4 RISC

Tutorial Introduction

Krste Asanovic
krste@eecs.berkeley.edu

http://www.riscv.orq

RISC-V Tutorial, HPCA, SFO Marriot
February 8, 2015




: y ISAs don’t matter

RISC _
Most of the performance and energy running software

on a computer is due to:

= Algorithms

= Application code

= Compiler

= OS/Runtimes

= |SA (Instruction Set Architecture)

= Microarchitecture (core + memory hierarchy)
= Circuit design

= Physical design

= Fabrication process

In a system, there’s also displays, radios, DC/DC
convertors, sensors, actuators, ...



: y ISAs do matter

RISC

* Most important interface in computer system

= Large cost to port and tune all ISA-dependent parts
of a modern software stack

= Large cost to recompile/port/QA all supposedly
ISA-independent parts of stack

= Proprietary closed-source, don’t have code

= Bit rot, lose ability to compile own source code

= Lost your own source code

= Most of the cost of developing a new chip is
developing software for it
= Most big new chips have several ISAs...



: y So...

RIS C
If choice of ISA doesn’t have much impact on

system energy/performance,
and it costs a lot to use different ones,

why isn’t there just one industry-standard ISA?



: y ISAs Should Be Free and Open

RIS C
While ISAs may be proprietary for historical or

business reasons, there is no good technical

reason for the lack of free, open ISAs:

= |[t’s not an error of omission.

= Nor is it because the companies do most of the
software development.

= Neither do companies exclusively have the experience
needed to desigh a competent ISA.

= Nor are the most popular ISAs wonderful ISAs.

= Neither can only companies verify ISA compatibility.

= Finally, proprietary ISAs are not guaranteed to last.



: y Benefits from Viable Freely Open ISA

RISC

= Greater innovation via free-market competition from
many core designers, closed-source and open-source.

= Shared open core designs, shorter time to market, lower
cost from reuse, fewer errors given more eyeballs,
transparency makes it difficult for government agencies
to add secret trap doors.

= Processors becoming affordable for more devices, which
would help expand the Internet of Things (loTs), which
could cost as little as S1.

= Software stacks survive for long time upgrade software
on systems embedded in concrete 50 years ago

= Make architecture research and education more real
with fully open hardware and software stacks




: y What Style of ISA?

RISC

= If ISA doesn’t matter, then pick an easy-to-
implement, efficient ISA

= Seymour Cray’s 50-year-old load-store design, refined
by RISC research 30+ years ago, still a good choice



: y ISA innovation over last 30 years?
RISC

= Load-store ISAs predate Moore’s Law
= Very little (nothing?) stuck for general-purpose code,

failures:
— CISC (microcode worse than instruction cache in VLSI)
— Stack machines (compiler can target registers)
— VLIW (dynamic predictors beat static scheduling)

= Industry has reconverged on simpler RISC ideas:
— ARM v8, MIPS r6, both similar ideas to RISC-V

= Specialized Accelerators? Only way to improve

performance until post-CMOS (20-30 years away)
— G. Estrin, "Organization of computer systems: the fixed plus
variable structure computer,"” Proc. WJCC, 1960
— GPUs — bad version of Cray vectors



: y Other Open ISAs

RISC

= SPARC V8 - To its credit, Sun Microsystems made
SPARC V8 an |IEEE standard in 1994. Sun, Gaisler
offered open-source cores. ISA now owned by Oracle.

= OpenRISC - GNU open-source effort started in 1999,
based on DLX. 64-bit ISA was in progress.

= Open Processor Foundation - Patents expiring on
Hitachi SH architecture, so open-sourcing tools and

implementations
= Lattice Micro 32 (LM32) — Simple FPGA soft core.

= All RISC ISAs



: y RISC-V Background

RISC

* In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to

look at ISA for next set of projects
= Obvious choices: x86 and ARM
= Xx86 impossible —too complex, IP issues



: y Intel x86 “AAA” Instruction

RISC

= ASCI| Adjust After Addition
= AL register is default source and destination

= |f the low nibble is > 9 decimal, or the auxiliary carry
flag AF = 1, then
— Add 6 to low nibble of AL and discard overflow

— Increment high byte of AL
— Set CF and AF

= Else
~-CF=AF=0

= Single byte instruction

11



: y RISC-V Background

RISC

* In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to

look at ISA for next set of projects
= Obvious choices: x86 and ARM

= Xx86 impossible —too complex, IP issues

= ARM mostly impossible - complex, IP issues

= So we started “3-month project” in summer 2010 to
develop our own clean-slate ISA

= Four years later, we released frozen base user spec
— But also many tapeouts and several research publications
along the way



< 2015 RISC-V Project Goal

RISC

Become the industry-standard ISA for
all computing devices

13



: 4 RISC-V is NOT an Open-Source Processor

RISC

= RISC-V is an ISA specification

= Will be expanding to be specifications for SoCs
including I/O and accelerators

= Most of cost of chip design is in software, so want to
make sure software can be reused across many chip
designs

= Want to encourage both open-source and proprietary
implementations of the RISC-V ISA specification

14



: y RISC-V Base Plus Standard Extensions

RISC

* Three base integer ISAs, one per address width
— RV32l, RV64l, RV128I

— Only 40 hardware instructions needed
= Standard extensions
— M: Integer multiply/divide
— A: Atomic memory operations (AMOs + LR/SC)
— F: Single-precision floating-point
— D: Double-precision floating-point
— G = IMAFD, “General-purpose” ISA
— Q: Quad-precision floating-point
= All the above are a fairly standard RISC encoding in a
fixed 32-bit instruction format

= Now frozen

15



<

RISC-V Standard Base ISA Details

RISC
25 24 20 19 15 14 12 11 76
funct7 rs2 rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode
imm/[11:5] rs2 rsl funct3 | imml[4:0] opcode
imm|31:12] rd opcode

= 32-bit fixed-width, naturally aligned instructions
= 31 integer registers x1-x31, plus x0 zero register
= No implicit registers, rs1/rs2/rd in fixed location

* Floating-point adds fO-f31 registers plus FP CSR, also

fused mul-add four-register format
= Designed to support PIC and dynamic linking

R-type
I-type
S-type

U-type

16



: y “A”: Atomic Operations Extension
RISC

Two classes:
= Atomic Memory Operations (AMO)

— Fetch-and-op, op=ADD,0OR,XOR,MAX,MIN,MAXU,MINU
» Load—Reserved/Store Conditional

— With forward progress guarantee for short sequences

= All atomic operations can be annotated with two bits
(Acquire/Release) to implement release consistency
or sequential consistency

17



: y Why do SoCs have so many ISAs?

RISCV.
= Applications processor (usually ARM)

= Graphics processors

= |[mage processors

= Radio DSPs

= Audio DSPs

= Security processors

= Power management processor

= |P bought from different places, each proprietary ISA

= Home-grown ISA cores

= Apps processor ISA too huge for base accelerator ISA

= Rebuild whole software stack for each ISA to speed up
<1% of the total code!!!

18



Variable-Length Encoding

XXXXXXXXXXXXXXaa

XXXXXXXXXXXXXXXX

XXXXXXXXXxXxbbbl1l

- o XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxxx011111

¢ - XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxx0111111

- o XXXX

XXXXXXXXXXXXXXXX

xnnnxxxxx1111111

¢+ XXXX

XXXXXXXXXXXXXXXX

x111xxxxx1111111

Byte Address: base+4

base-+2

base

16-bit (aa # 11)

32-bit (bbb #£ 111)

48-bit

64-bit

(80+16*nnn)-bit, nnn#£111

Reserved for >192-bits

= Extensions can use any multiple of 16 bits as
instruction length
= Branches/Jumps target 16-bit boundaries even in
fixed 32-bit base

19



: 4 “C": Compressed Instruction Extension
RISC

= Compressed code important for:
- low-end embedded to save static code space
— high-end commercial workloads to reduce cache footprint

= Standard extension (still in draft, not frozen) adds 16-

bit compressed instructions
— 2-address forms with all 32 registers
— 3-address forms with most frequent 8 registers

= Each Cinstruction expands to a single base ISA
instruction

= All original 32-bit instructions retain encoding but
now can be 16-bit aligned

= Approximately 25% reduction in code size, with
performance improvement from reduced IS misses

20



<

RISC

Application

AEE

RISC-V Privileged Architecture

Application

Application

ABI ABI
OS

SEE

Application

Application

ABI ABI
OS

SBI SBI

Application

ABI ABI
OS

Hypervisor

HEE

Application

= Provide clean split between layers of the software stack

= Application communicates with Application Execution
Environment (AEE) via Application Binary Interface (ABI)

= OS communicates via Supervisor Execution Environment
(SEE) via System Binary Interface (SBI)

= Hypervisor communicates via Hypervisor Binary
Interface to Hypervisor Execution Environment

= All levels of ISA designed to support virtualization

21



<

RISC

Application
AEE

Hardware

RISC-V Hardware Abstraction Layer

Application

Application

ABI ABI
OS

SEE

Hardware

Application

Application

ABI ABI
OS

SBI SBI

Application

Hypervisor

HEE

Hardware

ABI ABI
OS

Application

» Execution environments communicate with hardware
platforms via Hardware Abstraction Layer (HAL)

= Details of execution environment and hardware
platforms isolated from OS/Hypervisor ports

22



: y Four Supervisor Architectures
RISC

= Mbare
— Bare metal, no translation or protection

= Mbb

— Base and bounds protection

= Sv32

— Demand-paged 32-bit virtual address spaces

= Sv43

— Demand-paged 43-bit virtual address spaces

= Designed to support current popular operating
systems
= Where’s the draft spec????
— This is taking some time, very soon now.
— It won’t be finalized for a while, since we need feedback

23



: 4 RISC-V Ecosystem [/ RISC

RISC WWW.r1SCV.Org

= Documentation
— User-Level ISA Spec v2
— Reviewing Privileged ISA

= Software Tools
— GCC/glibc/GDB
— LLVM/Clang
— Linux
- Yocto
— Verification Suite

= Hardware Tools
— Zynq FPGA Infrastructure
— Chisel

. Software Implementations
— ANGEL, JavaScript ISA Sim.
— Spike, In-house ISA Sim.
- QEMU

« Hardware Implementations

— Rocket Chip Generator
— RV64G single-issue in-order pipe
— Sodor Processor Collection




: y RISC-V Outside Berkeley

RISC

= Adopted as “standard ISA” for India. IIT-Madras
building 6 different open-source cores, from
microcontrollers to servers

* Bluespec Inc. developing RISC-V cores for use in
tightly integrated hardware/software IP blocks

* LowRISC project based in Cambridge, UK producing
open-source RISC-V based SoCs. Led by one of the
founders of Raspberry Pi, and privately funded

= First commercial RISC-V cores have already shipped!

= Multiple commerecial silicon implementations for sale
later this year

25



: y RISC-V Foundation

RISC

* In progress, establishing a non-profit RISC-V
foundation “to standardize, protect, and promote the
free and open RISC-V instruction set architecture and
its hardware and software ecosystem for use in all
computing devices.”

= Expect to have RISC-V foundation up and running by
time of second RISC-V workshop in Berkeley, summer
2015

= Sign up on mailing lists or twitter at riscv.org to get
announcements

26



: y HPCA/CGO/PPoPP Tutorial Goals

RISC

* Bring academic community up to speed on RISC-V
developments and tools ecosystem
= Agenda:
— Intro, Krste Asanovic
— “Rocket Chip” SoC generator overview, Yunsup Lee
— RISC-V software stack overview, Palmer Dabbelt
— Break

— RISC-V software bootcamp, Albert Ou
— Rocket bootcamp, Colin Schmidt

27



: y RISC-V Research Project Sponsors

RISC

= DoE Isis Project

= DARPA PERFECT program

= DARPA POEM program (Si photonics)

= STARNnet Center for Future Architectures (C-FAR)
= Lawrence Berkeley National Laboratory

= Industrial sponsors (ParLab + ASPIRE)
- Intel, Google, Huawei, LG, NEC, Microsoft, Nokia, NVIDIA,
Oracle, Samsung

28



