
A Hardware-based Technique for Efficient Implicit
Information Flow Tracking

Jangseop Shin1, Hongce Zhang2, Jinyong Lee1, Ingoo Heo1, Yu-Yuan Chen2, Ruby Lee2, and Yunheung Paek1

1Department of Electrical and Computer Engineering, Seoul National University
{jsshin,jylee,igheo,ypaek}@sor.snu.ac.kr

2Department of Electrical Engineering, Princeton University
hongcez@princeton.edu, yctwo.princeton@gmail.com, rblee@princeton.edu

ABSTRACT
To access sensitive information, some recent advanced attacks
have been successful in exploiting implicit flows in a program in
which sensitive data affects the control path and in turn affects
other data. To track the sensitive data through implicit flows,
several software and hardware based approaches have been pro-
posed, but they suffer from the non-negligible performance over-
head. In this paper, we propose a hardware tracking engine for
implicit flow, called the implicit flow tracking unit (IFTU). By
adopting the tracking scheme for implicit flow and mapping it to
the specialized hardware, our solution can efficiently perform the
implicit flow tracking with reasonable area costs.

1. INTRODUCTION
In recent years, computer security has been severely threatened

by various malicious attacks that intend to leak sensitive infor-
mation [10]. The general goal of these attacks is to transfer the
critical data from sensitive sources (e.g., SIM card, password list)
to output channels like network connections so that the attackers
can acquire the sensitive information in the system. To achieve
the goal, the malicious program or the victim program being ex-
ploited by attackers first accesses the critical data and then copies
them from the source to the destination at each instruction exe-
cution. When they are finally delivered to the output channel, the
attacker can leak the sensitive information out of the system.

One of the most widely used solutions against this type of at-
tacks is Dynamic information flow tracking (DIFT) [10]. Gener-
ally, DIFT sets up rules to taint internal data of interest and keeps
track of their taintness throughout the system. At runtime, when-
ever an instruction is executed, the taintness of sources is propa-
gated to the destinations, to track the information flow associated
with the data transfers (data copying and transformations). An
alarm will be triggered as soon as any of the tainted data is in-
volved in potentially illegal activities, such as being included in
a data stream on the output channels. In several previous stud-
ies [3,4,10,11,19], it was demonstrated that DIFT is an effective
way to detect the attacks which attempt to leak the sensitive in-
formation with explicit data transfers.

However, there have been some advanced attacks that can by-
pass the explicit DIFT approaches by acquiring certain sensitive
information only through the execution control flow analysis of
a victim program without data transfers. In practice, when a data
value affects a conditional branch result, execution flow is altered
and it affects other data. Then the affecting value can often be in-
ferred merely by examining the values of the affected ones. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICCAD ’16 November 07-10, 2016, Austin, TX, USA
Copyright 2016 ACM 978-1-4503-4466-1/16/11 ...$15.00
DOI: http://dx.doi.org/10.1145/2966986.2966991.

this case, we can see that although there is no explicit data copy
or transfer, the affecting data value is in effect transferred to other
data values via the implicit flow along the execution control path.
In the previous studies [6, 7], they presented empirical evidence
that the attackers can leak the sensitive information by exploiting
the implicit flow. Thus, in order to deal with such advanced at-
tacks, a DIFT solution should track the taintness of the sensitive
data tags not only through the explicit information flow associ-
ated with data copy and transfer operations, but also through the
implicit flow associated with conditional branch operations.

For the tracking of implicit flow, several software solutions
have been proposed [6, 18]. In these works, they analyze the
program code and find the control flow that might be related to
the implicit information flow at runtime. Then, they augment the
original application with the additional code to keep track of the
implicit flow as well as the explicit flow. In spite of their effec-
tiveness, the main drawback of these solutions is that they incur
too much runtime overhead, since it takes up to 20 instructions to
emulate a single tag propagation operation per instruction.

To reduce the performance overhead for implicit flow tracking,
RIFLE [16] resorts to a hardware technique. Although they have
shown an impressive improvement on the overall DIFT compu-
tation, their experiment also reveals that they still suffer from the
non-negligible performance overhead for implicit flow tracking.
This is primarily because their hardware has been designed orig-
inally for the information tracking with explicit data transfers.
Therefore, to utilize their hardware for implicit flow tracking,
they had to convert the implicit flow problem to the equivalent
explicit one. For this reason, they instrumented their binary code
to transform all implicit information flow operations across con-
ditional branches into explicit data copy operations. According
to their experiments, the performance degrades by a factor of two
in the worst case, mainly due to the instrumented instructions.

Motivated by previous work, we have developed a dedicated
hardware unit to efficiently tackle the implicit flow tracking prob-
lem. In this paper, we introduce our hardware engine for implicit
flow tracking, called the implicit flow tracking unit (IFTU), and
the implicit flow tracking scheme designed to work on IFTU. We
have built IFTU as an external hardware module attached to the
host processor via the system interconnect. To evaluate its effec-
tiveness, we have implemented our solution on an FPGA board.
In our experiments, we show that our proposed approach with
IFTU successfully tracks the implicit information flow on the sys-
tem with negligible performance overhead, while the additional
logic required for the implicit flow tracking is also small.

2. RELATED WORK
There has been much prior work that focuses on explicit infor-

mation flow tracking [3,4,8,10,11,13,19]. Software approaches
in [10, 11] suggest the use of a binary instrumentation technique,
which mainly inserts additional instructions to the target code to
keep track of the tainted data at runtime. During the program
execution, the taintness of data is propagated according to the
data dependency, and any misuse of data (e.g. information leak)
is detected by their proposed solutions. Other works introduced

in [3,4,13] suggest the use of specialized hardware logic for DIFT
mainly to reduce the performance overhead caused by the DIFT
computation. In [3, 13], for instance, they augmented the host
processor internals directly, including register files and caches.
In [4, 8], they proposed a decoupled DIFT hardware that can be
attached to the outside the host. These previous approaches, im-
plemented either in software or hardware, show their effective-
ness in the tracking of explicit flows. However, a critical limi-
tation they have is that they do not consider the implicit flows,
which can result in the under-tainting problem where the values
that should be tainted are not tainted [6].

To resolve the under-tainting problem, several software solu-
tions for implicit flow tracking have been proposed. In [5], the
authors use dynamic analysis to keep track of the flow of sensi-
tive information processed by the web browser application. To
handle the implicit flows, their taint engine examines all condi-
tional branch instructions that are encountered during execution.
If such an instruction has at least one tainted operand, the taint
engine identifies all instructions whose execution is condition-
ally dependent on the direction of the branch and then it taints
the results of those instructions. In [6], another software solu-
tion, called DTA++, is proposed. To achieve efficiency in the
tracking, instead of examining all conditional branches, DTA++
focuses only on the implicit flows within certain code patterns
(i.e., the information-preserving transformations), based on the
observation that under-tainting usually occurs at just a few loca-
tions. With the proposed tracking strategy, DTA++ can achieve
effectiveness and efficiency in implicit flow tracking. Neverthe-
less, the main drawback of these software approaches is that they
still suffer from performance degradation mainly due to the addi-
tional code instrumented with the binary translation. For exam-
ple, although DTA++ only applies the tracking technique to cer-
tain cases, the performance overhead is around 1.5X even with
the parallel execution of the binary translation.

For this reason, several hardware techniques [15,16] have been
proposed to enhance the tracking performance. RIFLE [16] is
a hybrid approach that uses compiler-assisted binary rewriting
to change the program to turn implicit information flows due to
condition flags into explicit tag assignments. However, as dis-
cussed, the main problem of RIFLE is that it relies on the hard-
ware architecture designed for the explicit flow tracking and thus
requires code transformation to convert implicit flows to explicit
ones. Since too many additional instructions are added to the
original program binary to utilize the hardware, the efficiency
is severely degraded and the performance overhead reaches up
to 1.5X in the worst case (when the data cache of the system
is duplicated to store the tags). On the other hand, in our ap-
proach, we propose a hardware engine specialized for implicit
flow tracking and thus can overcome the limitation of RIFLE.
GLIFT [15] and Leases [14] are interesting hardware solutions
that track information flow at the gate level to build a system with
strong noninterference properties which can be used to eliminate
all forms of information leak, including those from timing and
storage channels. While this is a potentially promising approach,
all the hardware has to be re-designed from the gates up, requir-
ing unproven new hardware design methodologies and tools. On
the other hand, our IFTU can be connected to the commodity
processor with an external interface, not requiring the redesign
of the off-the-shelf processor architecture, since it is designed as
an external module.

3. OUR APPROACH FOR IMPLICIT FLOW
TRACKING

We now discuss our approach for efficient implicit flow track-
ing, inspired by [2] and improved. After briefly explaining the
tracking scheme implemented in our work, we will describe our
code analysis and transformation technique whose purpose is to
enable the scheme to work correctly in real programs.

3.1 Implicit Flow Tracking Scheme with Pro-
gram Counter Tag

The code snippet in Figure 1 shows a simple example of im-
plicit information flow in a program. In this example, the value of
x can be changed to either 0 or 1 according to the branch result
that is affected by the signedness of variable s. Clearly, there is a
flow of information between the two variables since the value of
s affects the value of x; however, it is not the result of direct data
transfers, but rather the result of the branch outcome affected by
setting the condition flag through the comparison.

x := 2
if s <= 0 then x := 0 else x := 1

Figure 1: An example code with implicit flow

To handle these implicit flows correctly, language-based static
techniques [12] use a tracking scheme that introduces the pro-
gram counter tag (denoted as tPC), which indicates whether the
control flow path is affected by tainted data or not. In this scheme,
for every conditional branch, the taintness of data that is used for
the condition checking is propagated to tPC . Then, for the in-
structions after the branch, the value of tPC is propagated to the
tags of their destinations to indicate that the values are affected
by the branch result. Now, assume that the example described in
Figure 1 is tracked with this scheme. In this example, the vari-
able s is used for the condition checking of the branch. Thus,
if the variable s contains the sensitive information and its tag is
tainted, tPC is also set to 1, to indicate that the branch result is
affected by the sensitive information. Then, by propagating the
value of tPC to the tag for variable x when it is set, the implicit
flow along the branch can be tracked.

In our approach, to handle the implicit flow as well as the ex-
plicit ones, we combine the tracking scheme introduced above
with the conventional DIFT technique that tracks the data flow [10].
To denote tagging, every location for storing data such as regis-
ters and memory is augmented with a tag bit. Then, the tags are
propagated during the program execution, based on a set of tag
propagation rules that are specified for each basic operation type
such as arithmetic, logical, or conditional branch.

Figure 2 shows an example code at the assembly level and the
associated tag propagation operations. Basically, the tag prop-
agation rules applied in our approach are based on the data de-
pendency, as in the previous works [10, 11]. For example, when
the ldr instruction at line 1 is executed, the tags of sources (%i0
register and the memory location pointed by the register value)
are propagated to the tag for register %g2. In addition to the ba-
sic rules, we add new rules to track the implicit flow along the
control path. In principle, a conditional branch has its condition
code, such as equal, not equal or less than. When
the branch is executed, the processor checks the condition code
register (CCR) which generally consists of several condition bits
(e.g., N,Z,V,C in SPARC machines), and determines the control
path based on the value of CCR. That is, the result of a condi-
tional branch is affected by the value of CCR. In practice, CCR is
configured by an arithmetic instruction like sub, or a specialized
comparison instruction like cmp, as in the code at line 3. For this
reason, in our solution, when CCR is set by these instructions,
the tags of their sources are propagated to tCCR, which is the tag
for CCR (see the right column of line 3). Then, when a condi-
tional branch is executed later, the value of tCCR is propagated
to tPC (see line 4). (If an unconditional branch is executed, such
tag propagation is not performed since the branch is not affected
by CCR (see line 6).) Thus, tPC can indicate whether the control
path is affected by tainted data or not. Since the value of tPC is
propagated to the destination tags (marked in boldface at the right
column) at each ordinary instruction execution, we can track the
implicit flow along the control dependency.

In spite of its effectiveness, there is a challenge in correctly

Original Code Tag Propagation
1
2
3
4
5
6
7
8

L1:
L2:

ldr [%i0], %g2
sub %g2, %g3, %g1
cmp %g1, #0
be L1 // branch equal
mov #2, %g2
b L2 // unconditional branch
mov ‘1’, %g2
add %g5, %g2, %g3

tag[%g2] = tag[%i0] or tag[mem[%i0]] or tpc
tag[%g1] = tag[%g2] or tag[%g3] or tpc
tag[%ccr] = tag[%g1] or tpc
tag[%pc] = tccr or tpc
tag[%g2] = tpc
none
tag[%g2] = tpc
tag[%g3] = tag[%g5] or tag[%g2] or tpc

Figure 2: Example of tag propagation rules

tracking implicit flow with the propagation rules introduced above.
In principle, the taintness of tPC set for a conditional branch
should be propagated only to the instructions whose execution is
conditionally dependent on the result of the branch according to
the definition of implicit flow. Otherwise, the taintness of tPC

would be propagated to the tag for the data that is not affected by
the branch or the tag that should be tainted would not be tainted.
Thus, it is necessary to analyze the code in order to determine the
exact scope of every conditional branch, which is a set of instruc-
tions that are affected by the branch result. In section 3.2, we
will discuss a code analysis technique to identify the scopes of
conditional branches and the management scheme for correctly
clearing tPC based on the analysis.

x := 2
if s <= 0 then x := 0

Figure 3: An example code with implicit flow through the
untaken path

Also, from the tag propagation rules in Figure 2, once tPC is
tainted, all the instructions executed after that will be affected,
because their execution is decided by a tagged condition. How-
ever, information flow can also exist between the condition of a
branch and the instructions that are not executed. For example,
in Figure 3, if the condition for the if statement is true,then x
will be tainted according to the propagation rules. However, if
the condition is false, x will not be tainted even though the value
of x can leak the information about the branch condition. This
example shows that only propagating tags according to the ex-
ecuted instructions is not enough, and there is the necessity for
tag compensation of the untaken path. In section 3.3, we will
describe our tag compensation scheme.

3.2 tPC Management Technique

…
if …

…
if …

…

clear
…

clear
…

…
push
if …

…
push
if …

…

pop
…

pop
…

…
if …

…
if …

…

…

…

Figure 4: tPC setting and clearing example

In principle, the result of a conditional branch determines the
control path which in turn determines the instructions executed
by the processor. For example, in the control flow graph (CFG)
shown in Figure 4(a), the execution of block (2) is determined de-
pending on the result of the conditional branch in block (1). How-
ever, at a certain point in a program, the control path is no longer

affected by the conditional branch. In general, the influence of
a conditional branch ends at the immediate post-dominator of
the branch. In our example, block (5) is the immediate post-
dominator of block (1) because all paths from block (1) to the
exit must pass block (5). Thus, the value of tPC set at a condi-
tional branch should be cleared upon the entrance of the immedi-
ate post-dominator (5) of the branch in (1) (Figure 4(b)).

However, this scheme does not work if the code has multiply-
nested branches. For instance, we have a doubly-nested branch
in block (2). According to the above scheme, tPC set in block (1)
would be cleared in block (4) although it should have remained
set until block (5). In order to remedy this, we maintain a new
tPC stack that is used to save and restore the value of tPC at each
nested branch level. Basically, we save the current tPC value by
pushing it onto the stack just before a conditional branch, and
later when we need to clear tPC , we simply overwrite the current
value in tPC with the value popped from the stack (Figure 4(c)).

Algorithm 1: Algorithm for inserting push/pop and compen-
sation code

Input : Control flow graph of a function
Output: Control flow graph with push/pop operations and

compensation tag set operations inserted for correct
implicit flow tracking

1 foreach loop l do
2 Insert push at the end of the preheader of l;
3 Insert pop at the start of the (common) immediate

post-dominator of exiting block(s) of l;

4 end
5 foreach conditional branch block t do
6 Find t’s immediate post-dominator block p;
7 if t is inside a loop and p is outside then continue;
8 if t is inside a loop and p does not dominate blocks with

loop back edge then continue;
9 Insert push before conditional branch in t;

10 Insert pop at the beginning of p;
11 R = set of basic blocks that is reachable from t before

reaching p;
12 foreach block b in R ∪ {p} do
13 foreach predecessor block pred of b do
14 if pred is not in R ∪ {t, p} then
15 Insert push between pred and b;
16 end
17 end
18 end
19 foreach live-in register r of p do
20 D = set of basic blocks in R that defines r;
21 RD = set of basic blocks in R that are reachable

from basic blocks in D before reaching p ∪ {p};
22 G = set of basic blocks in R that are guaranteed to

pass at least one basic block in D before reaching p;
23 foreach edge e connecting a block in R - RD - G

with a block in RD - G do
24 Insert tag compensation for r;
25 end
26 end
27 end

In Algorithm 1, we illustrate our algorithm that finds and marks
the places in the code where such push/pop operations should be
performed. Basically, as explained above, a push operation is
inserted before a conditional branch and a pop operation is in-
serted at the immediate post-dominator of a conditional branch
(see lines 9-10). However, real application codes have some ex-
ceptional cases that need a more complex algorithm such as ours.

In Figure 5(a), we can see one of these exceptional cases that
should be handled in our algorithm. In the figure, push/pop oper-

push
if …

push push
if …

…

push
if …

push
if …

…

pop
pop

pop
pop

Figure 5: Solving push/pop imbalance

ations are marked according to the naive algorithm. Now suppose
that the control flow takes the path (1)-(3)-(4) at runtime. If so,
a push operation will be performed at block (1) and two pop op-
erations will be processed at block (4). This obviously causes an
error in the stack management because more entries are popped
from the stack than are pushed onto the stack. In general, this
problem arises when there is a path that reaches a pop operation
inserted for some other conditional branch without passing that
conditional branch.

To avoid this problem, for a conditional branch block t and
its immediate post-dominator p, we first define a set R consist-
ing of the basic blocks that are reachable from t before reaching
p. Then, among the paths that reach p, let P be a path (p1)-...-
(pr−1)-(pr)-...-(p) that does not pass t, where pr is the first basic
block in the path that is in R. Then, we insert a new basic block
that contains a dummy push operation, between pr−1 and pr .
(For the example in Figure 5(a), such a new block is inserted be-
tween blocks (1) and (3) as shown in Figure 5(b).) In this way,
we can make sure that the number of push and pop operations are
equal along any path. This process corresponds to lines 12-18 of
Algorithm 1.

if …

…

push
if …

push
if …

pop
if …

…
pop
… …

Figure 6: Incorrect push/pop insertion for a loop

When the host code includes a loop (e.g., (1), (2), and (3) in
Fig 6), we must handle a few other exceptional cases. If the im-
mediate post-dominator of a conditional branch block is out of
the loop, the push operation marked before the conditional branch
is repeatedly executed while the corresponding pop operation is
not performed during the loop iteration. In Figure 6(a), the im-
mediate post dominator of the conditional branch block (3) is
out of the loop, so the push operation may be performed many
times while the pop operation will only be executed once in (4).
Also, even if the immediate post dominator is in the loop, there
can be push/pop imbalances if the block(s) with the backward
edge of the loop is not dominated by the immediate post domina-
tor. For example, in Figure 6(b), the immediate post dominator
of the conditional branch block (1) is block (2). However, there
is a path from block (1) that leads to the block with the loop
back-edge (block (3)) without crossing block (2). Therefore, the
push operation may be performed more than the corresponding

pop operation. To handle these exceptional cases, we insert a
push operation in the preheader for the loop so that the push is
performed only once upon the entrance of the loop, and insert
a pop operation in the (common) immediate post dominator of
the loop-exiting block(s) of the loop. We rely on this push-pop
pair to handle all the conditional branch blocks that correspond
to the above exceptional case. Note that push operations do not
affect the tPC value so moving the push operation in front of the
loop does not change the correctness of the result. This process
is described at lines 1-4 and 7-8 in Algorithm 1.

3.3 Compensation for the Untaken Path
To compensate for the untaken path, we analyze the code to

find out which register tag needs to be set in which location.
There can also be implicit flow through the memory location, but
our implementation does not compensate for the memory loca-
tions since memory addresses could be determined in the runtime
which means that we will have to actually execute the path to de-
termine which memory tag to apply compensation. This could
possibly introduce false negatives, but the chances are relatively
low since it will also be hard for the attacker to reason about the
implicit flow through the memory locations.

Among the registers, we only need to consider the ones that
are live-in to the immediate post dominator of the conditional
branch block. Registers that are not live at the entry point of the
post dominator are not used after the immediate post dominator
and cannot be used for the propagation of data. The register tag
for the live-in register is set at runtime if there is at least one
instruction defining the register on the execution path between
the conditional branch and its immediate post dominator. Thus,
an implicit flow through an untaken branch will occur if there is
an instruction defining the register through some execution path
but not all execution paths.

D D

Figure 7: Example CFG for tag compensation

Based on this idea, we find the minimum number of program
points where the tag compensation is needed for each register.
We first define three sets of basic blocks as described in lines 20-
22 in Algorithm 1. In Figure 7, we show these sets of basic blocks
where block (1) is the conditional branch block currently con-
cerned with. Blocks which define the register are marked with D.
Lightly shaded blocks are the blocks which pass at least one basic
block which defines the register. Darker blocks are the ones that
are reachable from blocks defining the register. After determining
these sets of blocks, we start from the conditional branch block
(block (1)) and traverse the CFG in depth-first manner. If we en-
counter a lightly shaded block, we do not need to set the register
tag since there will be at least one register definition along that
path. If we encounter a dark shaded block, we put the register
tag set operation on the edge between the current block (block
(1)) and the dark block (block (5)). In this way, we can make
sure that the register tag is set for all execution path between the
conditional branch block and its immediate post dominator. The
entire process corresponds to lines 19-26 in Algorithm 1.

We implemented the code analysis and transformation tech-

nique described in Algorithm 1 on the LLVM compiler frame-
work. Our transformation tool inserts the pop and push opera-
tions in the host code, which are implemented as special instruc-
tions whose encodings are not used by the ISA of the host pro-
cessor architecture. Thus, at runtime, the host processor regards
such marked operations as nop operation. Our IFTU processes
these operations to manage the tPC stack. For the register tag
compensation, we used a dummy add instruction that adds 0 to
the target register and sets the register to that value. It does not
change the semantic meaning of the original program, but it can
set the register tag if the PC tag is set at that time.

4. ARCHITECTURE DESIGN OF IFTU
In this section, we will discuss the hardware architecture of

our solution. After introducing an architectural overview of our
solution, we will discuss the detailed structure of IFTU.

4.1 Overall System
Figure 8 shows the overall system design for our solution,

which mainly consists of the host processor and IFTU. In our im-
plementation, as introduced in Section 1, we design our IFTU as
an external hardware module and integrate it with the host pro-
cessor through the system bus, instead of embedding the dedi-
cated hardware logic internally in the host processor [2]. The
main advantage achievable from this design strategy is that our
proposed solution can be easily adopted by existing commercial
platforms such as application processor (AP) SoC platforms for
smartphones. Generally in these platforms, the host processors
are typically the commodity processors that are quite difficult to
modify the internals without tremendous cost and labor from the
vendors. Thus, our solution would be adoptable in these plat-
forms as it does not require such modification.

Implicit Flow Tracking Unit

C
D

I
Filter

Trace
FIFO

Tag
Computing

Core

Internal Bus

Host Processor

CPU Core

C
D

I

System Bus

CDI
Signals

Memory

Peripherals

Interrupt

Host Code

Figure 8: Overall system design

However, such design strategy raises a challenge. As discussed
in Section 3, in order to track the information flow of a program,
the taintness of tags should be propagated during the program
execution according to the propagation rules. Since the rules are
dependent on the instruction type and operands, it is necessary
for IFTU to know about the instructions executed by the host.
For this reason, our IFTU reads the host program code in main
memory and extracts the propagation rules as shown in Figure 8.
Nevertheless, the problem is that, from only the host code, IFTU
cannot obtain some essential information required for the correct
flow tracking, which is only resolved during code execution. In
particular, such information includes (1) an execution path of the
original program and (2) memory addresses of load/store instruc-
tions. Without this information, our IFTU cannot perform the tag
operations correctly, while following the execution of the host
program.

To resolve the problem, in our solution, we utilize the core
debug interface (CDI) in the host processor, as was done in the
hardware-based solution introduced in [8]. CDI is an interface
placed in recent commodity processors, whose main role is to
provide the external debug modules with the processor’s inter-
nal status information required for debug/trace, without affect-

ing the performance of the host. Based on the specification of
CDI in commercial processors and the prior works that utilize
CDI [1, 8, 9, 17], in our prototype, we assume that CDI provides
a set of signals as follows: instruction address, current context
ID (or process ID), data address/value of memory access instruc-
tions, branch type/source address/target address, exception and
privilege mode information. Since the set of signals includes the
necessary runtime information for flow tracking, our IFTU can
follow the execution of the host and perform the tag operations
correctly.

As shown in Figure 8, IFTU consists of three components:
the CDI filter, the trace FIFO and the tag computing core (TCC).
Although the CDI in the host processor provides plenty of sig-
nals, our IFTU needs only a subset of those signals. The role of
the CDI filter is to filter out unnecessary signals and leave the
ones that are necessary for the tracking: the current process ID
(PID), the address of memory data accessed by a load/store and
the target address of a branch. (The current PID is necessary to
recognize the active process running on the host. If the moni-
tored program goes into sleep mode, the main controller informs
the trace FIFO to ignore the traces from the CDI filter.) IFTU
consumes the traces containing such information to obtain nec-
essary information and store them in the trace FIFO in order at
runtime.

4.2 Tag Computing Core

Implicit Flow
Tracking Unit

Tag Computing Core

C
D

I
Filter

Trace
FIFO

CDI
Signals

Main
Controller

Interrupt

Tag
Fetcher Unit

Tag A
LU

Internal Bus

System Bus

A
ddress

Lookup
Table

tpc Stack

I-Cache T-Cache

Instruction
Fetch Unit

Instruction Decoder

Tag Register File

Figure 9: Tag computing core architecture design

Figure 9 shows the microarchitecture of TCC, whose main role
is to manage all tags and perform the tag operations. The overall
operation of IFTU is controlled by the main controller in TCC.
It contains several configuration registers and the host processor
can control the functions of IFTU by setting the registers, such
as the tag initialization that marks the location of tainted data. To
track the flow of information, we augment the tags to the pro-
cessor registers and memory locations, as in other previous ap-
proaches [10, 13]. The tags for registers are stored to a special
register file in TCC called the tag register file (TRF). Each entry
of TRF represents the 1-bit tag for the corresponding processor
register. We also add two register tags tPC and tCCR to the ba-
sic structure of TRF, which are used only for the implicit flow
tracking. For the memory tags, we reserve a special region called
the tag space in the main memory. Each bit of the tag space
represents the tag for a memory word (32-bit). The T-cache is
employed in our TCC design to reduce the access latency of tag
fetching.

The branch target addresses transferred from CDI are con-
sumed by TCC in order to follow the execution path of the host
program. However, since the addresses stored in the trace FIFO
are virtual addresses, they cannot be used directly for fetching
the host code from main memory. To resolve this problem, TCC
includes the address lookup table (ALT) where an entry of ALT
is comprised of the process ID and the virtual-to-physical address

mapping information [8]. At runtime, the host OS kernel updates
the entries whenever a code page is allocated on the host, and by
using the information the instruction fetcher unit reads the host
code from the memory with the translated physical addresses. To
reduce the access latency required for the instruction fetch, we
employ the I-cache in TCC as done in previous work [8].

After the host code is fetched, it is delivered to the instruction
decoder which extracts the propagation rules from the opcode
and operands of the instruction. TCC accesses TRF to fetch the
tag values if the rule requires register tags. If the operand is the
memory address for a load/store, TCC firstly accesses the trace
FIFO to acquire the exact address. (Since all load/store instruc-
tions generate the CDI signals for the access addresses and the
trace containing such information is stored in the trace FIFO in
order, it is guaranteed that TCC can obtain the address for the
memory instruction.) Then, TCC loads the memory tag corre-
sponding to the address from the T-cache. If a miss occurs, the
tag fetcher unit accesses the tag space to handle the miss. Finally,
once all the tags are prepared, the tag ALU performs the tag prop-
agation with the tags and the resulting values are written to TRF
or the T-cache.

To support the management scheme for tPC introduced in Sec-
tion 3, TCC includes the hardware for the tPC stack as shown
in Figure 9. As discussed, in the instrumented host code, the
push/pop operations for the tPC stack are included. When the
instruction decoder encounters such operations, TCC takes the
corresponding actions: for push operations, TCC reads the value
of tPC from TRF and pushes it to the stack. For pop operations,
the top entry of the stack is popped and overwrites the tPC . As
our current hardware stack implementation has 32 entries, the
stack will overflow if the nested level of branches exceeds 32. To
cope with this case, we reserve a memory region for the entries
to be stored to if the stack is full. Then the tag value for PC is
saved or restored from the memory region.

5. PERFORMANCE AND AREA ANALY-
SIS

To evaluate our approach, we have built a full-system proto-
type on an FPGA board. In this prototype, we used SPARC V8
processor as the host processor which has separate 4KB instruc-
tion/data caches. The AMBA2 AHB compliant bus is used to
interconnect the host processor with our IFTU and Linux 2.6 is
used as the host OS kernel. IFTU is implemented as described
in Section 4 and it includes 4KB I-cache/512B T-cache. Based
on the parameters, we synthesized our prototype on to a Xilinx
Virtex5 FPGA board. Table 1 presents the design statistics of our
implemented hardware. Our experiment shows that our IFTU
incurs a hardware resource overhead of 28.18% for LUTs, and
the memory requirement is increased by about 4.5 KB (mainly
due to the caches) when compared to the baseline system that in-
cludes the host core. It is noteworthy that the amount of logic
required to perform the implicit flow tracking is very small. In
our approach, the two tag registers (i.e., tPC , tCCR) and the tPC

stack are the components installed for the implicit flow tracking.
In our experiment, the hardware resources for these components
are estimated to be about only 5.7% of the overall IFTU. This
clearly shows that our approach can be implemented with a small
amount of additional logic on top of the DIFT hardware for the
explicit flow tracking.

To measure the performance overhead of our approach, we
chose eight applications from the mibench benchmark suite and
executed them on three systems each with different configura-
tions. The first configuration is Native, which stands for a sys-
tem that performs the original application without information
flow tracking. In the Explicit configuration, our IFTU performs
only the explicit flow tracking and therefore the host code is not
instrumented. Finally, in Explicit+Implicit, IFTU performs the
tracking scheme proposed in this paper.

Category Component LUTs
Host Processor Core 4876
Bus components and Memory Controller 844
Peripherals (TIMER, UART, Interrupt Controller and etc.) 963
Total Baseline System 6683
Components for CDI (CDI Filter, Trace FIFO, Address Lookup Table) 826
Main Controller and Bus Interface 330
Instruction Cache 293
Tag Cache 180
Instruction/Tag Fetcher Unit 97
Instruction Decoder 35
Tag ALU 109
tpc Stack 13
Total IFTU 1883
% IFTU over Baseline System 28.18%

Baseline
System

IFTU

Table 1: Synthesis Result

0.8

0.85

0.9

0.95

1

1.05

1.1

bitcnts qsort dijkstra patricia stringsearch blowfish rijndael sha average

Native Explicit Explicit+Implicit

Figure 10: Performance Comparison

Figure 10 shows the execution times for the three configura-
tions normalized to that of Native. The results show that the Ex-
plicit incurs about 1.6% performance overhead although the host
code is not instrumented in this configuration. The performance
loss is mainly due to the resource competition between the host
processor and our IFTU. Since both modules are connected to
the same system bus and share the same main memory, the bus
transactions of IFTU for accessing the main memory slightly de-
grades the host performance. Explicit+Implicit, which stands
for our proposed approach, shows an average performance over-
head of about 3%. This shows that the overhead caused by our
code instrumentation is negligible. Overall, the performance of
our approach is much greater than that of the previous hardware
approach, RIFLE [16].

We also measured the code size increase due to the code instru-
mentation. For the given benchmarks, the code size is increased
by 0.3% on average. This shows that the code size overhead of
our approach is also negligible.

6. SECURITY ANALYSIS
To evaluate the accuracy of our taint propagation methods, we

used a program that has explicit and implicit information flow.
We chose a π computing program that calculates the digits of π
and uses the sprintf library function to put the ASCII repre-
sentation of π in the specified buffer. While not strictly a security-
related program, we found it adequate for evaluating our implicit
flow tracking methods. The program is shown in Listing 1. The
program calculates the 1002 digits of π, refining the value at each
iteration. The final value will be transformed into the ASCII
form by the sprintf call. To transform the sprintf library
function to track implicit flow, we have copied the correspond-
ing functions from dietlibc. We have slightly modified the core
of the sprintf function so that it involves implicit flow when
translating decimal digits to the ASCII form.

long a[337],p,q,k=4000,t=1000;
char buffer[5000];
int j,n=0;
for(;a[j=q=0]+=2,--k;)
for(p=1+2*k; j<337;

q=a[j]*k+q%p*t,a[j++]=q/p)
k!=j>2?:(n+=sprintf(&buffer[n],

"%.3d",a[j-2]%t+q/p/t));
Listing 1: π computing program

In the program, if the memory location for the array a is tagged
at the start, the correct explicit and implicit information flow
tracking scheme should tag the part of the buffer array where
the ASCII characters are written. We ran our information track-
ing hardware after tagging array a, and examined the tagged
memory locations after the program is finished. A total of 593
words were tagged, of which 337 were for array a and 250 for
buffer. 6 other locations were additionally tagged. We have
analyzed the execution trace to find out why those 6 locations
were tagged and why there is one missing tag for the buffer
array. Since there are 1002 digits of π, 251 words should have
been tagged in the buffer array. We found out that all 6 addi-
tionally tagged locations are for temporary data in the stack frame
that is destroyed when the sprintf function is returned. Those
temporary data contained the π digit, its ASCII representation, or
the length of the character written for the π digit. Thus, we do not
need to regard them as false positives. For the buffer array, we
found that the tag corresponding to the last word of the character
string has been reset at the end because the sprintf function
has put a null value at the end of the character string. Since there
is a 1-bit tag for each 4-byte word, the tag corresponding to the
last word was reset even though there were two tainted bytes.

The analysis of the results shows that our implicit informa-
tion flow tracking scheme effectively catches the implicit infor-
mation flow without significant false positive rates. Although the
sprintf function is quite complicated, our tPC stack mainte-
nance technique clears the tPC at the right time so that the tainted
tags do not spread throughout memory locations. Although there
can also be false positives and false negatives introduced by the
granularity of the memory tag, we can expect its impact to be
small since character data is usually grouped together.

7. CONCLUSIONS
This paper presented IFTU, our external hardware engine for

implicit (and explicit) flow tracking. To keep track of the im-
plicit flows in a program, we employed a tracking scheme which
utilizes a tPC register and stack together with the code analysis
and instrumentation technique that help us correctly manage the
value of tPC . To perform this task efficiently, we have installed
within IFTU hardware logic specialized for the task, such as the
tPC stack. We have connected IFTU with the host processor via
CDI to acquire the runtime information necessary for tracking,
while minimizing the host performance degradation. Our experi-
ments on an FPGA prototype showed that our IFTU can perform
both the explicit and implicit flow tracking with only about 3%
performance loss. In addition, the synthesis result revealed that
the hardware resources required for efficient implicit flow track-
ing are only about 5.7% of the overall resources for IFTU.

8. ACKNOWLEDGMENTS
This work was supported in part by NSF/SRC STARSS 1526493,

Institute for Information & communications Technology Promo-
tion (IITP) grant funded by the Korea government (MSIP) (No.
R0190-16-2010, Development on the SW/HW modules of Pro-
cessor Monitor for System Intrusion Detection), the National Re-
search Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2014R1A2A1A10051792), the Brain
Korea 21 Plus Project in 2016, and MSIP, Korea, under the ITRC
(Information Technology Research Center) support program (IITP-
2016-R0992-16-1006) supervised by the IITP, and IITP grant
funded by the Korea government (MSIP) (No. R-20160222-002755,
Cloud based Security Intelligence Technology Development for
the Customized Security Service Provisioning).

9. REFERENCES
[1] ARM. Embedded Trace Macrocell Architecture

Specification, 2011.

[2] Y.-Y. Chen. Architecture for data-centric security. PhD
thesis, Citeseer, 2012.

[3] Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee. A
software-hardware architecture for self-protecting data. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 14–27. ACM, 2012.

[4] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a
flexible information flow architecture for software security.
In ACM SIGARCH Computer Architecture News,
volume 35, pages 482–493. ACM, 2007.

[5] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. X. Song.
Dynamic spyware analysis. In USENIX annual technical
conference, pages 233–246, 2007.

[6] M. G. Kang, S. McCamant, P. Poosankam, and D. Song.
Dta++: Dynamic taint analysis with targeted control-flow
propagation. In NDSS, 2011.

[7] R. B. P. Laskov. Detection of intrusions and malware &
vulnerability assessment. 2006.

[8] J. Lee, I. Heo, Y. Lee, and Y. Paek. Efficient dynamic
information flow tracking on a processor with core debug
interface. In Proceedings of the 52nd Annual Design
Automation Conference, page 79. ACM, 2015.

[9] J. Lee, Y. Lee, H. Moon, I. Heo, and Y. Paek. Extrax:
Security extention to extract cache resident information for
snoop-based external monitors. In Design Automation and
Test in Europe Conference and Exhibition (DATE), 2015.

[10] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. 2005.

[11] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu.
Lift: A low-overhead practical information flow tracking
system for detecting security attacks. In Microarchitecture,
2006. MICRO-39. 39th Annual IEEE/ACM International
Symposium on, pages 135–148. IEEE, 2006.

[12] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. Selected Areas in
Communications, IEEE Journal on, 21(1):5–19, 2003.

[13] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking.
In ACM SIGOPS Operating Systems Review, volume 38,
pages 85–96. ACM, 2004.

[14] M. Tiwari, X. Li, H. M. Wassel, F. T. Chong, and
T. Sherwood. Execution leases: A hardware-supported
mechanism for enforcing strong non-interference. In
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 493–504. ACM,
2009.

[15] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T.
Chong, and T. Sherwood. Complete information flow
tracking from the gates up. In ACM Sigplan Notices,
volume 44, pages 109–120. ACM, 2009.

[16] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and
D. I. August. Rifle: An architectural framework for
user-centric information-flow security. In
Microarchitecture, 2004. MICRO-37 2004. 37th
International Symposium on, pages 243–254. IEEE, 2004.

[17] I. Xilinx. Microblaze processor reference guide v13. 4.
reference manual, 2011.

[18] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. In Proceedings of the 14th
ACM conference on Computer and communications
security, pages 116–127. ACM, 2007.

[19] Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall.
Privacy Scope: A precise information flow tracking system
for finding application leaks. PhD thesis, University of
California, Berkeley, 2009.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

