
CATalyst: Defeating Last-Level Cache Side Channel
Attacks in Cloud Computing

Fangfei Liu1, Qian Ge2,3, Yuval Yarom2,4,
Frank Mckeen5, Carlos Rozas5, Gernot Heiser2,3, Ruby B. Lee1

1 Department of Electrical Engineering, Princeton University, email: {fangfeil,rblee}@princeton.edu
2 NICTA, email: {qian.ge,gernot}@nicta.com.au

3 UNSW Australia
4 School of Computer Science, The University of Adelaide, email: yval@cs.adelaide.edu.au

5 Intel Labs, email: {frank.mckeen,carlos.v.rozas}@intel.com

ABSTRACT
Cache side channel attacks are serious threats to multi-tenant
public cloud platforms. Past work showed how secret in-
formation in one virtual machine (VM) can be extracted
by another co-resident VM using such attacks. Recent re-
search demonstrated the feasibility of high-bandwidth, low-
noise side channel attacks on the last-level cache (LLC),
which is shared by all the cores in the processor package,
enabling attacks even when VMs are scheduled on differ-
ent cores. This paper shows how such LLC side channel
attacks can be defeated using a performance optimization
feature recently introduced in commodity processors. Since
most cloud servers use Intel processors, we show how the In-
tel Cache Allocation Technology (CAT) can be used to pro-
vide a system-level protection mechanism to defend from
side channel attacks on the shared LLC. CAT is a way-
based hardware cache-partitioning mechanism for enforcing
quality-of-service with respect to LLC occupancy. However,
it cannot be directly used to defeat cache side channel at-
tacks due to the very limited number of partitions it pro-
vides. We present CATalyst, a pseudo-locking mechanism
which uses CAT to partition the LLC into a hybrid hardware-
software managed cache. We implement a proof-of-concept
system using Xen and Linux running on a server with In-
tel processors, and show that LLC side channel attacks can
be defeated. Furthermore, CATalyst only causes very small
performance overhead when used for security, and has neg-
ligible impact on legacy applications.

1. INTRODUCTION
Infrastructure-as-a-service (IaaS) is a cloud computing

paradigm where the cloud provider leases out computing
resources to cloud customers/tenants in terms of virtual
machines (VM). Multiple VMs may execute on the same
physical machine and share all its underlying hardware re-
sources. Recent research has demonstrated that this shar-
ing may allow a malicious VM to extract sensitive informa-
tion from co-resident VMs, a serious security concern for

cloud adoption [22, 29, 34, 45, 46]. The last-level cache
(LLC) is one of the most dangerous shared resources since
it is shared by all of the cores in a processor package, yet
it allows fine-grained, high-bandwidth, low-noise cross-core
attacks [22, 29, 42].

Due to its large size, partitioning the LLC seems like a
promising strategy for mitigating its use for side channel at-
tacks. Hardware cache partitioning architectures have been
proposed in [11, 33, 40], but these targeted L1 cache side
channel attacks, not LLC attacks. Software based page col-
oring techniques [25, 27, 36] have also been proposed, but
these are incompatible with superpages (without which per-
formance will degrade for large workloads), and have some
other issues that we will discuss later in Section 2 and Sec-
tion 7.

Recently, Intel introduced a performance optimization
feature called the Cache Allocation Technology (CAT) [20,
21]. CAT supports associating cache ways with up to four
Classes of Service (COSs), such that the replacement of a
cache line is allowed only if the code initiating the replace-
ment executes within the corresponding COS.

We propose to use CAT to defend against LLC side chan-
nel attacks. A direct approach is to use CAT to provide
partial or complete isolation of COS for partitioning the L1
cache [11] . However, there is a fundamental problem with
this direct partitioning approach— CAT supports only four
COSs— too few for security purposes, especially in cloud
computing, where the number of VMs on a cloud server can
be much higher.

In this work, we propose an alternative approach, called
CATalyst, for using CAT as a defense for LLC side channel
attacks. On the one hand, we use CAT as a coarse-grained
mechanism to partition the LLC into secure and non-secure
partitions, where the non-secure partition can be freely used
by any applications. On the other hand, the secure parti-
tion is loaded with cache-pinned secure pages. Thus, the
LLC becomes a hybrid between a hardware-managed and a
software-managed cache: the non-secure partition remains
hardware-managed, while the secure partition is software-

978-1-4673-9211-2/16/$31.00 c©2016 IEEE

managed, leveraging CAT to enforce the cache-pinning of
secure pages.

We present a proof-of-concept implementation using a
Xen hypervisor running Linux-based VMs on a cloud server
using commodity Intel processors. Our implementation pro-
vides applications with an explicit interface for using secure
pages to store security-sensitive code and data pages. The
implementation ensures that malicious VMs cannot evict the
sensitive data in these secure pages from the cache, thereby
preventing LLC side channel attacks on these pages.

We evaluate the implementation and show that CATalyst
completely mitigates the attacks, while introducing negligi-
ble performance overhead (on average 0.7% over the SPEC
benchmark suite and 0.5% for PARSEC.)

This paper makes the following contributions:

• A new mitigation scheme called CATalyst for LLC
side channel attacks using recently-introduced hard-
ware performance features in commodity processors.
(Section 3.)

• A concrete implementation of the design, showing how
secure page cache-pinning in the LLC can be achieved.
(Section 4.)

• Security evaluation (Section 5) and performance eval-
uation (Section 6) of the design, showing that LLC
cache side channel attacks can be defeated with mini-
mal performance overhead.

2. BACKGROUND

2.1 Virtualization
Virtualization is the key underlying technology for IaaS

clouds. Virtualization supports running multiple isolated en-
vironments, called virtual machines (VMs). Each VM pro-
vides the software within it with the illusion of executing
on its own machine. A virtual machine monitor (VMM)
manages the underlying hardware resources, which not only
allocates those resources to the VMs but also provides the
isolation boundaries among VMs.

To maintain the illusion of VMs executing on isolated
hardware, the VMM relies on hardware support. Whenever
the software in a VM executes a sensitive instruction, i.e.,
an instruction that may result in breaking the illusion, the
processor generates a VM exit that traps into the VMM. The
VMM then emulates the operation of the sensitive instruc-
tion to maintain the illusion.

There are two levels of address-space virtualization in vir-
tualized environments. The first maps the virtual addresses
of a process to a guest’s notion of physical addresses, which
are emulated by the VMM. The second maps guest physi-
cal addresses to host physical addresses. The two levels of
address translation can be achieved in two alternative ways.
Without specific hardware support, the VMM can maintain
a shadow page table for each process to store the translation
from the virtual address to the host physical address. The
VMM needs to intercept the guest OS (operating system)’s
page table updates in order to keep the shadow page table co-
herent with the guest page table, which is very costly. This
overhead can be removed with hardware support for nested

page tables. For example, Intel introduced an extended page
table (EPT) mechanism [20], which features a second page
table that directly stores the translation from the guest phys-
ical address to the host physical address for each guest VM.
The page table walker needs to traverse both the guest page
table and the EPT to get the translation from the virtual ad-
dress to the host physical address.

To improve performance, most VMMs allow breaking the
illusion in certain cases through the use of paravirtualiza-
tion [2]. The VMM provides some services in terms of hy-
percalls that are typically not part of the instruction set of
the architecture, which the OS in the VM can use.

Emulating sensitive instructions provides a logical isola-
tion between VMs. Instructions that normally affect the log-
ical state of the machine are emulated so that their effect is
visible only within a VM. However, the emulation does not
achieve temporal isolation. That is, some instructions take a
different amount of time to execute on a VM. There are sev-
eral causes for the lack of temporal isolation. In this work we
are interested in timing differences due to sharing the LLC,
which allow mounting LLC-based side channel attacks.

2.2 LLC-based side channel attacks

Core 1 Core 2

RAM

LLC

victim attacker
while(1) do

access
busy loop
time access to

end

Prime

Idle
Probe

if (secret)
access

victim’s memory

attacker’s
memory

(a) The PRIME+PROBE attack

while(1) do
Flush
busy loop
time access to

end

Idle
Reload

Flush

RAM

LLC

memory shared by
victim and attacker

Core 1 Core 2

victim attacker
if (secret)
access

(b) The FLUSH+RELOAD attack

Figure 1: Two LLC-based attacks.

Cache side channel attacks can infer secret information
processed by a victim through measuring its cache usage pat-
terns. While L1 and L2 caches are core-private, the LLC is
shared between cores, hence LLC-based attacks are also ex-
ecutable when the victim and the attacker are not executing
on the same core. Furthermore, as co-resident VMs share

the LLC, LLC-based attacks can operate cross-VM. Recent
work has shown that LLC attacks are powerful enough to
extract fine-grained secret information with high resolution
and low noise [22, 29, 42]. We now describe the two com-
mon techniques used in LLC-based attacks: PRIME+PROBE
and FLUSH+RELOAD.

2.2.1 The PRIME+PROBE attack
The PRIME+PROBE attack exploits resource contention

between two processes, allowing an attacker process to mea-
sure the cache usage of a victim process. Figure 1a illustrates
this attack. The attacker first constructs an eviction buffer
that consists of cache lines in the same cache set as a tar-
get victim cache line. In order to observe when the victim
process accesses the target cache line, the attacker performs
repeated measurements consisting of three steps. First, the
attacker primes the targeted cache set by accessing the cache
lines in its eviction buffer. This, effectively, fills the moni-
tored cache set with the attacker’s data. Then, the attacker
busy-waits for a set time. Lastly, the attacker probes the
cache set by measuring the time to access the cache lines
in the eviction buffer. If the victim accesses the target cache
line between the prime and the probe steps, the target cache
line will evict an attacker line from the cache, resulting in a
longer probe time than otherwise.

2.2.2 The FLUSH+RELOAD attack
The FLUSH+RELOAD attack is applicable when the at-

tacker and the victim share the memory page containing the
target cache line. Page sharing is commonly implemented
in both the OS and the VMM, e.g., as shared libraries or
through memory deduplication [39]. Figure 1b illustrates
this attack. FLUSH+RELOAD, like the PRIME+PROBE at-
tack, consists of three steps. Firstly, the attacker flushes the
target cache line from the cache, e.g., using the clflush in-
struction. Then, the attacker busy-waits for a set amount of
time. Lastly, the attacker measures the time to reload the tar-
get line. If the victim accesses the target cache line between
the flush and the reload steps, the line will be cached and the
reload will be faster than otherwise.

2.3 Page coloring
Page coloring is a software mechanism that partitions the

cache by cache sets at page-size granularity. Memory pages
are given different colors, and only memory blocks in pages
with the same color can be mapped into the same cache set.
The page frame allocation is changed so that pages that are
contiguous in the virtual address space will have different
colors. Since the granularity of page coloring is 4KB small
pages, it is incompatible with superpages, without which
performance may degrade due to extra TLB misses [35].
Also, page coloring does not support memory deduplication
across VMs, potentially increasing memory pressure [39].
Page coloring is inherently coarse-grained, significantly re-
ducing the amount of cache available to any VM, which may
lead to performance degradation.

2.4 The Intel sliced LLC
Starting with the Nehalem microarchitecture, Intel intro-

duced the sliced LLC architecture that splits the LLC into

multiple slices. Each of the slices operates as a standard
cache, indexed by part of the physical address. The cores
and the cache slices are interconnected by a bi-directional
ring bus, and there is one slice for each core.

To map a physical address to a cache slice, the proces-
sor uses an unpublished hash function, which distributes the
physical addresses uniformly among the slices [19]. Not dis-
closing the details of the hash function hampers side channel
attacks as well as defenses [43]. In order to find the eviction
buffer for mounting a PRIME+PROBE attack, the attacker
needs to know which memory locations map to which cache
sets—information which is partially encoded by the hash
function. In order to implement page coloring as a defense,
the system designer must ensure that pages of different col-
ors do not map to the same cache set. Without understanding
the hash function, the system can only rely on address bits
used for indexing the set within a slice, reducing the number
of available colors.

The hash function can be reverse-engineered by finding
conflicting memory addresses, experimentally or by using
the performance counters of the processors [30]. When the
number of cores in the processor is a power of two, the hash
function is linear [18, 23, 29]. For other core counts, the
hash function cannot be linear [29, 43].

3. LEVERAGING CAT TO DEFEAT LLC
ATTACKS

3.1 The Intel Cache Allocation Technology
CAT is a hardware-based mechanism, introduced in Intel

Haswell server processors in 2014, which supports config-
urable partitioning of the cache ways of the LLC. Unlike
page coloring, CAT is not affected by the hash indexing al-
gorithm of the LLC and supports superpages. CAT is de-
signed to enforce quality-of-service (QoS) through isolat-
ing cache footprints, e.g., by guaranteeing cache capacity to
high-priority applications.

On current Haswell servers, CAT supports up to four
classes of service (COS), with a bitmap defining the LLC
ways a COS can access. The bit mask can be configured in
software by writing to one of four model-specific registers
(MSRs), one for each COS. Intel imposes two constraints on
configuring the COS: the bit mask must contain at least two
ways and the allocated ways must be contiguous. CAT asso-
ciates COS to logical processors. As a result, all the appli-
cations running on a logical processor share the same COS.
Importantly, CAT only restricts the ways that can be used to
serve an LLC miss, applications can still hit on cache lines
that are cached in cache ways that are not assigned to them.

3.2 Challenges
CAT could be trivially used to completely partition the

cache, by assigning disjoint COSs to different VMs (Fig-
ure 2.). However, such a partitioning is too coarse-grained,
as the hardware only supports four COSs, and four secu-
rity domains are insufficient for realistic cloud workloads.
Furthermore, the system could not dynamically balance the
cache allocation according to the needs of VMs, which
might harm the performance of VMs with large working
sets, especially when most VMs have small working sets.

VM1 VM2

Core1 Core2

VM3

Core3

VM4

Core4

COS0 COS1 COS2 COS3

LLC

Figure 2: Straightforward way-partitioning of the LLC
between cores (only 4 partitions).

3.3 Threat model and design goals
We target the co-residence threat in public IaaS clouds.

Without losing generality, our threat model assumes that
each VM is a trust domain, i.e., cloud customers do not trust
each other. The attacker owns a VM, having complete con-
trol of both OS and applications in the VM. The victim is
a co-resident VM that shares the machine with the attacker
VM. Our goal is to ensure that running it in a public cloud
platform is as secure as running a VM on a private machine.
We assume that the OS and the applications in the victim’s
VM are trusted. We also trust the cloud provider and any
software under its control. In particular, we trust that the
VMM manages the VMs, their resource allocations and the
CAT correctly.

We focus on LLC-based cross-VM attacks. The attacks
based on core-private caches (e.g., L1 and L2 caches) are ex-
tremely difficult to perform in the cross-VM scenario, since
they need to exploit the vulnerability of the VMM sched-
uler (e.g., the Xen credit scheduler) to achieve fine-grained
sharing of the same core for two VMs [46]. Addition-
ally, different hardware or software solutions have already
been proposed for L1-based side channel attacks. These in-
clude secure cache designs [11, 28, 40, 41], scheduler-based
defenses [38] and software-based cache cleansing mitiga-
tions [44]. Furthermore, cloud providers have the option
not to schedule two VMs from different cloud customers
on the same core, but VMs still share the LLC even when
they are scheduled on different cores. Our goal is providing
a system-level mechanism that offers strong security guar-
antees to cloud providers and their customers. We want a
practical solution that is applicable to commodity hardware.
Furthermore, we want a scalable solution that can handle a
large number of VMs and does not incur prohibitive perfor-
mance costs. Lastly, we do not want a solution that increases
the risk of denial-of-service (DoS) attacks.

3.4 Our solution: CATalyst
The key idea of CATalyst is that we use CAT not only

as a cache partitioning mechanism but also as a pseudo-
locking mechanism which pins certain page frames in the
LLC. These cache-pinned page frames are called secure
pages that can be used to store security-sensitive code and
data by remapping them to the secure page frames.

As shown in Figure 3, we first use the CAT hardware to
create two partitions: a secure partition and a non-secure
partition, where the secure partition can be much smaller
than the non-secure partition. We dedicate the secure par-

LLC

VM1 VM2

core2core1

process1 process3process2

non-secure secure

Figure 3: CATalyst architecture, with finer-grained,
page-level partitioning of 2 ways of the LLC.

tition to store cache-pinned secure pages. The non-secure
partition remains hardware-managed, and thus transparent
to the software. The secure partition, however, becomes a
software-managed cache that is allocated as the secure par-
tition at VMM boot time. In this way, our solution con-
verts the LLC into a hybrid between a hardware-managed
cache (using CAT) and a software-managed cache, provid-
ing finer granularity partitions, and locking of secure pages
(described below). Although the effective LLC capacity for
applications that do not use secure pages is reduced to the
size of the non-secure partition, the performance degrada-
tion is small, owing to the large size (tens of MB) of the
LLC in modern processors, and to the relatively small size
of the secure partition, which can be as small as two out of
many (e.g., 20) LLC ways.

Secure pages are assigned to VMs upon request at VM
launch time. Allocation is done at a granularity of a page,
effectively increasing the number of cache partitions to the
number of pages in the secure partition. We can, therefore,
support many more mutually-distrusting VMs than the num-
ber of COS. The VMM guarantees that a secure page is not
shared by multiple VMs. Yet, within a VM, assigned secure
pages are fully managed by the guest OS and can be time-
shared by all the applications in the VM.
Security guarantees: CATalyst provides two security guar-
antees:

1) No eviction of secure pages by malicious code. We
guarantee that once security-sensitive code or data is mapped
to secure pages, they are kept in the LLC. That is, malicious
code cannot cause eviction through cache line contention.
Accesses to security-sensitive code or data always hit in the
LLC, thus achieving constant-time accesses, which do not
leak information to an attacker observing the shared LLC
cache state. Note that unlike some previous work [26], we do
not require explicit software preloading of security-sensitive
code or data to achieve access time guarantees (due to cache
hits). Instead, by remapping the security-sensitive code or
data to the secure pages, we implicitly perform preloading.

2) No overlapping of secure pages between different ac-
tive VMs (security domains). By preventing sharing of se-
cure pages between VMs, we guarantee that the FLUSH+
RELOAD attack cannot operate on security-sensitive code or
data. This also prevents a malicious VM from flushing the
secure pages belonging to another VM.

To avoid DoS attacks by malicious VMs over-requesting

secure pages, the VMM limits the maximum number of se-
cure pages that a VM can request, for example, to no more
than 8 pages.
Scalability: The number of cache partitions that our system
can support is essentially the number of pages in the secure
partition. Assume that there are Nslice LLC slices, the size
of each way in a LLC slice is S bytes, and the number of
reserved ways for the secure partition is k. In a typical Intel
processor, Nslice is the number of cores in the processor and
S is fixed at 128 KB, which is 32 page frames. Therefore, the
secure partition contains 32× k×Nslice page frames. Due to
the restrictions of CAT allocation, we have k ≥ 2. Hence,
the smallest possible secure partition has 64 page frames per
processor core.

Looking at Amazon EC2, as an example of a typical pub-
lic cloud provider, we find that the smallest supported in-
stance, the T2.micro, has a burstable CPU allocation of 10%
of the performance of a single core [3]. If we ignore the
VMM overhead, assume no larger instances are used and al-
low for some over-provisioning, we can estimate an upper
bound of 16 VMs per CPU core. Even with such an upper
bound, 64 secure pages per core can still accommodate four
secure pages per VM. A few secure pages are usually suffi-
cient for protecting the security-sensitive code and data since
these are usually small.

3.5 Overview of the CATalyst system
The CATalyst system consists of the following phases:
1) VMM boot time: The VMM reserves a pool of phys-

ically contiguous page frames, and loads these pages into
secure partitions using CAT. We allocate all secure pages in
the secure partition at boot time as this implies a one-off
overhead that is drowned by the boot latency. We show what
is involved in loading secure pages into the secure partition
with high security guarantees, and we will discuss this in
detail in Section 4.

2) VM launch time: At VM launch time, the VMM allo-
cates secure pages to the guest physical address space of the
guest VM according to its request. The VMM guarantees
that VMs do not share a secure page.

3) VM run time (process): At VM run time, the guest
kernel manages the secure pages without interventions from
the VMM. The guest kernel exposes two system calls to the
process, for mapping and unmapping the secure pages. If a
process wants to protect its sensitive code or data, the guest
kernel only needs to remap the sensitive code or data to the
secure pages, which implicitly does preloading and locking
of these pages.

4) VM terminate time: The allocated secure pages are
reclaimed and scrubbed when a VM is terminated, and re-
leased to the VMM.

In the following section, we will discuss in detail how the
secure pages are managed, how to expose secure pages to
the guest VM, and how to reclaim the secure pages. The
implementation of the system calls and how an application
uses the system calls will also be described in detail.

4. SYSTEM DESIGN

4.1 VMM boot time

M9 M8 M7 M6 M5 M4 M3 M2 M1 M0

COS0 1 1 1 1 1 1 1 1 0 0

COS1 1 1 1 1 1 1 1 1 0 0

COS2 1 1 1 1 1 1 1 1 0 0

COS3 0 0 0 0 0 0 0 0 1 1

Figure 4: Example bit mask configuration for CAT as a
pseudo locking mechanism.

input: Secure page P to be pinned.
C : code that loads a secure page, P

1) Disable local interrupts
2) Access C
3) Access one word in P
4) Set current logical processor to COS3
5) clflush P
6) Access P
7) Set current logical processor back to COS0
8) Enable local interrupts

Figure 5: Procedure to pin one secure page into the se-
cure partition.

4.1.1 Pseudo locking mechanism
CAT itself is a cache partitioning mechanism. However,

with careful configuration of CAT, it can also be used as a
pseudo locking mechanism. Specifically, we dedicate one
COS, say COS3, for security, and ensure no process except
a special preloading routine can be assigned to COS3. Dur-
ing the initialization of CAT, we configure the capacity bit
mask for each COS before locking the secure pages. Fig-
ure 4 shows an example bit mask configuration. In this ex-
ample, there are 10 cache ways; way M0 and M1 are reserved
for the secure partition and all of the remaining cache ways
are used for the non-secure partition. COS3 is configured to
be able to access the secure partition only, and all of the other
COSs can only access the non-secure partition. We also set
the MSR associated with each logical processor so that each
is initially associated with COS0.

4.1.2 Preloading routine
The preloading routine (outlined in Figure 5) has to be

carefully designed to ensure security. Specifically, our se-
curity guarantee is that secure pages always hit in the secure
partition of the LLC. If data in a secure page was ever evicted
out of the secure partition, it would become susceptible to at-
tacks.

Once a logical processor is set to a COS, all the mem-
ory traffic initiated by that logical processor will follow the
cache allocation policy of this COS. Such memory traffic
includes instruction fetches and data load and stores, traffic
originating from prefetchers, and even the page table walker.
Therefore, we must guarantee that:

1) The preloading routine code and any non-sensitive data,
e.g., the local variables on the stack, must never be loaded
into the secure partition, to avoid evicting the secure pages.

2) No interrupt or exception handling is allowed while the
preloading routine is executing. Otherwise, the interrupt or
exception handler will execute with the logical processor set-
ting of COS3 and may potentially evict some secure pages

out of the LLC cache.
3) No TLB miss (specifically in the unified L2 TLB) is

allowed while the preloading routine is executing. This is
because when the hardware walks the page tables, it may
cache page-table data in the normal data-cache hierarchy.
This could pollute the secure partition.

4) We also need to guarantee that the secure pages are
never cached in any part of the non-secure partition.

To overcome the above challenges, we carefully write
the preloading routine in assembly without using a stack or
heap. This way, we only need to worry about the preloading
routine’s code, not data.

We first disable local interrupts to ensure that the preload-
ing routine is not interrupted (Step 1 of Figure 5). Step 2,
executed while the logical processor is still set to COS0, en-
sures that the preloading routine code is cached in the non-
secure partition, and that the corresponding TLB entry is
loaded. Since the preloading is done at boot time when only
the boot core is running, we can guarantee that, once cached
in the non-secure partition, the routine’s code is not evicted
from the cache or the TLB while preloading a page. Simi-
larly, we also make sure no page fault or TLB miss occurs
while accessing P. We achieve this by accessing one word
in P to load the TLB entry for the page (Step 3). After all
of these preparations, it is safe to set the current logical pro-
cessor to COS3 (Step 4). Before loading P into the secure
partition, we use the clflush instruction to evict any cached
data of P from the non-secure partition (Step 5). We then tra-
verse P (Step 6), ensuring it is cached in the secure partition.
Finally, we exit the secure partition and go back to COS0
(Step 7) and re-enable interrupts (Step 8). The preloading
routine consists of less than 100 lines of assembly code and
achieves the same functionality as a hardware cache-pinning
mechanism.

4.1.3 Preloading secure pages without self-conflicts
Ideally, a physically contiguous chunk, with size equal to

the size of the secure partition (M bytes), will fit in the secure
partition without conflicts. In some rare cases, this will be
complicated by the use of the hash indexing scheme. Specif-
ically, when the core count is not a power of two, we may
find some conflicts within the M bytes in the physically con-
tiguous chunk. This is because although the hash indexing
scheme tries to evenly distribute traffic to each LLC slice, it
is very hard to achieve this perfectly when the core count is
not a power of two. To avoid LLC conflicts during the load-
ing of secure pages, the VMM needs to allocate a chunk of
physically contiguous memory that is slightly larger than M.
For each page frame, the VMM needs to determine whether
adding this page frame into the secure partition will cause
the eviction of page frames that are already in the secure
partition. There are two approaches to achieve this:

1) Reverse engineer the hash function [30, 43]. Since
the VMM knows the physical address of a page frame, it is
straightforward for the VMM to determine which LLC slice
the page frame is mapped to, if the VMM knows the hash
function.

2) The VMM can use the PRIME+PROBE technique iter-
atively [29]. Assume the VMM has already selected a set of
page frames, F , without LLC cache line conflicts. In order to

determine whether adding a new candidate page frame will
result in conflicts, the VMM can first access a cache line L
in the candidate page frame, and then access all the cache
lines with the same page offset as L in the page frames in F .
The VMM then measures the time taken to access L again.
If the access latency is small, the VMM can add the candi-
date page frame in the set F ; otherwise, adding this candi-
date page will cause self-conflicts since an LLC cache miss
resulted in accessing L again.

We use the performance monitor unit (PMU) to verify that
the secure pages are indeed pinned in the cache. The PMU
allows software to access the hardware performance coun-
ters. Specifically, the VMM first allocates a large buffer
(e.g., the same size as the LLC) and cleans the LLC by
traversing the large buffer. Then the VMM uses the PMU to
measure the number of LLC misses when randomly travers-
ing a secure page. To count the number of LLC misses, we
directly program one of the performance monitor counters
(e.g., PMC0) so that it is reset to zero before we start to
access the secure page; we read this counter for number of
LLC misses, after traversing the secure page.

4.1.4 Other issues
Although our preloading routine is carefully designed to

provide strong security guarantees, there are still several
complexities to handle in a real commodity system, in or-
der to prevent the pinned page frames from being evicted
out of the LLC.

Special instructions that explicitly flush the caches: Ta-
ble 1 shows some existing Intel x86 instructions that may ex-
plicitly flush a cache line out of the LLC, without enforcing
CAT, which will destroy our security guarantee once such
an instruction is executed. In particular, invd and wbinvd
may flush the whole per-core L1 and L2 caches (and the cor-
responding content in the LLC). A malicious VM may use
such instructions to flush arbitrary secure pages out of the
LLC. Since these instructions cause VM exits, the VMM can
intercept them and prevent their execution.

The clflush instruction and memory-access instructions
bypassing the caches are potentially more dangerous, since
they are unprivileged and can be executed by the guest with-
out causing VM exits. However, since these instructions op-
erate on data identified by the guest virtual address, they can-
not affect another VM’s secure pages, as we guarantee that
VMs never share secure pages.

Once the secure pages are reclaimed at VM termination,
the VMM needs to reload these pages to ensure they are still
pinned in the secure partition. We allow the VMM to ex-
ecute the above special instructions, but ensure that where
they target cache lines in the secure partition, the VMM im-
mediately afterwards reloads the flushed cache lines.

Unlike the loading of secure pages at boot time, reload-
ing them requires special care. This is because: 1) concur-
rent accesses to the flushed secure pages by a VM running
on another core may cache a secure page in the non-secure
partition (e.g., while the VMM executes wbinvd); 2) there
is no guarantee that the preloading routine code, which is
cached in the non-secure partition, will not be evicted when
reloading the secure pages. In order to maintain our secu-
rity guarantees we stop all other logical processors while the

Table 1: Special instructions that may explicitly flush cache.

Instructions Description VM exit?
invd(wbinvd) (write back) and invalidate cache yes
clflush invalidate cache line with given linear address from all levels of cache hierarchy no
non-temporal stores, e.g., movnti write to given memory address without writing data in the cache hierarchy no

Guest physical
address space

Host physical
address space

Pool of
secure
pages

(a) EPT mapping on VM launch

Guest physical
address space

Host physical
address space

(b) EPT mapping after assigning secure pages

Figure 6: Assigning secure pages to guest VM from a pool of secure pages. The shaded pages are secure pages.

Table 2: Summary of hypercalls.

Hypercall Description
long do_alloc_secure_pages(unsigned long start_gpfn, int nr_pages) allocate secure pages for nr_pages guest page frames starting at start_gpfn
long do_release_secure_pages(void) release all the secure pages allocated to this VM

VMM is reloading the flushed pages. Compared to the cost
of cache flushes and VM cleanup operations, the extra over-
head is small.

Direct Data I/O (DDIO): DDIO is a new feature that
can be found in Intel Xeon E5 and E7 series processors. It
enables direct communication between Intel Ethernet con-
trollers and adapters and the host processor’s cache. There-
fore, it may flush the LLC silently without the VMM being
aware. Fortunately, the Intel processor allows software to
configure which cache ways are allowed to be accessed by
the DDIO through a bit mask. Therefore, we can configure
the bit mask so that it is not overlapped with the cache ways
allocated to the secure partition.

Cache coherence in multi-socket servers: So far, we
have assumed a scenario with a single multicore processor
package. Therefore, the intra-CMP (chip multiprocessor)
coherence protocol does not impact the contents in the LLC.
Especially, it is safe to keep dirty data in the LLC with-
out writing back to the memory. However, public cloud
providers often use multi-socket servers, i.e., servers that
have multiple multi-core packages. The inter-CMP cache
coherence protocol may destroy our security guarantee. In
this case, if a processor core in one socket writes to a secure
page which has been cached in the LLC of another socket,
the secure page has to be invalidated. To solve this, we
must set the CPU affinity of the VM’s Virtual CPUs (VC-
PUs) to the cores of a single processor package. The secure
pages of the VM are pinned to the LLC of the same pro-
cessor package. Because the secure pages are not shared
with other VMs, restricting the VM to the processor pack-

age which caches its secure pages ensures that no other pro-
cessor package accesses the secure pages and prevents any
cache coherence issues.

4.2 VM launch time and terminate time
At VM launch time, the VMM allocates secure pages to

the guest VM as requested, and exposes these pages to the
guest physical address space. We take advantage of the EPT
mechanism and implement this operation as a kernel module
in the guest kernel, without the need to modify the VM build
process. When the kernel module is loaded into the kernel
space, it allocates a chunk of contiguous guest page frames,
and then asks the VMM to map these page frames to the
secure pages.

Figure 6 illustrates the technique of exposing secure pages
to the guest physical address space. In this example, all of
the memory requested by the guest VM is allocated, and the
EPT entries for the entire guest physical address space are
populated after the guest VM is built. This is the default sce-
nario in many virtualized systems (e.g., Xen). The kernel
module invokes a new hypercall do_alloc_secure_pages
(see Table 2) for mapping nr_pages guest page frames start-
ing from frame number start_gpfn to secure pages. Since
the EPT is already populated, the hypercall does the follow-
ing operations: 1) free the original page frames that the guest
physical page frames map to (and clear EPT entries); 2) al-
locate the secure pages; 3) modify the EPT entries to map to
the secure pages.

We use a global data structure (a bit-vector-based free list,
one bit for each secure page) to manage the allocation and

Process virtual
address space

Guest physical
address space

Secure
page
frames

(a) bring in and lock backstore page

Virtual address space

Guest physical
address space

Secure
page
frames

(b) copy backstore to a secure page

Virtual address space

Guest physical
address space

Secure
page
frames

(c) point PTE to secure page

Figure 7: Mapping a virtual page to a secure page for a process.

Table 3: Summary of system calls.

System call Description
long sys_map_sp(unsigned long start, size_t len) map virtual address space starting at start, with size len to secure pages
long sys_unmap_sp(unsigned long start, size_t len) unmap virtual address space starting at start, with size len from secure pages

release of secure pages. There is no global data structure
for tracking which page frame is allocated to which domain.
Instead, each domain keeps track of its own secure page al-
location, including which secure pages (in terms of machine
page frame numbers) are allocated to it, the beginning guest
page frame number of the secure pages and the number of
secure pages. This makes it easy to manage the release of
the secure pages.
VM terminate time: At VM termination time, the se-
cure pages are reclaimed and reloaded into the secure par-
tition as described in Section 4.1.4, in order to prevent the
flushing of secure pages by a malicious VM. Similar to
launching a VM, we use a kernel module to reclaim secure
page frames. Secure pages for a domain are released when
the kernel module performs unloading, using a hypercall
do_release_secure_page (see Table 2). For each guest
page frame that is mapped to a secure page, the VMM does
the following: 1) allocate a free machine page frame, and
change the EPT to point to the new machine page frame; 2)
free the secure page; 3) ensure that the secure page is pinned
in the secure cache. (Recall that a malicious VM may have
used clflush to evict the data of the secure page from the
secure partition.)

4.3 VM run time
The guest VM’s kernel manages the secure pages by mul-

tiplexing them to all the processes. There are two alterna-
tives to implement a time-shared secure page management
mechanism. One option is a truly time-shared implementa-
tion, i.e., virtualizing the secure pages for user processes so
that two processes can simultaneously map to the same se-
cure page as long as they do not access it concurrently. To
avoid the complexity of synchronization on multi-core pro-
cessors, the guest kernel can associate different secure pages
to each VCPU. A process running on one VCPU can use
all the secure pages owned by that VCPU. During context
switch, all the secure pages on that core must be saved to
some per-process backstore pages. The contents of the back-

store pages of the next running process will be loaded into
the secure pages. The second option is that the guest kernel
does not virtualize the secure pages so that a user process
can exclusively hold secure pages until they are explicitly re-
leased. In our proof-of-concept implementation we use the
second option.

The guest kernel exposes two system calls to the user
process: map_sp and unmap_sp as described in Table 3.
Basically, these system calls allow a user process to map
(and unmap) certain virtual address space to (from) secure
pages. These interfaces are flexible enough to protect arbi-
trary code, stack, and heap, etc.

Figure 7 illustrates the implementation of the map_sp
syscall. The user process passes the start virtual address
and length of the protected region as parameters. map_sp
first uses mlock to make sure the memory region has the
VM_LOCKED flag set (i.e., cannot be swapped out), and fault
in (i.e. explicitly invoke page fault handler) if necessary so
that the memory region is mapped to certain guest physi-
cal page frames and the corresponding page table entries are
populated. These guest physical page frames are the back-
store for the secure pages. We then allocate secure pages for
the memory region and copy the contents of the backstore
page to the secure page frame. Similar to managing secure
pages in the VMM, we also use a global data structure to
manage the secure pages within the guest VM. The guest
kernel maintains a bit vector based free list for the secure
pages. In addition, for each secure page, we use a global
data structure to record its backstore page. Note that this is
different from the design we use in the VMM (which must
manage a much larger number of secure pages than a guest).
Lastly, we modify the page table entry so that it points to the
secure page; we also save the backstore page frame to the
global data structure for the corresponding secure page.

The implementation of unmap_sp is similar: the guest
kernel first needs to copy the contents of the secure page
to the backstore page if it is dirty. Then it changes the page
table entry so that it points to the backstore page and then

Table 4: Summary of software changes.

Application invoke syscalls to map and unmap secure pages
Guest kernel new syscalls

VMM new hypercalls, boot time code, VM exit handlers

frees the secure page.
Table 4 summarizes the changes to the software stack in

order to use CATalyst. It is worth noting that our system still
supports legacy guest VMs and applications if they are not
aware of CATalyst.

5. SECURITY EVALUATION

Table 5: Experimental environment.

Processor model Intel Xeon E5 2618L v3
Microarchitecture Haswell
Clock frequency 2.3 GHz
cores 8 (8 slices)
LLC 20-way 20 MB
ways in secure partition 2
VMM Xen 4.5.0 (HVM)
Dom0 and DomU CentOS 6.6
Kernel version Linux 3.14.0
Legacy VM 4 VCPUs, 4 GB RAM
Secure VM 4 VCPUs, 2 GB RAM, 8 secure pages

Table 5 summarizes the experimental environment for our
implementation and evaluation. We use a Xeon E5 based
Haswell server (with only one socket) with 8 cores. The size
of the LLC is 20 MB, consisting of 8 cache slices. We re-
serve two out of the 20 cache ways as the secure partition,
holding 10% of the entire cache. This secure partition sup-
ports up to 512 (20MB/4KB/10) secure pages, which allows
our system to support a large number of VMs. We imple-
ment our design on a Xen hypervisor with Linux as the guest
OS.

Algorithm 1: Square-and-Multiply exponentiation.
input : base b, modulo m, exponent e = (en−1 · · ·e0)2
output: be mod m

r← 1
for i from n−1 downto 0 do

r← r2 mod m
if ei = 1 then

r← r ·b mod m
end

end
return r

To evaluate the security, we select GnuPG, a free imple-
mentation of the OpenPGP standard, as the victim process.
The modular exponentiation in GnuPG version 1.4.13 uses
a simple Square-and-Multiply algorithm [15] that is known
to be vulnerable to side channel attacks. As described in
algorithm 1, the algorithm scans the exponent bits (private
key) from left to right, performing a square operation on
each bit. For every “1” bit, it performs an extra multiply
operation. Consequently, the time interval between two con-
secutive squares reveals the private key: if the exponent bit is
“1” there will be a multiply operation in between two square

operations, resulting in longer elapsed time between square
operations than when the exponent bit is “0”.

Time slot

0 50 100 150 200 250 300 350 400 450 500

C
a
c
h
e
 s

e
t

70

80

90

100

110

120

0 1 1 00 1

Figure 8: Clear activity pattern for cache set 78 in
GnuPG without protection.

The attack first selects cache sets that potentially conflict
with instructions in the square routine, i.e., they have the
same page offset and hence will potentially map into the
same cache set. The attack scans these selected cache sets,
one by one, for 10,000 time slots, where each time slot is
5000 cycles. Figure 8 only shows cache set activity for some
cache sets for 500 time slots. A dark dot represents activity
in that time slot, whereas no dot represents inactivity in that
time slot. For most cache sets, we only see random activity
patterns. But for set 78, we see a clear string of activity (usu-
ally 3-4 consecutive dots for one square operation) followed
by an inactivity period. This is a temporal access pattern that
can indicate key bits: for this machine, the inactive period is
3-4 time slots for a “0” and 10-11 time-slots for a “1” in the
key. Hence, a common activity pattern for set 78 is 3 time
slots with activity followed by 4 time slots without activity,
which is the matched activity pattern that we count in Fig-
ure 9.

We modified GnuPG version 1.4.13 to use CATalyst. In
particular, at the beginning of the modular exponentiation
function, we invoke the map_sp syscall to map the page con-
taining the square routine (as well as the multiply routine) to
a secure page. At the end of the function, we invoke the
unmap_sp syscall to release the secure page.

Figure 9 indicates the results of searching targeted cache
traces, by counting the number of matched activity pattern
described above, before and after we locked the secure page
in the LLC. As shown in Figure 9a for GnuPG without pro-
tection, an attacker can easily identify the targeted cache set
containing expected cache activity patterns. However, when
CATAlyst is engaged as in Figure 9b, it is impossible to find
such targeted cache sets.

6. PERFORMANCE EVALUATION
We measure the effect of our changes in two different sce-

narios. We first evaluate the costs of the reduced cache ca-
pacity on legacy applications. We then measure the effects
of implementing the defense by modifying three encryption
algorithms to protect their sensitive code and data. We use
the two VM configurations shown in Table 5. We use the
legacy VM for the legacy applications, running an unmodi-
fied OS without using secure pages. Moreover, we use the
secure VM for measuring the costs of the defense.

6.1 Performance impact on legacy applica-
tions

Cache set

0 50 100 150 200 250

P
a

tt
e

rn
s
 m

a
tc

h
e

d

0

500

1000

1500

(a) without CATalyst (clear pattern for set 78)
Cache set

0 50 100 150 200 250

P
a

tt
e

rn
s
 m

a
tc

h
e

d

0

500

1000

1500

(b) with CATalyst

Figure 9: Results on attacking GnuPG.

-2%

0%

2%

4%

6%

8%

b
zi

p
2

m
cf

go
b

m
k

h
m

m
er

sj
en

g

lib
q

u
an

tu
m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

b
w

av
es

ga
m

e
ss

m
ilc

ze
u

sm
p

ca
ct

u
sA

D
M

le
sl

ie
3

d

n
am

d

so
p

le
x

p
o

vr
ay

ca
lc

u
lix

G
em

sF
D

TD

to
n

to

lb
m

ge
o

m
e

an

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l

d
ed

u
p

fa
ce

si
m

fe
rr

e
t

fl
u

id
an

im
at

e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

u
st

er

sw
ap

ti
o

n
s

vi
p

s

ge
o

m
ea

n

Sl
o

w
d

o
w

n

SPEC PARSEC

Figure 10: Slowdown for SPEC 2006 and PARSEC benchmarks.

-10%

0%

10%

20%

30%

40%

50%

2 4 6 8 10 12 2 4 6 8 10 12

Sl
o

w
d

o
w

n

Number of ways in secure partition

SPEC PARSEC

Figure 11: Box plot of slowdown for secure partition with
different size.

We measure the impact on legacy applications using 22
SPEC CPU2006 [17] and 12 PARSEC [8] benchmarks. We
run each benchmark three times to completion using the
reference (for SPEC) and native (for PARSEC) input sets
and compare the results against the baseline case—without
the secure partition. Because the minimum secure partition
occupies 10% of the cache, we expect some performance
degradation when using our system.

Figure 10 shows the average slowdown of each of the
benchmarks. We see an average slowdown of 0.7% for
SPEC and 0.5% for PARSEC, with all but one benchmark
being under 2%. The only exception is omnetpp, which
has a slowdown of 6.5%. Hence, a decrease of 10% in
the cache capacity incurs a very small performance degra-
dation. Comparing with the state-of-art page coloring based
scheme which gives an average degradation of 5.9% (maxi-
mum 16%) for SPEC benchmarks [25], CATalyst has much
better performance for the legacy applications.

When a larger part of the cache is reserved for the secure
partition, the performance deteriorates. Figure 11 shows the

box plot of the slowdown distribution for various secure-
partition sizes. Specifically, the ends of the whiskers rep-
resent the minimum and maximum slowdown over the 22
SPEC (or 12 PARSEC) benchmarks. The box represents the
first and third quartile and the band in the box is the mean
slowdown. Generally, SPEC is more sensitive to the LLC ca-
pacity than PARSEC benchmarks. For both benchmarks, we
find that even when the secure partition occupies more than
half of the LLC, 75% of the benchmarks suffer less than 6%
performance degradation. Only very few benchmarks are
sensitive to cache size, the worst suffering a performance
degradation of up to 45%.

Although we only study the performance of SPEC and
multi-threaded PARSEC benchmarks, we would expect that
server benchmarks, scale-out workloads and real-world data
center applications are even less sensitive to the LLC size
than the memory-intensive SPEC and PARSEC bench-
marks [13].

6.2 Overhead of security-sensitive applica-
tions

The performance of security-sensitive applications may
be impacted by several factors: 1) the slowdown due to re-
duced cache size; 2) overhead due to mapping and unmap-
ping secure pages; 3) potential performance improvement
since frequently used code and data are pinned in the LLC.

We measure the performance effect of CATalyst on three
cryptographic implementations: the OpenSSL 0.9.8.a im-
plementation of AES encryption in cipher block chaining
(CBC) mode, the GnuPG 1.4.13 and the GnuPG 1.4.18 im-
plementations of the ElGamal decryption [12].

6.2.1 OpenSSL AES
The implementation of AES uses five 1 KB tables. Trac-

ing accesses on these tables can recover the encryption

key [32]. To mitigate this attack, we map these tables to
secure pages at the start of the encryption and unmap them
at the end.

Table 6: Time to encrypt a 5 MB file using AES.

Buffer size 5 KB 50 KB 500 KB 5 MB
Baseline (ms) 81.04 79.91 79.83 82.87
CATalyst (ms) 95.26 81.96 79.96 82.83
Slowdown 17.54% 2.56% 0.16% -0.05%

Table 7: GnuPG ElGamal decryption times.

Version 1.4.13 1.4.18
Baseline(ms) 15.36 12.77
CATalyst (ms) 15.40 12.83
Slowdown 0.25% 0.44%

The implementation uses an internal buffer for storing
the data. Long streams of data are broken into buffer-sized
chunks, each of these chunks encrypted separately. We mea-
sure the time to encrypt a 5 MB file containing random data
with several buffer lengths. Table 6 shows the average re-
sults over 1,000 runs. With small buffers, the overhead of
the map and unmap system calls is significant resulting in
a slowdown of ∼17.5%. Increasing the buffer size dramati-
cally reduces the overhead of map and unmap system calls.
When the buffer size is larger than 500 KB, the impact is
negligible. To reduce the overhead of mapping and unmap-
ping the tables, a programmer can evoke the mapping at li-
brary initialization, therefore avoiding the overhead for ev-
ery encryption.

6.2.2 GnuPG ElGamal
We test the performance with two versions of GnuPG:

version 1.4.13 (discussed in Section 5) uses the square-and-
multiply exponentiation algorithm; and version 1.4.18 uses
the sliding window exponentiation [9]. We protect GnuPG
1.4.13 as specified in Section 5. For GnuPG 1.4.18, we pro-
tect both the multiply routine and the multipliers [29]. We
map the multiply routine to a secure page at the beginning of
the modular exponentiation function, and unmap it at the end
of the function. We map the multipliers, which are dynami-
cally allocated on the heap, immediately after allocation, and
unmap them before deallocation.

GnuPG encryption uses a one-time symmetric key for en-
cryption. It uses the ElGamal encryption to store an en-
crypted version of the one-time symmetric key with the data.
We use GnuPG to encrypt a very short file (5 bytes), mea-
suring the time to decrypt it. To accurately measure the time
taken for ElGamal decryption, we insert rdtsc instructions
before and after invoking the ElGamal decryption. Since
ElGamal decryption is only performed on the one-time sym-
metric key, the time is independent of the size of the pro-
cessed file. Similar to AES, we repeat each measurement
1,000 times. The results in Table 7 show that the overhead
of the syscall is within 0.5% for both GnuPG 1.4.13 and
GnuPG 1.4.18.

7. RELATED WORK

7.1 Constant time implementations
Cryptographic primitives sometimes can be repro-

grammed such that they do not leak side channel informa-
tion through the cache. Such constant time implementations
avoid secret-dependent memory accesses and branches [5,
6].

Constant time implementations of cryptographic primi-
tives are extremely hard to get right: for example, recent
work has demonstrated that a supposedly constant-time im-
plementation of TLS in OpenSSL still has data-dependent
execution time at least on ARM processors [10]. Also, even
where real constant-time implementations exist, they may
not always be usable. For example, the generic implemen-
tation of elliptic curves in OpenSSL has been shown to be
vulnerable to side channel attacks [1, 4, 37]. For the pop-
ular NIST P-256 curve, OpenSSL provides a constant-time
implementation [16]. However this implementation is not
part of the FIPS 140-2 [31] certified code base, and there-
fore developers that need FIPS 140-2 certification must use
the vulnerable generic implementation.

7.2 Secure caches
Wang and Lee [40] designed a secure cache for dynamic

cache partitioning (PLcache) by introducing a lock-bit per
cache line, providing a hardware mechanism for locking
security-sensitive data into the L1 data cache. Domnister
et al. [11] propose that each hardware thread in a processor
core statically owns several cache lines in every cache set of
the L1 cache. However, they target L1 caches, not the LLC,
and would require hardware changes to processor chips.

7.3 Page coloring based defenses
Page coloring was initially proposed for improving sys-

tem performance [7, 24] and enhancing performance isola-
tion in real-time systems [27]. Later on, the technique has
been used by system designers for mitigating cache-based
timing attacks [14, 25, 36].

Shi et al. [36] designed a dynamic page coloring solu-
tion to limit cache side channel attacks. Their solution dedi-
cates several colors for security-critical operations and does
not allow other processes to use these colors when security-
critical operations are in execution. This solution may poten-
tially cause significant overhead since it needs to frequently
swap pages between secure colors and other colors. God-
frey [14] implemented page coloring in Xen, and evaluated
its effectiveness. STEALTHMEM [25] reserves one or more
stealth pages with different colors for each core, for pro-
tecting security-sensitive data. To ensure stealth pages are
pinned in the cache, it disallows using page frames with the
same colors as the stealth pages, or mediates access to those
pages by page faults.

Compared to these software page coloring based solu-
tions, CATalyst has the following advantages: 1) the design
is simpler since the isolation of secure and insecure par-
titions is enforced by the CAT, instead of by complicated
software. This results in modification of less than 1,000
C/assembly lines in the VMM. 2) CATalyst is not impacted
by the Intel LLC’s non-linear and unknown hash indexing
scheme, whereas this may significantly reduce the already
limited number of available colors in page coloring schemes.

3) CATalyst is compatible with superpages and memory
deduplication, whereas these performance-enhancing fea-
tures may have to be disabled in page coloring schemes.

8. CONCLUSIONS
We propose CATalyst, a lightweight system mechanism

for the cloud provider and cloud customers to protect
security-sensitive code and data against LLC-based side
channel attacks, by leveraging the CAT on Intel proces-
sors. CATalyst builds on existing commodity hardware, and
can be easily deployed. It bridges the gap between pro-
tecting security applications and the existing performance-
oriented cache-partitioning mechanism. CATalyst uses the
CAT to partition the LLC, forming a hybrid between a con-
ventional hardware-managed cache and a small software-
managed cache. We pin a pool of page frames permanently
in the cache, managed by the VMM and the guest OS. Users
can load and lock security-sensitive code and data by map-
ping them to the cache-pinned pages. We implement a proof-
of-concept of CATalyst using the Xen hypervisor and the
Linux OS. Our evaluation shows that CATalyst not only ef-
fectively mitigates the LLC attacks but also introduces very
small performance degradation.

Acknowledgments
We thank the reviewers for their helpful comments. This
work was supported in part by DHS/AFRL FA8750-12-2-
0295 and NSF CNS-1218817. NICTA is funded by the Aus-
tralian Government through the Department of Communica-
tions and the Australian Research Council through the ICT
Centre of Excellence Program.

References
[1] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and

Y. Yarom, “Amplifying side channels through perfor-
mance degradation,” IACR Cryptology ePrint Archive,
Report 2015/1141, Nov 2015.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” in ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2003, pp.
164–177.

[3] J. Barr, “New low cost EC2 instances with burstable
performance,” https://aws.amazon.com/blogs/aws/
low-cost-burstable-ec2-instances/, Jul. 2014.

[4] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom,
““ooh aah. . . , just a little bit”: A small amount of side
channel can go a long way,” in Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES),
Sept. 2014, pp. 75–92.

[5] D. J. Bernstein, “Cache-timing attacks on AES,”
2005, Preprint available at http://cr.yp.to/papers.html#
cachetiming.

[6] D. J. Bernstein, T. Lange, and P. Schwabe, “The secu-
rity impact of a new cryptographic library,” in Interna-
tional Conference on Cryptology and Information Se-
curity in Latin America (Latincrypt), 2012.

[7] B. N. Bershad, D. Lee, T. H. Romer, and J. B. Chen,
“Avoiding conflict misses dynamically in large direct-
mapped caches,” in International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS), Oct. 1994, pp. 158–170.

[8] C. Bienia, “Benchmarking modern multiprocessors,”
Ph.D. dissertation, Princeton University, January 2011.

[9] J. Bos and M. Coster, “Addition chain heuristics,” in
International Cryptology Conference (CRYPTO), Aug
1989, pp. 400–407.

[10] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last
mile: An empirical study of some timing channels on
seL4,” in ACM Conference on Computer and Commu-
nications Security (CCS), Nov. 2014, pp. 570–581.

[11] L. Domnister, A. Jaleel, J. Loew, N. Abu-Ghazaleh,
and D. Ponomarev, “Non-monopolizable caches: Low-
complexity mitigation of cache side channel attacks,”
Trans. Arch. & Code Optimization (TACO), vol. 8,
no. 4, Jan. 2012.

[12] T. ElGamal, “A public key cryptosystem and a signa-
ture scheme based on discrete logarithms,” in Advances
in Cryptology, 1985.

[13] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Al-
isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ail-
amaki, and B. Falsafi, “Clearing the clouds: A study of
emerging scale-out workloads on modern hardware,”
in Proceedings of International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS), 2012, pp. 37–48.

[14] M. Godfrey, “On the prevention of cache-based side-
channel attacks in a cloud environment,” Master’s the-
sis, Queen’s University, Ont, CA, Sep. 2013.

[15] D. M. Gordon, “A survey of fast exponentiation meth-
ods,” J. Algorithms, vol. 27, no. 1, Apr. 1998.

[16] S. Gueron and V. Krasnov, “Fast prime field elliptic-
curve cryptography with 256-bit primes,” J. Crypto-
graphic Engin., vol. 5, pp. 141–151, Jun 2015.

[17] J. Henning, “SPEC CPU2006 benchmark descrip-
tions,” Comp. Arch. News, vol. 34, no. 4, Sep 2006.

[18] R. Hund, C. Willems, and T. Holz, “Practical timing
side channel attacks against kernel space ASLR,” in
IEEE Symposium on Security and Privacy (S&P), May
2013, pp. 191–205.

[19] Intel 64 and IA-32 Architectures Optimization Refer-
ence Manual, Intel Corporation, Apr 2012.

[20] Intel 64 and IA-32 Architectures Software Developer’s
Manual, Intel Corporation, Sep 2013.

[21] Improving Real-Time Performance by Utilizing Cache
Allocation Technology, Intel Corporation, Apr 2015.

https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances/
https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances/
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming

[22] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A
shared cache attack that works across cores and defies
VM sandboxing – and its application to AES,” in IEEE
Symposium on Security and Privacy (S&P), May 2015.

[23] ——, “Systematic reverse engineering of cache slice
selection in Intel processors,” IACR Cryptology ePrint
Archive, Report 2015/690, Jul 2015.

[24] R. E. Kessler and M. D. Hill, “Page placement algo-
rithms for large real-indexed caches,” Trans. Comp.
Syst., vol. 10, pp. 338–359, 1992.

[25] T. Kim, M. Peinado, and G. Mainar-Ruiz,
“STEALTHMEM: system-level protection against
cache-based side channel attacks in the cloud,”
in USENIX Security Symposium, Aug. 2012, pp.
189–204.

[26] J. Kong, O. Acıiçmez, J.-P. Seifert, and H. Zhou,
“Hardware-software integrated approaches to defend
against software cache-based side channel attacks,” in
IEEE Symposium on High Performance Computer Ar-
chitecture (HPCA), 2009.

[27] J. Liedtke, H. Härtig, and M. Hohmuth, “OS-controlled
cache predictability for real-time systems,” in IEEE
Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), Jun. 1997.

[28] F. Liu and R. B. Lee, “Random fill cache architecture,”
in IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Dec. 2014.

[29] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,” in
IEEE Symposium on Security and Privacy (S&P), May
2015, pp. 605–622.

[30] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen,
and A. Francillon, “Reverse engineering Intel last-level
cache complex addressing using performance coun-
ters,” in RAID, Kyoto, Japan, Nov 2015.

[31] Security Requirements for Cryptographic Modules,
NIST, Dec. 2002.

[32] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: the case of AES,” http://www.cs.
tau.ac.il/~tromer/papers/cache.pdf, Nov. 2005.

[33] D. Page, “Partitioned cache architecture as a side-
channel defence mechanism,” IACR Cryptology ePrint
Archive, p. 280, 2005.

[34] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: Exploring informa-
tion leakage in third-party compute clouds,” in ACM
conference on Computer and communications security
(CCS), Nov. 2009, pp. 199–212.

[35] T. H. Romer, W. H. Ohllrich, A. R. Karlin, and B. N.
Bershad, “Reducing TLB and memory overhead using
online superpage promotion,” in ACM/IEEE Interna-
tional Symposium on Computer Architecture (ISCA),
Jun. 1995, pp. 176–87.

[36] J. Shi, X. Song, H. Chen, and B. Zang, “Limit-
ing cache-based side-channel in multi-tenant cloud us-
ing dynamic page coloring,” in International Confer-
ence on Dependable Systems and Networks Workshops
(DSN-W), Jun. 2011, pp. 194–199.

[37] J. van de Pol, N. P. Smart, and Y. Yarom, “Just a little
bit more,” in RSA Conference Cryptographers’ Track
(CT-RSA), Apr. 2015, pp. 3–21.

[38] V. Varadarajan, T. Ristenpart, and M. Swift,
“Scheduler-based defenses against cross-VM side-
channels,” in USENIX Security Symposium, 2014.

[39] C. A. Waldspurger, “Memory resource management in
VMware ESX server,” in Usenix Symposium on Op-
erating System Design and Implementation (OSDI),
2002.

[40] Z. Wang and R. B. Lee, “New cache designs for
thwarting software cache-based side channel attacks,”
in ACM/IEEE International Symposium on Computer
Architecture (ISCA), Jun. 2007.

[41] ——, “A novel cache architecture with enhanced
performance and security,” in IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO),
Nov. 2008, pp. 83–93.

[42] Y. Yarom and K. Falkner, “FLUSH+RELOAD: a high
resolution, low noise, L3 cache side-channel attack,” in
USENIX Security Symposium, 2014, pp. 719–732.

[43] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser,
“Mapping the Intel last-level cache,” IACR Cryptology
ePrint Archive, Report 2015/905, Sep 2015.

[44] Y. Zhang and M. K. Reiter, “Düppel: Retrofitting com-
modity operating systems to mitigate cache side chan-
nels in the cloud,” in ACM Conference on Computer
and Communications Security (CCS), Nov. 2013, pp.
827–838.

[45] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter,
“Homealone: Co-residency detection in the cloud via
side-channel analysis,” in IEEE Symposium on Secu-
rity and Privacy (S&P), May 2011, pp. 313–328.

[46] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-VM side channels and their use to extract pri-
vate keys,” in ACM Conference on Computer and Com-
munications Security (CCS), Oct. 2012, pp. 305–316.

http://www.cs.tau.ac.il/~tromer/papers/cache.pdf
http://www.cs.tau.ac.il/~tromer/papers/cache.pdf

