Security Testing of a Secure Cache Design

Fangfei Liu
Princeton University
Princeton, NJ, 08544 USA
fangfeil@princeton.edu

ABSTRACT

Cache side channel attacks are attacks that leak secret infor-
mation through physical implementation of cryptographic
operations, nullifying cryptographic protection. Recently,
these attacks have received great interest. Previous research
found that software countermeasures alone are not enough
to defend against cache side channel attacks. Secure cache
designs can thwart the root causes of cache side channels and
are more efficient. For instance, Newcache is a cache design
that can enhance security, performance and power efficiency
simultaneously through dynamic memory-cache remapping
and eviction randomization. However, these cache designs
seldom had their security verified experimentally by mount-
ing cache side channel attacks on them.

In this paper, we test the security of Newcache using rep-
resentative classes of cache side channel attacks proposed for
conventional set-associative caches. The results show that
Newcache can defeat all these attacks. However, what if
a very knowledgeable attacker crafted the attack strategy
targeting the secure cache’s design? We redesign the at-
tacks specifically for Newcache. The results show that New-
cache can defeat even crafted access-driven attacks specifi-
cally targeted at it but sometimes succumbs to the specif-
ically crafted timing attacks, which is due to a very sub-
tle vulnerability in its replacement algorithm. We further
secure Newcache by modifying its replacement algorithm
slightly, thus defeating these specifically crafted timing at-
tacks. In addition, the improved Newcache simplifies the
replacement algorithm in the original Newcache design.

1. INTRODUCTION

Encryption is used to protect the confidentiality of secret
information. However, the protection of strong cryptogra-
phy may be nullified by the physical implementation of the
cipher. The byproduct information of cryptographic oper-
ation such as timing, power, and eletromagnetic radiation
can be exploited by attackers to extract secret information.
These are called side channel attacks([7, 4]. Cache side chan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HASP 13, June 2013, Tel-Aviv Israel

Copyright 2013 ACM 978-1-4503-2118-1/13/06 ...$15.00.

Ruby B. Lee
Princeton University
Princeton, NJ, 08544 USA
rblee@princeton.edu

nel attacks are side channel attacks based on cache access
mechanisms in processors[13, 15, 2, 12, 3, 6, 18]. Many
cryptographic operations heavily use memory accesses to
look up substitution tables, and the addresses of the mem-
ory accesses are dependent on the secret key. Therefore, if
the address of the memory accesses are known to the at-
tackers, it is possible to infer secret key bits. The use of
a cache enables attackers to learn the addresses of memory
accesses since the timing difference between cache hits and
cache misses is large. Cache side channel attacks can be
performed on various platforms, from smart cards to cloud
server, and therefore are a serious security consideration.

Most existing solutions for cache side channel attacks are
software based. Some advancements have been made for
high performance AES implementations without table lookups.
For example, Konighofer et al proposed a fast implementa-
tion of AES using bitslices with constant time [9]. Intel in-
troduced AES-NT instructions that enable fast software AES
implementation using AES-specific instructions [11]. How-
ever, these solutions are specific to AES. Lee [10] proposed a
general-purpose parallel table lookup instruction, that allows
software-controlled tables to be accessed in constant time,
speeding up AES and avoiding cache side channel attacks.
Recently, several hardware secure cache designs have been
proposed to secure the cache itself. The hardware solutions
are more general and apply to different cryptographic oper-
ations and attacks without causing significant performance
degradation. Although security analysis specific to some se-
cure cache designs is provided in some previous work[17, 16,
5, 8, 13], few designs have been tested with real attack ex-
periments. Mounting practical cache side channel attacks
on a secure cache design is the most straightforward way to
evaluate its security, albeit it cannot formally prove a de-
sign is secure if the attack does not succeed, given a fixed
number of trials that an attacker can perform. However, it
does identify the potential security vulnerability of the de-
sign if the attack does succeed. Therefore, it is very helpful
in guiding secure cache design for computer architects. It
is worth noting that it is non-trival to mount the proposed
cache side channel attacks. Nearly all the proposed cache
side channel attacks are based on the assumption of a con-
ventional set-associative cache, which is no longer true in
many secure cache designs. In this paper, we evaluate the
security of a secure cache design, Newcache[16], using ex-
isting attacks for conventional caches as well as specifically
redesigned attacks for Newcache.

The contributions of this work are:

e Evaluating the security of Newcache using practical

cache side channel attacks for conventional caches and
finding that Newcache can defeat all three representa-
tive attacks.

e Redesigning attacks specifically for Newcache and find-
ing that Newcache can defend against access-driven
attacks but does not always defend against a timing
attack crafted specifically for it.

e Improving the random replacement algorithm of New-
cache so that it can defeat the specifically designed
attacks while using a simpler replacement algorithm
than the original Newcache design.

The rest of the paper is organized as follows: in section 2,
we briefly introduce representative cache side channel at-
tacks, and the cache architecture of Newcache. In section 3,
we show the results for evaluating the security of Newcache
using existing attacks. In section 4, we redesign attacks
specifically targeting Newcache with the knowledge of New-
cache organization. We show the improved Newcache design
in section 5 that secures Newcache against the specifically
designed attacks. We conclude our work in section 6.

2. BACKGROUND

2.1 Classification of Cache Side Channel At-
tacks

Cache side channel attacks are usually categorized into
three types [1]: access-driven, trace-driven, and timing-driven
attacks. In access-driven attacks, the adversary can get in-
formation on which cache sets are accessed by the victim
process using a technique called the Prime and Probe attack
[12] shown in Figure la. The adversary runs a spy process
on the same processor as the victim process. The spy pro-
cess repeatedly ”primes” the cache by filling the cache with
its own data. After a certain time interval, the spy process
runs again, and measures the time to load each set of its data
(called the "Probe” phase, which primes the cache for subse-
quent observations.). If the victim process accesses some set
of the cache during this time interval between Prime and
Probe, it will evict at least one of the spy process’ cache
lines, which causes the spy process to have a cache miss on
this cache line, and thus a higher load time for this block.

On the other hand, for trace-driven and timing-driven at-
tacks, an adversary is able to get information related to the
total number of cache hits or misses for the victim process’
memory accesses. In trace-driven attacks, an adversary can
capture the profile of cache activity in terms of hit and miss
for each memory access of the victim process performing
an encryption. In timing-driven attacks, the adversary can
only observe the aggregate profile, i.e, the total execution
time for encrypting a block. This approximates the total
number of cache hits and misses.

Even for timing-driven attacks, an adversary can intro-
duce some interference to the victim process to indirectly
learn whether a certain set is accessed by the victim pro-
cess. This technique is called Evict and Time[12] as shown
in Figure 1b. The adversary can first trigger a block en-
cryption and then evict one specific cache set with its own
data items. The adversary then triggers another block en-
cryption, and measures the encryption time of the victim
process. If the victim process accesses the evicted set, the
block encryption time tends to be higher due to incurring

cache cache cache

Figure 1: Illustration of (a) Prime and Probe and
(b) Evict and Time attack technique

at least one cache miss. Bernstein’s attack [2] is a special
case of the Evict and Time attack in which the eviction of
a cache set is done by the program wrapper which is within
the victim process.

A cache collision timing attack is a timing-driven attack
where there is no interference by an adversary’s process.
Without running a spy process, the adversary has to rely on
the victim process’ cache hits to learn something about the
memory addresses used by the victim.

In this work, we will focus on access-driven attacks and
Evict and Time attacks because defending against these
classes of attacks is the goal of Newcache.

2.2 Newcache Architecture

Several hardware solutions have been proposed to defend
against cache side channel attacks[14, 17, 16, 8, 5]. Most of
these hardware solutions use some form of cache partition-
ing or randomization to eliminate the cache interferences or
randomize the cache interferences, respectively. In the cache
partitioning approach, the cache is partitioned into differ-
ent zones for different processes and each process can only
access its reserved cache lines, thus eliminating cache inter-
ference[17, 5]. Instead of not allowing cache interference,
the randomization approach randomizes cache interference
by random permutation of the memory-cache mapping and
randomizing the cache eviction[17, 16]. This is like perform-
ing a "Moving Target Defense (MTD)” in hardware cache
design, against access-based attacks and eviction-based tim-
ing attacks.

Newcache[16] is a representative cache design using the
randomization approach, employing both techniques of dy-
namic memory-cache remapping and eviction randomiza-
tion. The block diagram and cache access handling process
of Newcache is shown in Figure 2a and Figure 3a. Newcache
introduces a level of indirection in the memory-cache map-
ping by employing a logical direct mapped (LDM) cache
(which does not exist physically). The LDM cache has a

ADDR
|RMT7ID | | tag | index

d n+k
Tag array 1

=[LNrego]?
| I
I I
1

[Block offset

Data array

Cache block

1

[=ltNreg]? | ——+
1 1
1 1
1 1
1 1
1 1

=2"

Address s
decoder

Index hit/miss Data out

(a)

ADDR
[index

[Biock offset

‘RMT,|D| & tag
|— ntk
Tag array l 1

=[LNrego]

| I
| |
|

Data array

[=Nreg]? | |— Cache block
]

‘Address

decoder

Index hit/miss Data out

(b)

Figure 2: Block diagrams of (a) original Newcache and (b) improved Newcache

tag miss involving
protected memory
line

normal hit index miss

R=victim(C) R=victim(rand)
replace(R,D) evict(R) replace(R,D)
cache_access(D) | | mem_access(D) | | cache_access(D)

R=victim(rand)
cache_access(C)

(a)

normal hit tag miss index miss
R=victim(C) R=victim(rand)
cache_access(C) replace(R,D) replace(R,D)

cache_access(D) | [cache_access(D)

(b)

Figure 3: Cache access handling process of (a) original Newcache and (b) improved Newcache. C: cache line
selected by address decoder; D: memory line accessed; R: victim cache line for replacement; Px: protection

bit of line X

larger size than the physical cache and is indexed using a
longer index than needed for the physical cache. Hence the
memory-cache mapping consists of a fixed mapping from
the memory to the ephemeral cache and a fully-associative
mapping from the LDM to the physical cache. To imple-
ment Newcache, the address decoder in a conventional set-
associative cache is replaced by a remapping table that con-
tains a set of line number registers(LNregs). Each LNreg
stores a unique mapping from a logical direct mapped (LDM)
cache line to the physical cache line. The same set of LNregs
can be shared by multiple remapping tables (identified by
RMT_ID), so that an attacker observes a different memory-
cache mapping than the victim. Each cache access starts at
searching the contents of the LNregs using the index bits and
the RMT_ID. If no matched LNreg is found, an index miss
occurs. To randomize the cache interference, a random vic-
tim cache line is selected for replacement, which at the same
time will randomly permute the memory-cache mapping. If
a mapping is found in the LNreg, the following access is sim-
ilar to accessing a direct mapped cache, which may have a
tag miss. With the use of multiple remapping tables and
eviction randomization, external cache interferences are to-
tally randomized. However, internal cache interferences may

still exist through tag misses. To solve this issue, Newcache
associates a protection bit in the tag array for each cache line
to indicate whether this cache line contains security-critical
data. If a tag miss involves protected data, the missing
cache line will not be brought into the cache and will be for-
warded directly to the processor. Instead, a random cache
line is evicted, tricking an attacker into thinking that the
missing memory line replaced a random line.

3. ANALYZING ATTACKS

A complete cache side channel timing attack consists of an
online phase and an offline phase. In the online phase, the
attacker collects measurement samples during the victim’s
encryption. In the offline phase, the attacker processes the
measurement samples to recover secret keys. Only the on-
line phase depends on the cache organization and the offline
phase is uniquely determined by the attack strategy. There-
fore, we focus on the online phase of the Fuvict and Time and
Prime and Probe attacks and detail its strategy for getting
measurements.

3.1 General Measurement Strategy

3.1.1 Evict and Time attacks

The purpose of the FEwvict and Time attack is to learn
whether a specific security-critical memory line E is accessed
during encryption, therefore it is important for the attacker
to access appropriate memory lines in his memory space
before each encryption, which can occupy all the possible
cache slots where E may be placed, so that:

e memory line F is guaranteed to not be present in the
cache before encryption

e other security-critical memory lines (denoted as O)
may remain in the cache before encryption.

Then if memory line F is accessed in the subsequent en-
cryption (depending on the secret key), it will lead to cache
miss when the attacker accesses it again,, thus it will have
a higher encryption time. For a conventional set-associative
(SA) cache, a cache set contains all the possible cache slots
that a specific memory line can be placed. Assume the cache
line size is B bytes, there are S cache sets in total and each
cache set contains W cache lines, then any two memory lines
that are S - B byes apart will be mapped to the same cache
set. If the attacker allocates an array of the cache size and
accesses W such memory lines, the specific cache set will be
exclusively occupied by the attacker’s memory lines.

3.1.2 Prime and Probe attacks

There are two types of information that an attacker can
learn from Prime and Probe attacks:

(type-I) whether a specific security-critical memory line
FE is accessed during encryption

(type-11) which security-critical memory lines are accessed
during the encryption.

A type-I attack is very similar to the Evict and Time attack:

e the attacker needs to prime all the possible cache slots
where E can be placed using a specific set of W mem-
ory lines in his memory space during the prime stage

e the W memory lines are accessed in a proper order
during the probe stage to minimize cache interference
within the W memory lines.

Then if the memory line F is accessed during the encryption
(depending on the secret key), it will always evict one of the
primed memory lines, leading to a higher probe time.

For type-II attacks, assume that for any security-critical
memory line E; (i = 1,...,N), denote the set of attacker’s
memory lines that can occupy all the possible cache slots
where F; may be placed as S;, then we have:

e the set of memory lines (Z) that is accessed during the
N

prime stage satisfies U S: CZ
i=1
e the size of Z should be equal or less than the size of
the cache to minimize cache interference within Z

e each S; is probed separately during the probe stage.

If there is no cache interference between S; and S;, a type-
II attack is exactly a combination of several independent
type-I attacks, which is the case for a set-associative (SA)

cache. For a SA cache, the W cache slots in a cache set
set; is where E; can be placed, thus S; contains W memory
lines that are mapped to the same cache set set;. The union
of S; is a subset of an array of the same size as the cache,
which illustrates why the attacker can prime the whole cache
with an array of the cache size and probe the cache after the
victim program has run, to find the time to load each set,
in the Prime and Probe attack against a SA cache.

Table 1: Simulator Configurations
Parameter Value
ISA x86

Baseline cache size 32 KB
Baseline cache line size 32 B
of MSHR entry / # of targets per MSHR | 1/1
Cache hit latency 1 ns
Memory access latency 100 ns

Number of extra index bits (k) in LNregs 4

Number of measurement samples 220

3.2 Experimental Results

We now apply the above attacks for a SA cache to New-
cache. In particular, we perform simple first-round syn-
chronous attacks against AES-128. The attacker can op-
erate synchronously with the encryption on the same pro-

cessor and exploit the fact that in the first round of AES
(0)

encryption, the accessed table indicies z; ’ are related with

plaintext bytes p; and key bytes k; as argo) = p; ® k; for
all i = 0,...,15. Thus, if the plaintext byte p; and the ac-
cessed table index :B,EO) are known to the attacker, the at-
tacker can immediately get the key byte k;. The plaintext
can be recorded by the attacker and the information on the
accessed table index is obtained through his measurement
of the access time of different cache lines.

We implemented Newcache on gem5, which is a cycle-
accurate architectural simulator. We use the classic memory
system in gem5 to model Newcache as a non-blocking cache.
We used a system shown in Table 1. To increase the latency
difference of cache hit and cache miss, we only use a 1-level
cache hierarchy and assume 1-ns L1 cache access latency and
100-ns memory access latency. To minimize the latency-
hiding effect due to a non-blocking cache, the miss queue
only has one miss status handling register (MSHR)) and each
MSHR can only hold one request. We extended the page
table and TLB with one bit to indicate whether a page is
protected or not, and the protection bit can be read out from
the TLB. We set all the key bytes k; =0 for all ¢ =0, ...,15
in the experiment, which does not lose generality since the
key byte will be XORed with the random plaintext byte as
the table lookup indices for the first round encryption.

3.2.1 Evict and Time attack

For each measurement sample, the attacker needs to record
the encryption time of a block encryption and the corre-
sponding 16 plaintext bytes. Then for each plaintext byte
pi, i@ = 0,...,15, we average the encryption time for each
of the 256 possible values of p;. In the first round of AES
encryption, four table indices 131(0)7431(3)47%(9387131(3)12 will be
used to index table T, for [= 0,1,2,3. Therefore, if the

0.4

0.3 (a)

02

avg

0.1

Opsivaaslfmiman it SRR R

-0'10 50 100 150 200 250 300
Value of F’2

avg

0.4
03 (b)

0.2
0.1

O P L NGy S5 5 PO,

-0'10 50 100 150 200 250 300
Value of P2

Figure 4: Original Evict and Time attack result for (a) conventional 8-way set-associative cache (b) original

Newcache design

avg

)

Op AN et e N 0 NP 0

50 100 150
Value of Py

200 250 300

Figure 5: Original Type-I Prime and Probe attack result

original Newcache design

evicted memory line contains table entries of 77, four table
lookups xl(o), J:l(j_)4, acl(i)g, 331(3)12 will be impacted, hence there
will be a significantly higher average encryption time for
certain values of plaintext bytes pl(o), pl(g_)4, pl(g_)g, pﬁ_)m if the
attack can succeed.

Figure 4a and Figure 4b show the results for a conven-
tional 8-way set-associative (SA) cache and Newcache, re-
spectively. For the 8-way SA cache, the encryption time is
significantly higher than the average encryption time (only
the result for P, is shown) when the plaintext takes val-
ues from 128 to 135 (8 table entries are indistinguishable
since they are in the same cache line), which means that the
attacker can easily recover the higher 5 bits of the corre-
sponding key byte. However, for Newcache, no points with
significantly higher encryption time can be found for all the
plaintext bytes, which means that the (non-crafted) Ewvict
and Time attack for the conventional SA cache fails on New-
cache. The failure of the attack is due to the fact that the
dynamic remapping in the Newcache will not ensure that the
W memory lines accessed by the attacker always occupy all
the possible cache slots where the security-critical memory
line £ may be placed.

3.2.2 Prime and Probe attack

We performed attack experiments for both type-I and
type-1I Prime and Probe attacks. For each measurement
sample, the attacker needs to record the time to probe each
set S; and the corresponding plaintext bytes. The offline
analysis of the type-I attack is the same as the Fwvict and
Time attack. As shown in Figure 5a and Figure 5b, the
type-I attack succeeded on the 8-way SA cache but failed on
Newecache.

The offline analysis of a type-1I attack is slightly different.
For each plaintext byte p;, i = 0, ..., 15, we average the probe
time for a given value of the plaintext byte and a given
set S; and subtract the average time for all values of the
plaintext byte, and then use a grayscale figure to represent
the probe time (the longer the probe time, the lighter the

0 50 100 150 200 250 300
Value of Py

for (a) conventional 8-way set-associative cache (b)

50

o)

=]
=]
=1
=]

Value of P,
Value of Pg
3

200

a0
Set Set

(a) (b)

Figure 6: Original Type-II Prime and Probe at-
tack result for (a) conventional 8-way set-associative
cache (b) original Newcache

color). Since we use all-zero key bytes in the experiment, a
bright straight line is expected in the grayscale graph if the
attack can succeed. For each non-zero key byte, there will
be a specific pattern in the grayscale figure, which makes
it easier for the attacker to figure out the secret key. The
results are shown in Figure 6a and Figure 6b and again the
type-1I attack succeeded on the 8-way SA cache but failed
on Newcache. The failure of the Prime and Probe attack
is due to the fact that the random eviction in Newcache
will not ensure that one of the W memory lines in each set
S; probed by the attacker is always evicted by the specific
security-critical memory line E, accessed by the victim.

4. REDESIGNING ATTACKS TARGETING
NEWCACHE

Although all the three attacks for the SA cache fail on
Newcache, it does not mean that Newcache can defeat all
possible attacks. A smarter attacker may design attacks

memory

I 9 — Shaded region

|

Attacker’s
array (L)

LDM cache

Physical
cache

IR

AES tables (T) ‘[

Figure 7: Illustration of FEwict and Time attack
specifically targeting Newcache

specifically for Newcache with the knowledge of its cache
organization. From section 3.1 we find that an appropriate
measurement for the Evict and Time and Prime and Probe
attacks requires the attacker to evict and probe appropriate
sets of memory lines. The W memory lines for the SA cache
may not be the right ones for Newcache. We noticed that
although the mapping from the LDM to the physical cache
is fully associative, the mapping from the memory to the
LDM is fixed; Hence a memory line only has one fixed cache
slot to be placed in if the mapping from the LDM cache to
the physical cache has been established (i.e. index hit but
tag miss). This enables an attacker to find the appropriate
memory lines by manipulating an array of the same size as
the ephemeral LDM cache.

4.1 Evict and Time attacks

To occupy the cache slot that may be replaced by a security-
critical memory line F, the attacker only needs to access a
memory line which has the same mapping (index bits) as
E, which exists in an array of the same size as the LDM
cache. As shown in Figure 7, assume that the size of the
LDM cache is L bytes and the AES tables are T bytes in
total. The diagonally shaded region in Figure 7 represents
the memory lines that have the same mapping with certain
memory lines in AES tables. Therefore, the attacker can
access any one of the memory lines in the shaded region.
However, since the attacker does not know the start address
of the AES tables and the size of the AES tables T' is usually
much smaller than the size of the LDM cache L, the attacker
has to perform L/T independent trials to locate the desired
memory line. A smarter attacker can perform W trials at
the same time since at most one of the W trials can evict
a cache line containing AES table entries. This attack is
summarized as follows:

For the n'* trial (n = 0,1,..., L/T/W), repeat the follow-
ing steps to collect M measurement samples:

(a) (PBwvict) access some W memory addresses, starting at
address n- W - T, with T bytes apart.

(b) (Time) Trigger an encryption with random plaintext p,
and time it.

4.2 Prime and Probe attacks

A type-1 Prime and Probe attack can be done in a similar
way as an Fwvict and Time attack except that the attacker
measures the time to probe his own memory line instead of

memory
T "v
Trialn-1
Attacker’s” = LDM cache
array (L) . Physical
B cache (C)
AES tables (T)

Figure 8: Illustration of Prime and Probe attack
specifically targeting Newcache, showing that the
conflicting memory addresses to be primed by the
attacker can come from two trials,n — 1 and n, each
of size T

measuring the encryption time. For a type-II attack, each
set S; contains one memory line that has the same mapping
as a security-critical memory line F;. The union of S; is
exactly a continuous array of the same size as the AES ta-
bles (T bytes). Since the random eviction in Newcache may
lead to cache interference among the probed memory lines,
the proper set of memory lines to prime (Z) is the union
of S; (usually smaller than the cache size C). Similar to
an Fvict and Time attack, the attacker does not know the
start address of Z and has to do multiple independent trials
with the array of the same size as the LDM cache (L bytes)
to locate Z. The type-1I Prime and Probe attack against
Newcache is summarized as follows (as shown in Figure 8):

For the n'* trial (n = 0,1, ..., L/T), repeat the following
steps to collect M measurement samples:

(a) (Prime) Read a value in each memory line of the array
ranging fromn-T to (n+1)-T

(b) Trigger an encryption with random plaintext p

(¢) (Probe) For each set S; (i =0,1,...,T/B), measure the
time to access address (n-T +i- B).

Figure 8 also shows that for Newcache, the memory ad-
dresses which conflict with AES table entries in the LDM
cache, which should be primed by the attacker, can come
from two trials, n — 1 and n, each of size T. The arrows
mapping from the LDM cache to the real physical cache is
supposed to show that it is random and each physical cache
slot is equally likely.

4.3 Experimental Results

4.3.1 Evict and Time attack

Since the size of the LDM cache L = 512K B, the AES
table size is T' = 4K B, and we group W = 8 trials together,
thus we need to perform L/T/W = 16 independent trials.
In the experiment, the attack succeeded in the 6 trial, the
results are shown in Figure 9a. The high T,,4 numbers near
P1 = 0 indicate that Newcache cannot defend against this
specifically designed Fwvict and Time attack.

The reason why the attack can succeed for Newcache is
very subtle. Assume that the attacker’s memory line A has

(@)

-0'50 50 100 150 200 250 300

Value of P1

03 (b)

02

avg

0.1

0 50 100 150 200 250 300
Value of P .

Figure 9: Specifically designed Evict and Time attack result for (a) original Newcache design (b) improved

Newcache

sl (a)

(k)

T P P

50 100 150 200 250 300
Value of F’2

0 50 100 150 200 250 300
Value of P,

Figure 10: Specifically designed type-I Prime and Probe attack result for (a) original Newcache design (b)

improved Newcache

=

=]
=
=

Value of By
Value of Fy

@

3
@
3

200

260

6 80 100 60 80
Set Sat

(a) (b)

100 120

Figure 11: Specifically designed type-I11 Prime and
Probe attack result for (a) original Newcache design
(b) improved Newcache

the same mapping as memory line E that contains AES ta-
ble entries. Consider the following scenario: The attacker
performs m consecutive measurements and for each mea-
surement the attacker accesses A and then triggers a block
encryption; In the (m 4 1)*" measurement, the attacker ac-
cesses A again, there are three possible cases for this access:

1. hit if A remains in the cache since last access

2. index miss if both A and F are not in the cache, A will
be brought into the cache, randomly replacing a cache
line

3. tag miss if E is in the cache, A will not be brought
into the cache and a random cache line will be evicted

For the first two cases, all the following accesses to E (not
only the first access) during the (m + 1)th encryption will
have tag miss since the SecRAND algorithm does not al-
low F to be brought into the cache in this case. Note that
the first two cases are highly likely to occur because the
SecRAND algorithm cannot prevent the attacker’s memory

line A from occupying the conflicting cache slot first when
neither A nor E is in the cache. The root cause for the suc-
cess of the attack is that the SecRAND algorithm cannot
totally randomize memory-cache mapping.

4.3.2 Prime and Probe attack

For the type-1 attack, we probe the total time to load
W = 8 consecutive memory lines with 7' = 4K B apart in
order to reduce the number of trials needed, which leads
to L/T/W = 16 trials in total. We find that the 3" trial
contains the appropriate memory lines that may have the
same mapping as a memory line containing table entries
of T», and the corresponding plaintext bytes pa, ps, P10, P14
will potentially be impacted. The result for plaintext byte
p2 is shown in Figure 10a. No significant higher probe time
can be found for any plaintext values, which means that
even the specifically designed type-1 attack cannot succeed
on Newcache.

For a type-II attack, we have to perform L/T = 128 trials
to ensure that the size of the primed array is smaller than
the cache size in order to minimize the internal interference
of primed memory lines. We find that trial 35 and 36 are
the correct trials that contain memory lines which are con-
flicting with part of the AES tables and we show the result
for trial 35 in Figure 1la, where no brighter straight line
can be found. Therefore, we can conclude that Newcache
significantly increases the difficulty to mount access-driven
attacks using Prime and Probe techniques.

S. IMPROVED REPLACEMENT ALGORITHM

We propose a minor change to the original Newcache de-
sign in [16] to overcome this issue.The security-critical mem-
ory lines are distinguished from the non security-critical data
within a process by the protection bit (P-bit). Rather than
putting the protection bit within the tag array, it is placed
in the LNregs, which will be searched before tag compari-
son, causing an index miss (and subsequent randomization)
if the P-bits differ. The block diagram and cache access han-

dling process of this slightly modified Newcache are shown
in Figure 2b and Figure 3b, respectively. The P-bit is con-
catenated with the RMT_ID to determine a remapping ta-
ble. Note that the index miss check in Figure 3b includes
the P-bit equality check. In the above mentioned example,
the P-bit of the cache lines containing the AES tables is '1’
while it is ’0’ for all the other data. Therefore, the attacker’s
memory line A will view a different remapping table from F,
thus the internal cache interference through the tag miss is
eliminated. Also, the performance is expected to be slightly
better than the original Newcache design since it eliminates
some of the tag misses (conflicting misses) and extra random
evictions. We performed the same attacks against the im-
proved Newcache and show the results in Figure 9b, Figure
10b and Figure 11b. In all the three attacks, no significantly
higher encryption time or probe time can be found for all
the 16 plaintext bytes and all the trials, which proves that
the improved Newcache effectively defends against even the
Evict and Time attack and the two types of Prime and Probe
attacks, specifically crafted for it by a very knowledgeable
attacker.

6. CONCLUSION

In this paper, we tested the security of a secure cache de-
sign, Newcache, using modified practical cache side channel
attacks. We find that Newcache can thwart all the three
representative attacks, whereas conventional set associative
caches succumb easily to each of the attacks. However, we
pointed out that it is important to adapt the online phase
of the attacks to the cache architecture for a more thor-
ough security evaluation, because of even smarter attackers.
We redesigned attacks specifically for Newcache with the
knowledge of Newcache organization. The results showed
that Newcache failed to defend against the Evict and Time
attack specialized for it, but it defeated the access-driven
attacks using both type I and type II Prime and Probe at-
tacks. We improved the Newcache design by moving the
protection bit (the P-bit) from the tag array to the index
field (the LNregs). The results showed that the improved
Newcache design can completely defeat all three represen-
tative attacks, the Ewvict and Time attacks and both types
of Prime and Probe attacks. In conclusion, this security
study shows that randomization in caches works to defeat
side-channel attacks, but the randomization must not be
subvertible by an attacker.

Acknowledgment

This work was supported in part by DHS/AFRL contract
FA8750-12-2-0295 and NSF CNS-1218817. We thank Sergey
Panasyuk and Zhenghong Wang for their helpful discussions.

7. REFERENCES

[1] O. Aciigmez and Cetin Kaya Kog. Trace-driven cache
attacks on aes, 2006.

[2] D. J. Bernstein. Cache-timing attacks on aes.
Technical report, 2005.

[3] J. Bonneau and I. Mironov. Cache-collision timing
attacks against aes. cryptographic hardware and
embedded systems. pages 201-215. Springer, 2006.

[4] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J.
Quisquater, and J.-L. Willems. A practical

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]

(18]

implementation of the timing attack. In Proceedings of
the The International Conference on Smart Card
Research and Applications, pages 167-182, London,
UK, 2000. Springer-Verlag.

L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh,
and D. Ponomarev. Non-monopolizable caches:
Low-complexity mitigation of cache side channel
attacks. ACM Trans. Archit. Code Optim.,
8(4):35:1-35:21, Jan. 2012.

D. Gullasch, E. Bangerter, and S. Krenn. Cache games
— bringing access-based cache attacks on aes to
practice. In Proceedings of the 2011 IEEE Symposium
on Security and Privacy, SP ’11, pages 490-505,
Washington, DC, USA, 2011. IEEE Computer Society.
P. C. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Proceedings of the 19th Annual
International Cryptology Conference on Advances in
Cryptology, pages 388-397, London, UK, 1999.
Springer-Verlag.

J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou.
Hardware-software integrated approaches to defend
against software cache-based side channel attacks. In
HPCA’09, pages 393-404, 2009.

R. Konighofer. A fast and cache-timing resistant
implementation of the aes. In Proceedings of the 2008
The Cryptopgraphers’ Track at the RSA conference on
Topics in cryptology, pages 187-202, Berlin,
Heidelberg, 2008. Springer-Verlag.

R. B. Lee and Y.-Y. Chen. Processor accelerator for
aes. In Proceeding of the IEEE 8th Symposium on
Application Specific Processors, Anaheim, CA, 2010.
K. Mowery, S. Keelveedhi, and H. Shacham. Are aes
x86 cache timing attacks still feasible? In Proceedings
of the ACM Workshop on Cloud computing security
workshop, pages 19-24, New York, NY, USA, 2012.
ACM.

D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: The case of aes. In Proceedings
of the Cryptographers’ Track at the RSA conference on
Topics in Cryptology, pages 1-20, Berlin, Heidelberg,
2006. Springer-Verlag.

D. Page. Theoretical use of cache memory as a
cryptanalytic side-channel. IJACR Cryptology ePrint
Archive, 2002:169, 2002.

D. Page. Partitioned cache architecture as a
side-channel defence mechanism, 2005.

C. Percival. Cache missing for fun and profit. In Proc.
of BSDCan, 2005.

Z. Wang and R. Lee. A novel cache architecture with
enhanced performance and security. In IEEE/ACM
International Symposium on Microarchitecture, pages
83 —93, 2008.

Z. Wang and R. B. Lee. New cache designs for
thwarting software cache-based side channel attacks.
In Proceedings of the annual international symposium
on Computer architecture, pages 494-505, New York,
NY, USA, 2007. ACM.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-vm side channels and their use to extract
private keys. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 305-316, New York, NY, USA, 2012. ACM.

