vi4 RISC

RISC-V “Rocket Chip”
Tutorial

Colin Schmidt
UC Berkeley
colins@eecs.berkeley.edu

: y Outline

RISC

= What can Rocket Chip do?
= How do | change what Rocket Chip generates?
— What are chisel parameters and how do they help me?
= How do | use the C++ emulator?
= How do | get a waveform/debug?
= How do | add different options?
— Where do | put my changes?
= How do | add new instructions?

— How do | “drop-in” my accelerator?
— Where do | put different extensions?

= How do | use verilog generation?
— For an ASIC toolflow
— For an FPGA target

: y What can Rocket Chip do?
RISC

= What can Rocket Chip do?

= Rocket chip allows you to generate different
configurations of an SoC, including the software
toolchain that would run on this software

= These configurations are specified through chisel
parameters most of which can be freely changed

= We can then select what to generate

= C++ RTL emulator

= Verilog

- FPGA
~ ASIC

: 4 What are all these submodules in Rocket Chip?

RISC

= Chisel

— The HDL we use at Berkeley to develop our RTL.
= Rocket

— Source code for the Rocket core and caches

= Uncore
— Logic outside the core: coherence agent, tile interface, host
interface

Hardfloat

— Parameterized FMAs and converters, see README
Dramsim?2

— Simulates DRAM timing for simulations
Fpga-zync

— Code that helps get rocket-chip on FPGAs

Riscv-tools
— Software toolchain used with this version of Rocket Chip

: y What about the other folders?

RISC
Located in ~/bar/rocket-chip/
" Src
— Chisel source code for rocket chip
" CSrc
— Glue code to be used with the C++ emulator
" VSrc
— Verilog test harness for rocket-chip
" emulator
— Build directory for the C++ emulator, contains generated code
and executables
= fsim
— Build directory for FPGA verilog generation
= vS1m

— Build directory for ASIC verilog generation
» project
— Scala/sbt configuration files
= rocc—template (example rocc used for this tutorial)

: y Overview of Rocket Chip Parameters
RISC

= Located in
src/main/scala/PublicConfigs.scala
= Easily changed parameters are called Knobs

case VAddrBits => 43
case NMSHRs => Knob ("L1D MSHRS")

* Important configuration options fit in a few

categories
— Tile — How many, what types, what accel?
— Memory — Phys/Virt Address bits, Mem interface params
— Caches — Sets, ways, width etc. for L1 and L2; TLBs
— Core — FPU?, fma latency, etc.
— Uncore — coherence protocol, tilelink params

: y Configs

RISC

= Parameters can be changed to create different
configurations

= Knobs require defaults and are parameters we expect
to be tunable via Design space exploration

= Two examples given at bottom of PublicConfigs.scala
— DefaultConfig — used when no other configurations are
specified
— SmallConfig — removes FPU and has smaller caches
= To generate a different configuration you can simply
follow the SmallConfig Example, setting parameters

and knobs as you want

: y Simulating a Configuration
RISC

» C++ RTL emulator built from emulator directory

= The default emulator has already been built
Smake run-asm-tests

= We can also build the small config very easily
Smake CONFIG=ExampleSmallConfig

= And test it too!

Smake CONFIG=ExampleSmallConfig run-
asm—tests

= Nothing special about this config name, build system
is smart enough to find the config class

: y Making and Simulating a new Configuration
RISC

= Lets try making a “medium” sized config
— Double the number of ways in L1 | and D cache in small config

class MediumConfig extends SmallConfig{
override val knobValues:Any=>Any = {
case "L1D WAYS" => 2
case "L1I WAYS" => 2

}
}

class ExampleMediumConfig extends ChiselConfig(new
MediumConfig ++ new DefaultConfig)

= All we need to do is specify it when making the emulator
Smake CONFIG=ExampleMediumConfig

= We can then test the new config

Smake CONFIG=ExampleMediumConfig run-
asm—-tests

= The power of generators!

: y More Complicated Configurations
RISC

= How would | add a new parameter to rocket chip?
— Widely used parameters for the generator can be added to
the DefaultConfig
— It is then made available via Chisel parameters to the
implementation

= How do | add accelerators? What about their

parameters?
— Other modules like accelerators should have their
parameters declared in their own source folder
— Default configuration can be added to a new *Configs.scala
in the rocket-chip source
— More on this later

10

ISA Extensions and RoCC

</

RISC

= Chapter 9 in the ISA manual
= 4 major opcodes set aside for non-standard extensions (Table

8.1)
— Custom 0-3
— Custom 2 and 3 are reserved for future RV128

= RoCC interface uses this opcode space
— 2 source operands, 1 destination, 7 bit funct field
— 3 bits(xd,xs1,x2) determine if this instruction uses the register
operands, and passes the value in register rs1/2, or writes the

response to rd

inst[4:2] 000 001 010 011 100 101 110 111
inst[6:5] (> 32b)

00 LOAD LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC OP-IMM-32 48b

01| STORE | STORE-FP | custom-1 AMO op LUI OP-32 64b

10| MADD MSUB NMSUB NMADD OP-FP | reserved | custom-2/rvl128 48b

11 | BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rvi28 | = 80b

31 25 24 20 19 15 14 13 12 11 76 0
funct7 rs2 rsl xd | xsl | xs2 rd opcode
7 5) 5) 1 1 1 5) 7
roccinst[6:0] src2 srcl dest custom-0/1/2/3 11

: y RoCC Accelerators
RISC
* Implementing the RoCC interface is probably the
simplest way to create a RISC-V extension

= Toolchain already supports custom0-3 assembly
— No need to modify the toolchain at all if you fit into this
interface

= Need to implement the RoCCIO interface
= Located in
rocket/src/main/scala/rocc.scala

12

RISC

rRocket

RoCC Interface

Decoupled(Cmd) 'ROCC
Accel.
Decoupled(Resp)
—
CachelO
< —l
busy
<
IRQ
<

supervisor bit

UncachedTileLinklO

exception

Rocket sends coprocessor
instruction via the Cmd
interface (including
registers)

Accelerator responds
through Resp interface
Accelerator sends memory
requests to L1DS via
CachelO

busy bit for fences

IRQ, S, exception bit used
for virtualization
UncachedTileLinklO for
instruction cache on
accelerator

PTWIO for page-table
walker ports on accelerator

13

: y RoCC Accelerator Example

RISC

= We can now start walking through an example
accelerator used in teaching CS250 at Berkeley
= This branch of rocc-template implements the SHA3
cryptographic hashing algorithm
= |t includes several things
— Creference code in rocc-template/src/main/c
— Chisel implementation in rocc-template/src/
main/scala
— C test cases for both SW and RoCCin rocc-template/
tests
— Functional model for Spike in rocc-template/isa-
sim
— New Rocket chip configuration in rocc-template/
config

14

: y Functional Model of Accelerator
RISC
= First step to any architecture project write a simulator
= Spike is designed to be extendable
rocc-template/isa-sim/sha3/sha3.h
= We extend the rocc_t class implementing a subset of
the custom opcodes

= Describes a functional model of the computation
= Adheres to the same interface as the accelerator
» Interacting with the simulated memory happens

through the processors mmu p—->get mmu ()
— See lines 56,63

= Now we are ready to test the model

15

: y Functional Model of Accelerator
RISC

= Rather than moving the files out of the rocc-template
directory we just symlink to them (done for you)

Sspike —--extension=sha3

= Need to rebuild spike to be able to model our
accelerator

Scd riscv-tools && ./build-spike-

only.sh

= Now spike understands our extension!

Sspike —--extension=sha3

16

: y Accelerator Tests
RISC

= A few variants of a simple sha3 test

sha3-sw[-bm].c

sha3-rocc[-bm].c

= sw versions just uses the reference C implementation

= rocc versions use inline assembly to call the
accelerator, see:

rocc—-template/tests/sha3-rocc.c

= The operands are xd/rd, xs1/rs1, xs2/rs2, and funct

= Putting O for the register operands marks them
unused

= Otherwise you can use standard assembly syntax to
send values to the accelerator

17

: A Functional Model of Accelerator Testing
RISC

= Now we are ready to test our model

= First just the software only version

Sspike pk sha3-sw.rv

= Lets try the accelerator version without the accel
Sspike pk sha3-rocc.rv

= An expected failure so now we enable our extension
Sspike —--extension=sha3 sha3-rocc.rv
= Success!

18

: y Chisel Accelerator
RISC

= Time to implement our design in chisel and plug it in
to Rocket chip

= Luckily the implementation is done and rocket chip is
smart enough to pick up on folders that look like a
chisel project (i.e. have a src/main/scala directory)

= We can look at how the accelerator is parameterized

src/main/scala/sha3.scala

= Looking at the bottom we see it looks similar to
previous configs we have looked at with the addition
of a set of constraints

* The constraints help during any design space
exploration you want to undertake

19

: y Chisel Accelerator Plug-in
RISC

= Now lets setup rocket chip to include our accelerator

config/PrivateConfigs.scala

= The important parameter is the BuildRoCC parameter
which gives the constructor for the Sha3 accelerator

= Rocket chip uses this parameter to instantiate the
accelerator in its datapath

= The clean interface allows this to happen seamlessly

= Now we can build the accelerated version

Smake CONFIG=Sha3CPPConfig

20

: y Chisel Accelerator Performance
RISC

= Time to test this new emulator

= \We can even measure performance (pk “s” flag)

S./emulator-DefaultCPPConfig pk -

s ../rocc-template/tests/sha3-sw-

bm.rv

S./emulator-Sha3CPPConfig pk -s ../

rocc—-template/tests/sha3-sw-bm.rv

S./emulator-Sha3CPPConfig pk -s ../

rocc—-template/tests/sha3-rocc-bm.rv

= Even on a very short test with a single hash we see a
good speed up

: y Chisel RTL Debugging

RISC

= What if | had a bug?

= Chisel has support for “printf” in your code but you
might want to just see a waveform

= C++ emulator supports this too

Smake debug

S./emulator-DefaultCPPConfig-debug -

vtest.vcd +loadmem=output/

median.riscv.hex

» This creates a standard vcd that a program like
gtkwave can open

Sgtkwave test.vcd

= This same setup works for the accelerator just takes
longer because of the pk and test length

22

: A Non-RoCC extensions
RISC
= What if | want to extend the ISA in a different way,
(i.e. not RoCC)
= This will be more work but could give you more
freedom and a tighter integration

= Updates need to be made in several locations
— riscv-opcodes (define your new encodings)
— riscv-gnu-toolchain (add new instructions to assembler)
— riscv-isa-sim (update/add instruction definition)
— rocket (datapath and front-end updates)

23

: y Non-RoCC extension riscv-opcodes
RISC

= Repository for all encodings

= Generates
— Header files gnu-toolchain
— Header files for isa-sim
— ISA manual tables
— Chisel code to include in rocket

= Add the instruction to one of the opcodes files

Smake install

= Generates all the different files and installs them in
the correct folders

24

: y Non-RoCC extension riscv-gnu-toolchain
RISC
= Contains binutils, gcc, newlib and gcc ports

» Add instruction definition to
binutils/opcodes/riscv-opc.c

* This is all that’s needed for simple instructions
= Rebuild the toolchain and you can assemble your new
instruction

25

: A Non-RoCC extension riscv-isa-sim
RISC
= Already looked at this earlier for RoCC extensions

» Standard riscv instructions are defined in
riscv/insns

= Adding the instruction to riscv-opcodes will cause
spike to look for a header file in this folder with the
Instructions name

= The header file describes how the instruction behaves

= Many examples of different instructions to start with

26

: y Non-RoCC extension rocket
RISC

* Modifications to this code will greatly depend on the
Instruction

= Simply adding a new ALU op would require very few
changes

= The complexity of the changes will depend greatly on
the instruction

= Happy to talk to you after or answer questions on line

about this
— more on this later

27

: y Rocket Chip Verilog
RISC
= The vsim directory contains build scripts to generate
verilog with an ASIC backend in mind
Scd ../vsim && make

= The generated-src directory contains
— Verilog source (Top.SCONFIG. V)
— Set of exported parameters (Top.SCONFIG.prm)
— Memory parameters (Top.SCONFIG. conf)

= Memory parameters are used in our flow to figure
out which SRAMs to generate or request

= vlsi mem gen scriptis used by Berkeley to
automate this process

= After this processing the verilog is ready for CAD tools

28

: y Rocket Chip Verilog for FPGA

RISC

* The fsim directory contains build scripts to generate
verilog with an FPGA backend in mind
Scd ../fsim && make

= The generated-src directory contains
— Verilog source (Top.SCONFIG. V)
— Set of exported parameters (Top.SCONFIG.prm)
— Memory parameters (Top.SCONFIG. conf)

= fpga mem gen handles the memory configurations

= fpga-zynq repo has build scripts after this point but
requires the fpga tools to run

= Well documented repo so refer to its README for

more instructions
— https://github.com/riscv/fpga-zynq

29

: Rocket Chip Questions, Suggestions, and

y
RIS Feedback
= Technical Support For RISC-V Software/General
Questions

— http://stackoverflow.com/questions/tagged/riscv
= Discussion Mailing Lists https://lists.riscv.org/
— sw-dev
- hw-dev
= Specific bugs can be reported to github
— Detailed replication instructions and/or possible solutions
highly encouraged

= Questions in person for a bit after this

30

Questions

31

