data path, rather we
appeal to symmetry—the parallel deposit operation is the
inverse of the parallel extract operation (see Fig. 5) and thus
if parallel extract can be done on the inverse butterfly
circuit, parallel deposit can be done on butterfly. For a full
proof, see [8] and [9].

Also note that as parallel extract can be performed on the
inverse butterfly circuit, the grp operation (Fig. 4) can be
mapped to two parallel inverse butterfly circuits as grp is
a combination of a grp_right (or pex) and a grp_left
(a mirrored pex) [21].

3.2.1 Determining the Control Bits for Parallel Extract

and Parallel Deposit

A decoder for the parallel extract (and parallel deposit)
instruction takes as its input the n-bit mask (in the register
operand, r3, in Fig. 5a) and produces the n=2� lgðnÞ control
bits for the inverse butterfly (or butterfly) circuit. The
decoder can be designed to consist of only two types of
operations that can be performed in software or implemen-
ted as circuits: a parallel prefix population counter, which
counts the ones from position 0 (on the right) to every bit
position from 0 to n� 2, and a set of left rotators that
complement bits upon wraparound (LROTC—Left ROTate
and Complement).

To give some intuition on how the bits are computed,

consider Fig. 11, which depicts the final stage of the pex

operation. In the final stage, we call X the selected data bits

that pass through in R, Y the selected data bits that are

transferred from L to R, and Z the selected data bits that

pass through in L. (Recall that we use R to denote the Right

subnet and L to denote the Left subnet in an inverse

butterfly circuit—see Fig. 10.)
X is the rightmost bits of R, as the output of pex is the

selected data bits compressed and right justified in the

result. Y is rotated left from the midpoint by the size of X,

jXj, at the input to the final stage so that when it is swapped

into R in the final stage it is contiguous to X on its right. Z is

the rightmost bits in L at the input to the final stage, so that

when it is passed through in L, it is contiguous with the bits

in R. Thus, the control bit pattern for the final stage is

1n=2�jXjk0jXj, where “1” denotes swap, and “0” denotes

pass-through of the paired bits in L and R, in the last stage.

jXj is equal to the count of “1”s in the right half of the bit

mask as all the selected data bits in the right half of the

input have already been compressed and right justified

prior to the input to the final stage.
Furthermore, we can view Y and Z as having been left

rotated by jXj from being the rightmost bits of L at the

output of stage lgðnÞ � 1 (see top half of Fig. 11). Conse-

quently, we can iterate backwards through the stages,

performing a pex operation within each half subnetwork

and then explicitly left rotate each local L at the input of the

next stage by the number of selected data bits in the local R

at the input of the next stage prior to the swapping or

passing through of bits in this next stage.
Rather than rotating the data bits explicitly, we can

compensate for the rotation by modifying the routing

through the subsequent stages. This can be achieved by

rotating the control bits by the same number of positions,

complementing upon wraparound [9]. The counting of the

number of “1”s in the right half of each subnet at each stage is

done by the Parallel Prefix Population Count operation, while

the rotation is done by the LROTC operation at each stage.
The full decoding algorithm is given in Fig. 12. A block

diagram of the hardware decoder is shown in Fig. 13.

(See [9] for a more thorough explanation of the decoder.)

The same decoder can be used for pdep, except that the

ordering of the resulting sets of n=2 control bits for the

lgðnÞ stages is reversed.

HILEWITZ AND LEE: A NEW BASIS FOR SHIFTERS IN GENERAL-PURPOSE PROCESSORS FOR EXISTING AND ADVANCED BIT... 1043

Fig. 11. Final stage of pex operation.

3.2.2 Static, Dynamic, and Loop-Invariant Instructions

As the hardware implementation of the decoder in Fig. 13 is
costly, we define three classes of parallel extract and
parallel deposit instructions. The first consists of static
versions of these instructions, where software or the
compiler “pre-decodes” the mask in the second source
register into control bits for the data path, and moves the
control bits into the ARs. This uses the mov instruction in
Table 1, followed by the pex or pdep instructions.

The second class is dynamic mask decoding by a
hardware implementation of the decoder in Fig. 13. This
uses the pex.v or pdep.v instructions in Table 1. We have
found dynamic pex.v and pdep.v unnecessary for most
applications [8], [9].

The third class is loop-invariant pex and pdep. Here, the
mask is known only at runtime but remains fixed for a long
input stream. The hardware decoder can output the control
bits to the ARs once, and subsequently the static versions

of pex and pdep are used. This uses the setib and setb

instructions in Table 1, followed by static pex or pdep

instructions.

3.3 New Shift-Permute Functional Unit
Implementation

The new shift-permute functional unit in Fig. 14 can

support all the instructions listed in Table 1. For the grp

instruction to also be supported, a second inverse butterfly

network and a second decoder would be required at a

severe hardware cost. As bfly and ibfly can be used to

achieve permutations and pex can be used to emulate grp,

albeit with a performance penalty, we choose not to include

support for grp in the new functional unit. The last four

instructions in Table 1 are needed only if dynamic and loop-

invariant variants of the pex and pdep instructions are

implemented.
The new functional unit consists of the two data paths,

the butterfly and inverse butterfly circuits, each enhanced

with an extra 2:1 multiplexer stage (as well as premasking

for the pex operation); the control bit generator for

configuring the two data paths; and the masked-merge

block which generates the merge bits and mask control for

the extra multiplexer stage. Note that the control bits fed to

1044 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 12. Algorithm for bit-mask decoder.

Fig. 13. Pex (and pdep and grp) bit-mask decoder. Fig. 14. New shift-permute functional unit.

the butterfly circuit are reversed left-to-right and also
reversed top to bottom in terms of the order of the control
bits for the stages. Also note that the butterfly circuit is
considered optional (and shown in dotted lines) as the
functionality can be emulated using the inverse butterfly
network at the cost of some performance. One pass of the
butterfly network can be emulated with at most lgðnÞ passes
of the inverse butterfly network. Also, the latency of the
control bit generation is serialized with respect to the
latency of the butterfly circuit, since the control bits that
take longest to generate are needed to control the first stage
of the butterfly circuit, which is the last stage of the inverse
butterfly circuit. Thus, the inverse butterfly data path is
faster, since its control bit generation latency is overlapped
with its data path latency.

Fig. 15 shows the control bit generator block in more
detail. The source of the control bits can be from the
rotation control bit generator (Fig. 9), the pex/pdep
decoder (Fig. 13), or the ARs. The pex/pdep decoder
supplies the bits for the dynamic pex and pdep operations.
This block is consider optional, as the pex/pdep decoder is
large and has long latency (two cycles), and is only needed
for variable pex.v or pdep.v instructions which we found
were rarely used [8], [9]. Hence, it is shown in dotted lines.
The rotation control bit generator is extended to produce
cblgðnÞ. The shift amount is s for right rotates, right shifts,
mix_left (the left subwords are shifted right), and extracts;
it is n� s for left rotates, left shifts, mix_right, and deposits.
Also, fðs; lgðnÞÞ is output to the masked-merge block for
use in computing the masked-merge controls. The final
source of the control bits is from the ARs for use in the bfly
and ibfly permutation instructions or static pex and pdep
instructions.

Fig. 16 shows an overview of the masked-merge block
and lists the bit patterns generated for the merge bits and
the mask control bits. The merge bits can be

. the zero string for unsigned right shift, left shift,
unsigned extract, deposit-and-zero, and parallel
deposit,

. the sign bit for arithmetic right shift,

. the sign bit of the extracted field (bit posþ len� 1
of the source operand) for signed extract, or

. the second source operand r3 for deposit-and-merge
and mix.

The mask control bits are “0” when selecting the rotated
bits output from the butterfly or inverse butterfly circuit
and “1” when selecting the merge bits. The patterns are

. the zero string for right and left rotate, bfly and ibfly
permutation instructions and parallel extract (which
do not merge bits),

. the second source operand r3 for parallel deposit, or

. various strings of “1”s and “0”s for shifts, extract,
deposit, and mix, as described in Section 3.1.

4 EVOLUTION OF SHIFTERS

One popular shifter architecture is the barrel shifter. The
barrel shifter essentially is an n-bit wide n : 1 multiplexer
that selects the input shifted by s positions, where s ¼
0; 1; 2; . . . ; n� 1 (Fig. 17). The advantage of this design is
that there is only a single gate delay between the input and
output. The disadvantages are that n2 switch elements
(pass transistors or transmission gates) are required, and
long delays due to capacitance as each input fans out to
n elements, each output fans in from n elements and the
shift amount needs to be decoded.

Due to the high capacitance of wires, a second popular
shifter architecture emerged—the log shifter. The log shifter
shifts the input by decreasing powers of 2 or 4 and selects at

HILEWITZ AND LEE: A NEW BASIS FOR SHIFTERS IN GENERAL-PURPOSE PROCESSORS FOR EXISTING AND ADVANCED BIT... 1045

Fig. 15. Control bit generator circuit block.

Fig. 16. Masked-merge block.

Fig. 17. Eight-bit barrel shifter.

each stage the shifted version or the pass-through version
from the previous stage (Fig. 18). The advantages are that
only n� lgðnÞ or n� log4ðnÞ elements are required and the
shift amount directly controls the multiplexer elements. The
disadvantage is that there are lgðnÞ or log4ðnÞ gates between
the input and output.

Left and right shifts can be performed by implementing
two data paths to perform left and right shifts separately
or alternatively a single-direction shifter, e.g., only right
shifting; the left shift is performed by subtracting the left
shift amount from the bit width, n (with the appropriate
logic to ensure proper zero propagation). Arithmetic right
shift is accomplished by conditionally propagating the
sign bit rather than a zero bit. Additionally, the shifters
easily support rotations by wrapping around the bits.

Table 2 presents a high-level comparison of the three
shifter designs. The first two lines contain the components
that contribute to area. Both the log shifter and our new
ibfly-based shifter have n� lgðnÞ elements, while the barrel
shifter has n2 elements. The log shifter also has the fewest
control lines ðlgðnÞÞ, while our new shifter design has more
as each switch, or pair of elements, requires an independent
control bit. Thus, we might expect that our new design has
slightly larger area than the log shifter.

The next two lines pertain to latency. The data path of the
barrel shifter has a single gate delay, while the log shifter
and our new design have lgðnÞ gate delay. However, both
the log shifter and our new design utilize narrow multi-
plexers with lower capacitance at output nodes.

We first used the method of logical effort [24] to
compare the delay along the critical paths for the barrel
shifter, the log shifter, and the inverse butterfly shifter. This

estimates the critical path in terms of FO4 gate equivalents,
which is the delay of an inverter driving four similar
inverters. We compare the latency of only the basic shifter
operations on these data paths. As the 64-bit barrel shifter
is impractical due to the capacitance on the output lines, we
implemented a 64-bit shifter as an 8-byte barrel shifter
followed by an 8-bit barrel shifter, which limits the number
of transmission gates tied together to 8. We consider the
delay only from the input to the decoder through the two
shifter levels for the barrel shifter and through the three
shifter levels for the log shifter.

For our proposed ibfly-based shifter, we consider the
delay from the input to the control bit generator (i.e., the
rotation control bit generator of Fig. 9) through the output of
the inverse butterfly circuit. According to the logical effort
calculations, the delay for the barrel shifter is 15.1 FO4 and
the delay for the log shifter is 13.0 FO4, while the delay for
inverse butterfly shifter is 15.5 FO4. Thus, the delay along
the critical path for the barrel shifter and our new proposed
shifter is comparable, and our new shifter is 19 percent
slower than a log shifter.

As the log shifter is the faster and more compact of the
two current shifter designs, we implemented it and our new
ibfly-based shifter design using a standard cell library. We
synthesized all designs to gate level, optimizing for shortest
latency, using Design Compiler mapping to a TSMC 90-nm
standard cell library [25]. The results are summarized in
Tables 3, 4, and 5.

Table 3 shows the result of a basic shifter that only
implements shift and rotate instructions. For the log shifter,
we implemented parallel data paths for left and right shifts.
Our new shifter has 1.18� the latency of the log shifter,
which is similar to the logical effort calculation. The new
design is also smaller than the log shifter, at approximately
70 percent of the area. (Note that a single data path log
shifter would have even smaller area. Furthermore,
accounting for the wires will increase the area for the

1046 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 18. Eight-bit log shifter.

TABLE 2
Comparison of Shifter Designs

TABLE 3
Latency and Area of Units Performing Shift and Rotate

TABLE 4
Latency and Area of Units Performing Shift, Rotate, Extract,

Deposit, and Mix

ibfly-based shifter relative to the log shifter, as mentioned.)
For comparison, we also implemented an ALU (supporting
add, subtract, and, or, not, xor with register or immediate
operands) synthesized using the same standard cell library.
Our new shifter is faster (92 percent latency) and smaller
(52 percent area) than this ALU.

Table 4 shows the result when both shifter architectures
are enhanced to support extract, deposit, and mix instruc-
tions (i.e., the top half of Table 1). The critical path of the log
shifter is now through the extract sign bit propagation, so
the latency is now comparable to that of the ibfly-based
shifter. Our new ibfly-based design is still only 83 percent of
the area of the log shifter. We include the results for an ALU
of similar latency, which turns out to have comparable area,
in NAND gate equivalents.

Table 5 shows the results when we add support for
advanced bit manipulation operations to our new ibfly-
based shifter, but not to the log-shifter. The first line is the
log shifter circuit from Table 4, included as the baseline. The
second line is a unit that supports the ibfly and static pex
instructions. We considered this unit in [9] as the function-
ality of the bfly circuit can be emulated using ibfly, albeit
with a multicycle penalty. The latency increases are due to
extra multiplexing for the control bits and output. The area
increases due to the ARs, the extra multiplexers, and the
pex masking. This unit has 1.18� the latency and 1.29� the
area of the log shifter.

The third line is a unit that also supports bfly and static
pdep. The latency increases slightly due to output multi-
plexing and the area increases due to the second
(butterfly) data path and second set of three ARs. This
unit has 1.20� the latency and 1.87� the area of the log
shifter. Alternatively, we can add a separate unit to
perform just bfly and pdep (line 4), thereby enabling
simultaneous superscalar execution with the ibfly-pex-
shifter unit (line 2). We see that our full shift-permute unit
(line 3) can be split into two units at no additional increase
in area. We also include the results for an ALU of similar
latency, which is now smaller than the log shifter due to
the relaxed latency constraint. The full shift-permute unit
(line 3) now has 2.25� the area of the ALU.

We remark that full custom designs of the ALU, log
shifter, and our new shift-permute unit should be done,
since standard cell implementations may not reflect a fair or
accurate comparison—especially between the shifters and
the ALU, which is typically highly optimized by custom
circuit design. Such circuit design is more appropriately

done by microprocessor custom circuit designers according
to implementation-specific needs and the process technol-
ogy used.

5 CONCLUSION

We have described a new basis for Shifter and Mix
functional units based on the inverse butterfly data path.
Our new Shift-Permute functional unit is a much more
powerful functional unit: it performs the existing Shifter
operations (shift, rotate, extract, and deposit) and multi-
media subword-permutation operations (mix operations) as
well as the newly proposed advanced bit manipulation
operations (bfly, ibfly, parallel extract, and parallel deposit)
and mix operations down to bit level.

We showed how to configure an inverse butterfly circuit
to achieve rotations; this is given by a simple recursive
function of the shift amount. We also showed how to
compute the merge bits and mask control for turning
rotations into shifts, extract, deposit, and mix operations,
using the same recursive function.

We also showed how to determine the control bits to
configure the inverse butterfly (and butterfly) circuits to
perform parallel extract (and parallel deposit) operations.

We also put all the implementation details together for
the entire Shift-Permute unit based on the inverse butterfly
(and optional butterfly) data paths.

Additionally, we compared the complexity of our new
functional unit to that of the existing barrel shifter and log
shifter. Our proposed Shift-Permute unit is about the same
latency as a barrel shifter but slower than a log shifter, using
logical effort estimations. With standard cell implementa-
tions of the faster log shifter and our proposed shifter, we
find our shifter 3 percent slower and 17 percent smaller than
the log shifter, for the circuit supporting shifts, rotates,
extract, deposit, and mix. The full circuit is 20 percent
slower and 87 percent larger than the log shifter while
supporting a much more powerful set of advanced bit
manipulation operations (including ibfly, bfly, pex, and
pdep) as well as existing shifter and mix operations. Since
the mix operation is currently supported as a separate
multimedia functional unit in [3], we may have potentially
reduced overall area requirements by replacing two existing
functional units (Shifter, Multimedia-mix) with one new
unit. In contrast to adding an advanced bit manipulation
unit, this yields a significant reduction in area.

In summary, our proposed new Shift-Permute functional
unit enables processors to support advanced bit manipula-
tions efficiently, in addition to existing shifter instructions,
with only minor cycle-time latency and area overhead. We
recommend its use in future microprocessors. Unlike
adders and multipliers, shifters have not evolved as much
in the past few decades. We hope to have stimulated further
research into optimal implementations of shifters, and also
into important applications of the new, high-performance,
advanced bit manipulation operations.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the
Department of Defense. Y. Hilewitz holds US National
Science Foundation (NSF) and Hertz Foundation fellow-
ships.

HILEWITZ AND LEE: A NEW BASIS FOR SHIFTERS IN GENERAL-PURPOSE PROCESSORS FOR EXISTING AND ADVANCED BIT... 1047

TABLE 5
Latency and Area of Units Performing Advanced Bit Operations

REFERENCES

[1] Intel Corporation, IA-32 Intel Architecture Software Developer’s
Manual, vol. 2, 2004.

[2] R.B. Lee, “Precision Architecture,” IEEE Computer, vol. 22, no. 1,
pp. 78-91, Jan. 1989.

[3] Intel Corporation, Intel Itanium Architecture Software Developer’s
Manual, vol. 3, rev. 2.2, Jan. 2006.

[4] IBM Corporation, PowerPC Microprocessor Family: Programming
Environments Manual for 64 and 32-Bit Microprocessors, ver. 2.0,
June 2003.

[5] R.B. Lee and J. Huck, “64-bit and Multimedia Extensions in the
PA-RISC 2.0 Architecture,” Proc. IEEE Compcon ’96, pp. 152-160,
Feb. 1996.

[6] R.B. Lee, “Subword Parallelism with MAX-2,” IEEE Micro, vol. 16,
no. 4, pp. 51-59, Aug. 1996.

[7] H.S. Warren Jr, Hackers’s Delight. Addison-Wesley Professional,
2002.

[8] Y. Hilewitz and R.B. Lee, “Fast Bit Compression and Expansion
with Parallel Extract and Parallel Deposit Instructions,” Proc. IEEE
Int’l Conf. Application-Specific Systems, Architectures and Processors
(ASAP ’06), pp. 65-72, Sept. 2006.

[9] Y. Hilewitz and R.B. Lee, “Fast Bit Gather, Bit Scatter and Bit
Permutation Instructions for Commodity Microprocessors,”
J. Signal Processing Systems, vol. 53, nos. 1/2, Nov. 2008.

[10] Y. Hilewitz and R.B. Lee, “Performing Advanced Bit Manipula-
tions Efficiently in General-Purpose Processors,” Proc. 18th IEEE
Symp. Computer Arithmetic (ARITH ’07), June 2007.

[11] R.B. Lee, A.M. Fiskiran, and A. Bubshait, “Multimedia
Instructions in IA-64,” Proc. IEEE Int’l Conf. Multimedia and
Expo (ICME ’01), pp. 281-284, Aug. 2001.

[12] Z. Shi and R.B. Lee, “Subword Sorting with Versatile
Permutation Instructions,” Proc. Int’l Conf. Computer Design
(ICCD ’02), pp. 234-241, Sept. 2002.

[13] Z. Shi and R.B. Lee, “Bit Permutation Instructions for Accel-
erating Software Cryptography,” Proc. IEEE Int’l Conf. Applica-
tion-Specific Systems, Architectures and Processors (ASAP ’00),
pp. 138-148, July 2000.

[14] R.B. Lee, Z. Shi, and X. Yang, “Efficient Permutation Instructions
for Fast Software Cryptography,” IEEE Micro, vol. 21, no. 6,
pp. 56-69, Dec. 2001.

[15] X. Yang and R.B. Lee, “Fast Subword Permutation Instructions
Using Omega and Flip Network Stages,” Proc. Int’l Conf. Computer
Design (ICCD ’00), pp. 15-22, Sept. 2000.

[16] R.B. Lee, Z. Shi, and X. Yang, “How a Processor Can Permute n
bits in O(1) Cycles,” Proc. 14th Symp. High Performance Chips
(Hot Chips ’02), Aug. 2002.

[17] Z. Shi, X. Yang, and R.B. Lee, “Arbitrary Bit Permutations in One
or Two Cycles,” Proc. IEEE Int’l Conf. Application-Specific Systems,
Architectures and Processors (ASAP ’03), pp. 237-247, June 2003.

[18] R.B. Lee, X. Yang, and Z.J. Shi, “Single-Cycle Bit Permutations
with MOMR Execution,” J. Computer Science and Technology,
vol. 20, no. 5, pp. 577-585, Sept. 2005.

[19] J.P. McGregor and R.B. Lee, “Architectural Enhancements for Fast
Subword Permutations with Repetitions in Cryptographic Appli-
cations,” Proc. Int’l Conf. Computer Design (ICCD ’01), pp. 453-461,
Sept. 2001.

[20] V.E. Bene�s, “Optimal Rearrangeable Multistage Connecting
Networks,” Bell System Technical J., vol. 43, no. 4, pp. 1641-1656,
July 1964.

[21] Y. Hilewitz, Z.J. Shi, and R.B. Lee, “Comparing Fast Implementa-
tions of Bit Permutation Instructions,” Proc. 38th Asilomar Conf.
Signals, Systems, and Computers (Asilomar ’04), Nov. 2004.

[22] F.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[23] R.B. Lee and Y. Hilewitz, “Fast Pattern Matching with Parallel
Extract Instructions,” Technical Report CE-L2005-002, Dept.
Electrical Eng., Princeton Univ., Feb. 2005.

[24] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing
Fast CMOS Circuits. Morgan Kaufmann, 1999.

[25] Taiwan Semiconductor Manufacturing Corp., TCBN90GTHP:
TSMC 90nm Core Library Databook, ver 1.1, Dec. 2006.

Yedidya Hilewitz received the BEng degree in
electrical engineering from the Cooper Union in
2003 and the PhD degree in electrical engineer-
ing from Princeton University in 2008, where he
explored the architecture and implementation of
bit manipulation instructions in commodity mi-
croprocessors. The work in this paper was done
while he was a PhD student at Princeton. He is
currently a design engineer in the Massachu-
setts Microprocessor Design Center, Intel Corp.,

Hudson. He is a member of the IEEE and the ACM.

Ruby B. Lee received the PhD in Electrical
Engineering and a M.S. in Computer Science,
both from Stanford University, and an A.B. with
distinction from Cornell University, where she
was a College Scholar. She is the Forrest G.
Hamrick Professor of Engineering and Profes-
sor of Electrical Engineering at Princeton Uni-
versity, with an affiliated appointment in the
Computer Science Department. She is the
director of the Princeton Architecture Laboratory

for Multimedia and Security (PALMS). Her current research includes
security-aware computer architecture, multicore security, cache-based
software side-channel attacks, advanced bit permutations, no-overhead
crypto, and secure cloud computing. She is Associate Editor-in-Chief of
IEEE Micro, an Advisory board member of IEEE Spectrum, and past
editorial board member of IEEE Security and Privacy. Prior to joining
the Princeton faculty in 1998, Dr. Lee served as chief architect at
Hewlett-Packard, responsible at different times for processor architec-
ture, multimedia architecture and security architecture. She was a key
architect of the PA-RISC architecture used in HP workstations and
servers. She pioneered adding multimedia instructions to microproces-
sors, facilitating ubiquitous multimedia on commodity platforms. She co-
led an Intel-HP architecture team designing new Instruction-Set
Architecture for 64-bit Intel microprocessors. Simultaneous with her
full-time HP tenure, she was also Consulting Professor of Electrical
Engineering at Stanford University. She has been granted over 120
United States and international patents, and has authored numerous
conference and journal papers on secure computing, computer
architecture, processor design, multimedia and advanced bit permuta-
tion topics. She is a fellow of the ACM and a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1048 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

