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ABSTRACT
New security architectures are difficult to prototype and test
at the design stage. Fine-grained monitoring of the interac-
tions between hardware, the operating system and applica-
tions is required. We have designed and prototyped a testing
framework, using virtualization, that can emulate the behav-
ior of new hardware mechanisms in the virtual CPU and can
perform a wide range of hardware and software attacks on
the system under test.

Our testing framework provides APIs for monitoring hard-
ware and software events in the system under test, launching
attacks, and observing their effects. We demonstrate its use
by testing the security properties of the Secret Protection
(SP) architecture using a suite of attacks. We show two
important lessons learned from the testing of the SP ar-
chitecture that affect the design and implementation of the
architecture. Our framework enables extensive testing of
hardware-software security architectures, in a realistic and
flexible environment, with good performance provided by
virtualization.

1. INTRODUCTION
Designers of security architectures face the challenge of

testing new designs to validate the required security proper-
ties. To provide strong guarantees of protection, it is often
necessary and desirable to place low-level security mecha-
nisms in the hardware or the operating system kernel, which
the higher-level software layers can rely upon for a wide-
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range of applications. The resulting architecture is a com-
bination of hardware, kernel, and application software com-
ponents which are difficult to test together. The security
of the system as a whole relies on the combination of the
correct design and implementation of the low-level security
features, the correct and secure use of those features by the
software layers, and the security of the software components
themselves. Therefore, we need a framework that can com-
prehensively model the architecture and study the interac-
tions between hardware and software components, running
a realistic software stack with a full OS and applications,
during normal operation and under attack.

We propose a testing framework that can emulate the
hardware components of a security architecture and can pro-
vide a controlled environment with a full software stack,
with which coordinated security attacks can be performed
and observed. We have designed our testing framework with
the initial goal of verifying the SP (Secret Protection) archi-
tecture [13, 24], while being generalizable to other security
architectures. SP places roots of trust in the hardware which
are used to protect security-critical software at the applica-
tion layer, skipping over the operating system layer in the
trust chain. The threat model includes attacks on software
components as well as physical attacks, with only the pro-
cessor chip itself trusted. The operating system remains
untrusted and essentially unmodified. The ”layer-skipping”
feature of SP’s minimalist trust chain is in contrast to tra-
ditional hierarchical trust chains, and testing with a com-
modity OS is necessary to verify that security-critical appli-
cations can be built on this type of architecture.

The testing environment — including the hardware imple-
mentation, software stack, threat models, and attack mecha-
nisms — must be as realistic as possible. As far as we know,
no existing testing methods provide a fast and convenient
way to test both hardware and software security mechanisms
simultaneously, running an unmodified commodity OS with
a full microprocessor and hardware system, with full observ-
ability and controllability of coordinated hardware, software
and network attacks.

Furthermore, our framework allows testing to be done dur-
ing the design time; this gives confidence in the architecture
before the complete system is built, at which point it is costly
to make fundamental changes in response to security flaws.
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For example, we show two important lessons learned while
testing the implementation of the SP architecture. Although
this paper focuses on testing integrated hardware-software
security architectures like SP, it is also useful for debugging
and testing software-only architectures.

The primary contributions of this work are:

• a new flexible framework for design-time testing of the
security properties of hardware-software architectures;

• enabling testing with a realistic software stack, using
commodity operating systems, and different applica-
tions using the new security mechanisms;

• a flexible, fast, and low-cost method for emulating
hardware security features, using virtualization, for
the purpose of design validation — without costly and
time-consuming fabrication of hardware prototypes;

• an improved architecture for SP’s secure memory mech-
anism and its implementation; and

• the application of our framework toward the valida-
tion of the security properties of the SP architecture,
by providing a suite of attacks on SP’s security mech-
anisms, as well as general attacks on the system.

2. THREAT MODEL AND ASSUMPTIONS
We focus on hardware-software architectures where new

hardware security mechanisms are added to a general-purpose
computing platform to protect security-critical software and
its critical data. The hardware in the architecture provides
strong non-circumventable security protection, and the soft-
ware provides flexibility to implement different security poli-
cies for specific applications and usage scenarios.

We assume a system with security-critical software appli-
cations running on a platform with new hardware security
mechanisms added to the CPU (e.g., new instructions, reg-
isters, exceptions, and crypto engines). Sometimes the OS
cannot be trusted, especially if it is a large monolithic OS
like Windows or Linux. Other times, an architecture might
trust parts of the operating system kernel (e.g., a microker-
nel [1]), but not the entire OS.

We consider three classes of attacks in our testing frame-
work. First, malware or exploitable software vulnerabilities
that can allow adversaries to take full control of the oper-
ating system to perform software attacks. They can access
and modify all OS-level abstractions such as processes, vir-
tual memory translations, file systems, system calls, kernel
data structures, interrupt behavior and I/O.

Second, hardware attacks, which can be performed by ad-
versaries with physical possession of a device, such as di-
rectly accessing data on the hard disk, probing physical
memory, and intercepting data on the display and I/O buses.
We can also model some software attacks as having the same
impact as these physical attacks.

Third, network attacks that can be performed with either
software or hardware access to the device, or with access to
the network itself. Some network attack mechanisms act like
software attacks (e.g., remote exploits on software), while
others attack the network itself (e.g., eavesdropping attacks)
or application-specific network protocols (e.g., modification
attacks and man-in-the-middle attacks).

In order to adequately test a new security architecture, all
of these attack mechanisms must be considered and tested,
according to the threat model of the particular system. Our
testing framework provides hooks into each relevant system

component, and allows information and events at each level
to be correlated to emulate the most knowledgeable attacker.

Overall, we consider the functional correctness of the new
hardware security mechanisms and the security-critical soft-
ware components, as well as the interaction between these
hardware and software components. We do not consider
timing or other side-channel attacks.

Buggy or malicious hardware is considered an orthogonal
problem within the manufacturing process – and not part of
our threat model. However, to the extent that the emulated
system corresponds functionally to the real microarchitec-
ture, our framework can be used to generate data for test
cases to run against manufactured devices, or to provide
inputs to other verification schemes.

3. TESTING FRAMEWORK
We first describe the overall architecture of our testing

framework, followed by the technical details of the frame-
work components. We then show the range of attacks and
events we can model, and finally present our prototype im-
plementation.

3.1 Architecture
We build our testing framework on top of existing vir-

tualization technology, which allows us to run a full set of
commodity software efficiently. A virtual machine moni-
tor (VMM) is the software that creates and isolates Virtual
Machines (VMs), efficiently providing an execution environ-
ment in each VM which is almost identical to the original
machine [33, 35]. By modifying an existing VMM’s hard-
ware virtualization, we can augment the virtual machine to
have the additional hardware features of a new security ar-
chitecture. Using virtualization allows the unmodified hard-
ware and software components to run at near-native speed,
while permitting our framework to intercept events and sys-
tem state as needed.

Our Testing Framework is divided into two systems, as
shown in Figure 1: the System Under Test (SUT) and the
Testing System (TS), each running as a virtual machine on
our modified VMM. The SUT is meant to behave as closely
as possible to a real system which has the new security ar-
chitecture. It can invoke the new hardware security primi-
tives, along with the associated protected software for that
architecture. In our current system, the SUT runs a full
commodity operating system (Linux) as its guest OS, which
is vulnerable to attack and is untrusted.

The TS machine simulates the attacker, who is trying to
violate the security properties of the SUT. It is kept as a
separate virtual machine so that the TS Controller can be
outside of the SUT to launch hardware attacks. The vir-
tualization isolates all testing activity and networking from
the host machine.

The testing framework itself is independent of the threat
model of the system being tested, and hence enables full
controllability and observability of the SUT in both hard-
ware and software. This makes it suitable for many pur-
poses during the design phase of a new architecture. During
the initial design and implementation of the system, the TS
can act as a debugger, able to see the low-level behavior in
hardware, all code behavior, and data in the software stack.
When testing the supposedly correct system, the TS is the
attacker, constrained by a threat model to certain attack
vectors.
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Figure 1: Testing Framework Design

A particular point of elegance of our framework is that
the threat model can be easily changed, and the set of at-
tack tools given to the attacker adjusted for each test. The
framework can be used for arbitrary combinations of mecha-
nisms: access to internal CPU state of the virtual processor,
physical attacks on the virtual machine hardware (e.g. hard-
ware probes on the buses, memory, or disk), software attacks
on the operating system (e.g. a rootkit installed in the OS
kernel), and network attacks (e.g. interception and modi-
fication of network packets and abuse of network protocols
and application data). For example, in some cases, it might
be desirable to perform black-box testing of a new design
using only the network to gain access to the SUT, while in
other cases, white-box testing will allow the attacker knowl-
edge about the system’s activities, such as precise timing of
attacks with hardware interrupts or breakpoints into the ap-
plication code, or observation of data structures in memory.

3.2 Testing Framework Components
The main components of our Testing Framework are shown

in Figure 1. The framework detects events in the SUT and
provides the TS with access to the full system state using
both hardware and software channels. The TS Controller,
running in the TS, is the aggregation point that receives
events from both hardware and software. It receives OS and
Application level (software) events from the SUT via a net-
work channel and receives hardware events from the VMM.
It provides APIs to the Attack Scripts which can monitor or
wait for specific events and adaptively mount a coordinated
attack on the SUT.

The TS Proxy is added to the SUT to communicate with
the TS Controller to receive commands and send events
back. It simulates the effect of a compromised operating
system for launching software attacks, allowing the OS to
be fully controllable by the TS. It controls the application
to be tested, and uses its corresponding kernel-level compo-
nent to control and monitor OS behavior and the OS-level
abstractions used by the application, including system calls,
virtual memory, file systems, sockets, etc.

The TS Controller and TS Proxy are each divided into
user-level and kernel-level components. Additional trusted
entities of the security architecture that are not under test,
such as network servers, may be hosted in the TS and report
their activity directly to the TS Controller.

The modified VMM captures events and accesses system

state in the SUT. It monitors and controls the hardware
with the Event & Attack Module providing hooks into the
virtual CPU and virtual devices, as well as into the new
Security Hardware Emulator for new hardware not present
in the base CPU. The TS Proxy monitors and controls the
applications and OS. Communication of events and data be-
tween the SUT and TS occurs asynchronously through a net-
work channel for software events/attacks and through a cus-
tom channel within the VMM1 for hardware events/attacks.
When synchronization is necessary, either the application
or the entire SUT machine can be frozen to preserve state,
while the TS and attack scripts continue to execute. Within
the virtual machines, the components communicate through
a combination of new system calls (to kernel components),
hyper-calls (direct to the VMM), signals, and virtual hard-
ware interrupts.

Table 1 lists various events and attacks exposed by the
framework for each layer of the system. The lower two layers
show the hardware classified into the base hardware (x86
architecture in our work) and the new emulated security
architecture.

Hardware events are monitored through the VMM hooks
during execution and are as fine-grained as the execution of
a single instruction or hardware operation in the SUT. The
VMM freezes the SUT as it communicates each event over
the inter-VM channel, allowing the TS to possibly change
the result of that operation before it completes. Software
events and attacks rely on hooks from the TS Proxy into
the OS kernel through its kernel module, and to the testing
application using its user-mode component. The TS Proxy
can also function as a debugger tool reading the application’s
memory and accessing its symbol table to map variable and
function names to virtual addresses. The application can
optionally be instrumented to access its state and events.

3.3 Attack Scripts
Attack Scripts reside on the TS and specify how particular

attacks are executed on the SUT. They provide step-by-step
instructions for monitoring events and dynamically respond-
ing to them in order to successfully launch attacks, or detect
that an attack was prevented by the security architecture.
The scripts act like a state-machine, acting on hardware and
software events which are aggregated by the TS. Scripts can
be written to form a library of generic attacks, that can be
used to attack any application. Alternatively they can be
specific to the behavior of the application being tested, writ-
ten by the user of the framework. The TS Controller reads
and executes these scripts and implements the communica-
tion mechanisms and control of the SUT as needed.

Table 2 lists the API which the TS Controller exports to
the attack scripts. The first group are commands used to
launch and control the execution of the application under
test on the SUT. The second group of commands control
event handling2, and the last group provides access to SUT
state.

The security properties and attacks considered in the threat
model do not need to detail the exact method of penetra-
tion, but can just focus on the impact of the attacks on the

1The hardware channel is implemented over shared memory
between each VM’s Event & Attack Module.
2The watch list can wait for any of the event types in Ta-
ble 1. Event parameters and data are either passed to the
TS directly or are accessible via pointers with ACCESS_MEM.
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Table 1: Example Events and Attacks

Layer Events Monitored Impact of Attack

Protected Application API function entry/exit, Library calls, User
authentication, Network messages, Other
application-specific events.

Read/write application data structures, Trigger ap-
plication API calls, Intercept/modify network mes-
sages, Other application-specific attacks.

OS Memory access watchpoints, Virtual memory
paging, File system access, System calls, Pro-
cess scheduling, Instruction breakpoints, Device
driver access, Network socket access, Interrupt
handler invocation, etc.

Read/write virtual memory, Read/write kernel data
structures, Read/write file system, Intercept/modify
syscall parameters or return values, Read/write sus-
pended process state, Modify process scheduling, In-
tercept/modify network data, Modify virtual mem-
ory translations.

Base Hardware (x86) Privileged instruction execution, Triggering of
page faults and other interrupts, Execution of an
instruction pointer.

Read/write general registers, Read/write physical
memory, Trigger interrupts, Intercept device I/O
(e.g. raw network & disk accesses).

Secure Hardware Execution of new instructions, Triggering of new
faults, Accesses to new registers.

Read/write new registers & state, Read/write pro-
tected memory plaintext.

Table 2: TS Controller API for Attack Scripts

Function Description

h ← INIT() Initialize the Controller and return a handle h to access resources.

EXECUTE(h,app,params) Execute the application app on SUT with the given parameters params.

INTERRUPT(h,num) Trigger an immediate virtual hardware interrupt number num on the SUT.

BREAKPOINT(h,addr) Setup a breakpoint to interrupt the SUT at an address ( addr).

EVENTADD(h,eventType) Add the eventType to watch-list.

EVENTDEL(h,eventType) Delete the eventType from the watch-list.

event ← WAIT(h) Blocking call that waits for any event in the watch-list to occur in the SUT. Once an
event is triggered, the SUT is paused and the TS continues running the attack script. An
application exit in the SUT always causes a return from WAIT().

event ← WAITFOR(h,eventType) Similar to WAIT() but waits for the specified event (or application exit), regardless of
the watch-list.

CONT(h) Execution of the SUT is resumed, after an event or interrupt.

ACCESS_GENREG(h,r/w,buf)
ACCESS_SPREG(h,r/w,buf)

Reads/writes (r/w) the general registers or SP registers of the SUT to/from buf.

ACCESS_MEM(h,v/p,r/w,addr,sz,buf)
ACCESS_SPMEM(...)

Reads/writes (r/w) sz bytes from virtual or physical memory (v/p) of the SUT at address
addr to/from the buffer buf. Can access memory regularly or as an SP secure region
(accessing the plaintext of encrypted memory).

SUT’s state. This is preferred since (1) new attack pen-
etration methods are frequently discovered after a system
is deployed and often are not foreseen by the designer, (2)
most real attacks result in or can be modeled by the impact
of attacks which we provide in Table 1, and (3) the attack
scripts themselves can be restricted to model specific pene-
tration methods when testing for a more limited attacker. A
detailed example using this TS Controller API in an attack
script is given in Section 5 and Figure 3.

3.4 Implementation
We implemented our testing framework on VMware’s vir-

tualization platform [2], including all of the components in
Figure 1, and events and attacks at each system layer. The
Security HW Emulator, VMM Event & Attack Module, and
inter-VM communication channel required modifying the
source code of the VMware VMM. The kernel components of
the TS Proxy and TS Controller are implemented as Linux
kernel modules. The TS Proxy application is implemented
as a Linux user process and controls the execution of the
Application under test. The TS Controller application is

implemented as a static library which is called by the At-
tack Scripts.

As a sample security architecture, we implement the SP
architecture, described in Section 4. The Security Hardware
Emulator emulates the SP architecture including its hard-
ware roots of trust, secure memory, and interrupt protection.
We have also implemented a library of protected software for
SP, which is used for a remote key-management application
as described in Section 5. Our Application under test uses
this library to exercise the software, and in turn, the SP
hardware.

Our framework, by using existing virtualization technol-
ogy, enables reasonable performance while allowing our SUT
to provide a realistic software stack and emulate new hard-
ware. Other virtualization environments, like Xen [4], can
also be used. Other simulation and emulation environments
available, such as Bochs [28] and Qemu [5], could be used
in place of virtualization to implement our framework as
designed and described in this paper. We choose a virtual-
ization environment for performance reasons, because only
parts of the hardware and protected software need to be em-
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ulated, while the OS and other non-protected software can
run virtualized. VMware provided an excellent development
environment, under the VMAP program.

4. SP ARCHITECTUREANDEMULATION
We use the Secret Protection (SP) architecture [13, 24] to

demonstrate the effectiveness of our framework. SP skips
software layers in the conventional trust chain by using hard-
ware to directly protect an application without trusting the
underlying operating system. SP protects the confidentiality
and integrity of cryptographic keys in its persistent storage
which in turn protect sensitive user data through encryption
and hashing. These security properties provided by SP need
to be validated. Furthermore, it is important to write and
test many secure software applications for SP in a realistic
environment, where a compromised OS can be a powerful
source of attacks.

Our testing framework emulates SP’s hardware features
using modifications to the VMM. While SP hardware prim-
itives have already undergone a detailed security analysis on
paper, the framework can test the robustness of the design
and its implementation, as well as discover any potential
flaws. Additionally, we modify SP’s secure memory mech-
anisms and then show how our framework can be used to
demonstrate that these new hardware features are also re-
silient to attack.

4.1 Secret Protection (SP) Architecture
In the Secret Protection (SP) architecture (See Figure 2),

the hardware primarily protects a Trusted Software Mod-
ule (TSM), which protects the sensitive or confidential data
of an application. Hence, a TSM plus hardware SP mech-
anisms form a minimalist trust chain for the application.
Rather than protecting an entire application, only the security-
critical parts are made into a TSM, while the rest of the
application can remain untrusted. Furthermore the operat-
ing system is not trusted; the hardware directly protects the
TSM’s execution and data.

Protecting the TSM’s execution requires ensuring the in-
tegrity of its code and the confidentiality and integrity of its
intermediate data. Code must be protected from the time
it is stored on disk until execution in the processor. Data
must be protected any time when the operating system or
other software can access it. This includes storage on disk,
in main memory, and in general registers when the TSM is
interrupted. To provide this protection, SP provides new
hardware mechanisms:

Roots of Trust: SP maintains its state using new processor
registers; the threat model of SP assumes the processor chip
to be the security boundary, safe from physical attacks which
are very costly to mount on modern processors. As shown
in Figure 2, SP uses two on-chip roots of trust: the Device
Root Key and the Storage Root Hash.

Code Integrity: The Device Root Key is used to sign a
MAC (a keyed cryptographic hash) of each block of TSM
code on disk. When a TSM is executing, the processor enters
a protected mode called Concealed Execution Mode (CEM).
As the code is loaded into the processor for execution in the
protected mode, the processor hardware verifies the MAC
before executing each instruction.

Data Protection: For the TSM’s intermediate data, while
in protected mode, the TSM can designate certain mem-
ory accesses as “secure”, which will cause the data to be en-

crypted and hashed before being evicted from on-chip caches
to main memory. This secure data is verified and decrypted
when it is loaded back into the processor from secure mem-
ory. Secure data and code are tracked with tag bits added
to the on-chip caches.

Interrupt Protection: Additionally, the SP hardware in-
tercepts all faults and interrupts that occur while in the
protected mode before the OS gets control of the processor.
SP encrypts the contents of the general registers in place,
and keeps a hash of the registers on-chip; When the TSM is
resumed, the hash is verified before decryption of the regis-
ters.

Operating System

Processor Chip

Device Root Key

Storage Root Hash

Sensitive 

Application

Disk

Trusted

Hardware

Trusted 

Software

SP Protected

Secrets

Application-specific

Software

Not 

Trusted

SP Instructions

Encryption/

Hashing

Engine

Instruction

& Data

Caches

Ta
g

 b
its

Concealed

Execution

Mode

Interrupt

Registers

CEM Mode

User I/O

a

b

Main

Memory

Trusted

Software

Module

User

Application

1

User

Application

2

Keys

K
e

y
s

K
e

y
s

K
e

y
s

Figure 2: Secret Protection (SP) Architecture. En-
largements show (a) the Concealed Execution Mode
(CEM) hardware, and (b) the application secrets
protected by the TSM.

The TSM protects secret data belonging to the application
in persistent storage. SP allows a TSM (and no other soft-
ware) to derive new keys from the Device Root Key using a
new hardware instruction, DRK DeriveKey. These derived
keys are used by the TSM to protect the confidentiality of its
persistent data. Furthermore, the TSM is the only software
that can read and write the Storage Root Hash register, us-
ing it as the root of a hash tree to protect the integrity of
this persistent secure data.

Hence, to emulate SP hardware we require the follow-
ing components: new processor registers (including the pro-
tected mode and roots of trust); new instructions; hardware
mechanisms for code integrity checking, secure memory and
interrupt protection; and new hardware faults which these
mechanisms generate.

4.2 Emulation of the SP Architecture
Most of the time, code in a VM runs directly on the

physical hardware, and the VMM only emulates components
that are virtualized. It traps on privileged instructions, but
ignores hardware effects that are transparent to software,
such as cache memory. In order to implement and emu-
late new hardware architecture features, we take advantage
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of the VMM’s virtualization methods. For example, the
VMM maintains data structures for the virtual CPU state,
which we expand to store new security registers. The VMM
then emulates accesses that are made to those new regis-
ters. Other useful VMM behaviors include: interception of
all hardware interrupts, dynamic binary translation of code,
mapping of virtual memory translations, and virtualization
of hardware devices.

To emulate the SP architecture, the Security Hardware
Emulator Module implements the following:

Protected Mode: SP requires new registers to be added
to the virtual CPU. This includes SP’s two Roots of Trust
and the new interrupt handling registers and mode bits for
its Concealed Execution Mode [24]. New SP instructions
are modeled as hypercalls, where the TSM running in the
SUT is able to directly invoke the emulation module without
going through the guest OS.

Interrupts and SP Faults: The SP architecture changes
the hardware interrupt behavior when in protected mode.
Since the VMM already emulates interrupt behavior, we
simply detect that an interrupt has occurred during the pro-
tected mode and emulate the effect on the CPU, which in-
cludes suspending the protected mode and encrypting and
hashing the general registers. To detect returning from an
interrupt, the VMM inserts a breakpoint at the current in-
struction pointer where the interrupt occurs, so that it is in-
voked to emulate the return-from-interrupt behavior of SP.
Additionally, when the emulated hardware generates a new
fault, it first reports to the TS Controller and then translates
the fault into a real x86 fault, such as a general protection
fault, which is raised in the SUT causing the OS to detect
the failure of the TSM.

Secure Memory: We change the SP abstraction of secure
memory, as described in Section 4.3. Further, we use block
sizes of virtual memory pages rather than individual cache
lines, since the VMM does not intercept cache memory ac-
cesses. While this limits the ability to model a few low-level
attacks on SP (such as the behavior of cache tags), the ma-
jority of the security properties of the hardware and all those
of the software can still be tested.

Code Integrity: The TSM’s code is signed with a keyed
hash over each cache-line of code and the virtual address of
that line, and is checked as each cache line is loaded into
the processor during execution. We model this using the
VMM’s binary translator to execute the TSM code. Veri-
fied instructions are tagged as secure code fragments in the
dynamic binary translator cache.

4.3 Lesson Learned from SP Emulation: Se-
cure Memory

The original SP architecture uses two new instructions for
a TSM to access secure memory: Secure Load and Secure
Store. With these, any virtual address can be accessed as
secure memory, where cache lines are tagged as secure (ac-
cessible only to a TSM) and are encrypted and MACed upon
eviction from cache. We introduce a new secure memory
model, called Secure Areas, to replace Secure Load/Store.

There are a few drawbacks to the Secure Load/Store ap-
proach. First, while most new SP instructions can be used as
inline-assembly, the compiler must be modified to emit the
secure memory instructions whenever accessing protected
data structures or the TSM’s stack. This further requires
programmers to annotate their code to indicate which data

structures and variables to protect, and which code and
functions are part of a TSM. Second, while a RISC archi-
tecture need only supplement a few Load and Store instruc-
tions with their secure counterparts, a CISC architecture has
many more instructions which access memory rather than
general registers and need to support secure memory access.
Third, while SP provides confidentiality and integrity for its
secure memory, replay protection is also required to prevent
manipulation of the TSM’s behavior, but was not explicitly
described. Rather, SP assumes a memory integrity tree [38,
14, 9] spanning the entire memory space, requiring signifi-
cant overhead in on-chip storage and performance when only
small amounts of memory need protection.

Secure Areas address these concerns by allowing the TSM
to define certain regions of memory which are always treated
as secure when accessed by a TSM. The programmer spec-
ifies the address range to protect explicitly, allowing the
compiler to use regular memory instructions without mod-
ification. This is especially useful for our framework since
the new architectural features can be tested during design-
time without modifying the existing compilation toolchain.
It also no longer requires duplicating all instructions in the
instruction set which touch memory, a benefit for imple-
menting SP on x86. Finally, it confines the secure memory
to a few small regions which are more easily protected from
memory replay attacks with less overhead.

Table 3 shows the new instructions added to SP to support
Secure Areas, replacing the Secure Load and Secure Store
instructions. The SP hardware offers a limited number of
Secure Area regions, which the TSM can define using these
instructions. Each region specifies an address range which
is always treated as secure memory when accessed by the
TSM, and is encrypted when accessed by any other software
or hardware devices.

The on-chip secure cache tag bits (shown in Figure 2) are
no longer needed; instead k ∗ 2 registers are added for defin-
ing the start-address and size of k Secure Areas. On-chip
storage is also needed to store hashes for each block within
the region. The block size for hashing can range from one
cache line to one virtual memory page, and is determined
by the hardware implementation. Upon defining a new re-
gion, the corresponding on-chip hashes are cleared. As se-
cure data is written, it is tagged as secure in cache; when
it is evicted from cache, the contents are encrypted and a
hash is computed and stored in the on-chip storage for that
block. It must be verified when the data is read back in
from off-chip memory. Since the regions can be small rel-
ative to total memory (only tens to hundreds of kilobytes
are needed for our prototype TSMs), only small amounts of
on-chip storage are required. Alternatively, other memory
integrity tree methods [14, 20, 38] can be integrated to store
some hashes off-chip to permit replay protection of larger
regions of secure memory.

While both the original SP Secure Load and Secure Store
instructions and the currently proposed Secure Areas have
their advantages and disadvantages, the latter is easier to
emulate and validate, and requires simpler application soft-
ware changes.

4.4 Other Architectures
While this paper focused on testing the hardware and soft-

ware mechanisms of the SP architecture, our testing frame-
work is by no means limited to this architecture. Although
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Table 3: New SP Instructions for Secure Areas (only available to TSM)

Instruction Description

SecureArea_Add Rs1,Rs2,num
Rs1 = start addr
Rs2 = size
(must be aligned to block size)

Initialize the specified Secure Area (region num). On-chip hashes for the region are
cleared. All TSM memory accesses for addr will be treated as secure if: (start addr)
≤ addr < (start addr + size).

SecureArea_Relocate Rs1,num
Rs1 = start addr

Change the starting address of the specified Secure Area region. The size remains
unchanged. When TSM code in multiple process contexts share memory containing
a Secure Area, each may access it at a different address in their virtual address space;
this is used to relocate the region.

SecureArea_Remove num Disables and clears the specified Secure Area region. On-chip hashes for the region are
cleared and secure-tagged cache entries in its address range are invalidated, making
any data in the region permanently inaccessible in plaintext.

SecureArea_CheckAddr Rd,num
SecureArea_CheckSize Rd,num

Retrieves the parameters of the specified Secure Area region. Used to verify whether
or not a region is setup for secure memory and where it is located.

other hardware security architectures such as XOM [25],
AEGIS [39] and Arc3D [18] have somewhat different goals
and assumptions from SP, they combine hardware and soft-
ware in ways that also make them suitable for validation
in our framework. Similarly, TPM [40] adds hardware to
protect all software layers and provide cryptographic ser-
vices. Rather than utilizing changes to the processor itself,
TPM adds a separate hardware chip that integrates with
the system board. This is still compatible with our testing
framework, simply requiring a different set of modifications
to the VMM to implement a virtual TPM device. In partic-
ular, the ability to observe and control the SUT by use of
our components in the framework (TS controller, TS proxy
and VMM modifications) can be applied to testing security
architectures. Furthermore, software-only security architec-
tures can benefit from analysis under attack in our frame-
work, both during development and for security validation.
Access to existing hardware state provides insight into at-
tack impacts and possible flaws, and provides an additional
vector for injecting attacks.

5. TESTING OF SP
We now illustrate how we use the Testing Framework to

validate a hardware-software architecture like SP, by testing
the system’s security properties while it is under attack. We
also validate that the emulation of the SP mechanisms is
correct and secure according to the design, as it forms the
basis for the other tests.

Table 4 lists various attacks on the system’s security prop-
erties. Data confidentiality is the primary purpose of the
SP architecture. The attack generally checks to see if any
sensitive data that should be protected by a TSM is ever
leaked. We eavesdrop on the unprotected memory and check
whether any known keys generated by the TSM, in addition
to the Device Root Key (DRK) and any DRK-derived keys,
are found. This is similar to the cold boot attack [19] which
looks for sensitive keys left in physical memory. If the TSM
properly uses secure memory for its intermediate data, and
protects its persistent data, then no keys should ever leak.

The second section in Table 4 sets up a series of attacks
on the basic mechanisms of SP, such as controlling access to
the master secrets (e.g., Device Root Key), code integrity
checking, and encryption of secure data in protected mode.
These tests verify that the emulation is correct and also val-
idate the original security analysis. For example, we attack

SP’s Concealed Execution Mode by attempting to modify
registers during an interrupt. A non-TSM application’s reg-
isters can be modified by a corrupted OS without detection,
causing changes in the application’s behavior. However, a
TSM will have its registers encrypted and hashed by the
SP hardware upon any interrupt, such that SP detects the
modification when resuming the TSM.

The next section in Table 4 shows generic attacks on a
TSM, which test security properties common to many TSMs
(e.g., control flow, entry points). These attacks consider
that a basic goal of many TSMs (and indeed of the SP ar-
chitecture) is to provide confidentiality and integrity to any
sensitive information and enforce access control.

We develop tests of the robustness of the TSM against
future unknown vulnerabilities that might arise in the hard-
ware or TSM code. Since the penetration mechanism is
unknown, we instead model the effects of the attack. For
example, the control flow of the TSM could be attacked in
many different ways. When the TSM makes branching de-
cisions, the jump targets and the input data for the branch
conditions should be protected. If either is not stored in se-
cure memory, or if secure data can be modified or replayed,
then arbitrary changes to the TSM’s control flow would be
possible. We verify that a TSM only bases control flow de-
cisions on data in its secure memory, and test how control
flow violations could cause data to leak.

As another example, we consider control flow attacks that
allow arbitrary entry points into a TSM. Since instructions
to enter protected mode (Begin TSM ) are not signed, Be-
gin TSM could be injected into the TSM to create an entry
point. We implement this as an attack script, crafting a case
where the Testing System overwrites instructions and tries
to enter in the middle of a TSM function without detection,
bypassing access control checks.3 To prevent this, we add
a new security requirement to SP that it must distinguish
entry points in TSM code from blocks of code that are not
entry points. This can be achieved by adding an extra bit to
the calculation of the signature of each block of TSM code,
indicating whether or not it is an entry point.

The attack on TSM page mappings demonstrates a system-

3In some cases, this attack would be detected by SP — if
the injected instruction is not correctly aligned to the start
of a block of signed code, or if later in execution the TSM
jumps back to code before the injection site. A carefully
crafted attack succeeds.
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Table 4: Example Attacks on the SP Architecture Using the Testing Framework

Security Property Attack

Data Confidentiality Scan physical memory for leaks of Device Root Key, DRK-derived keys, and TSM’s other sensitive
information.

Securing General Registers
on Interrupts

Attack the general registers during an interrupt of a TSM through eavesdropping, spoofing, splicing,
and replay.

Code Integrity Attack TSM code during execution through spoofing and splicing; attack TSM code on disk.

Secure Memory Attack intermediate data of TSM through eavesdropping, spoofing, splicing and replay; attack the use
of secure memory for TSM’s data structures or stack.

Secure Storage Attack the TSM’s secure storage for persistent data (splicing, spoofing & replay).

Control Flow Integrity Attack TSM’s indirect jump targets that are derived from unprotected memory. Arbitrarily modify
jump targets within the TSM.

Attack the input data for branch conditions in the TSM from unprotected memory. Replay secure
data to cause incorrect branch decisions.

Attack TSM entry points by entering CEM at arbitrary points in the code, skipping access control
checks or initialization of secure memory.

TSM Page Mappings Remap TSM code pages and data pages, as a means to attack secure memory or control flow.

Key-chain management Spoof key add/delete message; replay key-add message after it is deleted; corrupt a key-management
message in transit.

Access control on keys Exceed usage limits/expiration of keys; attempt to use a key that was deleted; attempt to perform a
disallowed operation with a key.

level attack. Rather than attacking the TSM directly, the
OS manipulates the system behavior to indirectly affect how
the TSM executes. The OS can manipulate process schedul-
ing, intercept all I/O operations, and in this case, modify
how virtual addresses map to physical addresses.

The last section in Table 4 shows application-specific at-
tacks for a particular TSM — in this case our Remote Key-
management TSM. For remote key-management, we con-
sider a trusted authority which owns multiple SP devices
and wants to distribute sensitive data to them. The author-
ity installs its remote key-management TSM on each device
as well as the protected sensitive data, consisting of secrets
and the cryptographic keys that protect those secrets. It
also stores policies for each key which dictate how it may
be used by the local user. During operation, the TSM will
accept signed and encrypted messages from the authority to
manage its stored keys, policies, and data. It also provides
an interface to the application through which the local user
can request access to data according to the policies attached
to the keys. The TSM must authenticate the user, check the
policy, and then decrypt and display the data as necessary.
This TSM stores cryptographic keys, security policies, and
secure data in its persistent secure storage, which it protects
using SP’s underlying hardware mechanisms. We test the
confidentiality and integrity of the storage itself, the TSM’s
use of the storage to protect keys and key-chains, and its
enforcement of the policies on accesses to data that the keys
protect. We also test the protocols the TSM uses to com-
municate with a remote authority, managing the keychains.

Our system implements the SP hardware mechanisms, a
full TSM providing an API to the application being tested,
and a suite of attacks that test both the software and hard-
ware components using our new testing framework. This is a
major step towards the complete validation of the design of
the SP architecture together with its applications. Further-
more, we demonstrate that TSMs must be carefully written
to avoid serious security flaws, and that a security architec-

ture can benefit from testing with many different applica-
tions. Our framework provides a platform for this necessary
testing, significantly enhancing our ability to reason about
the security provided.

Testing Example
Figure 3 shows a sample TSM on the left, and a correspond-
ing attack script using the TS Controller API (Table 2) on
the right. This demonstrates the interactions between the
TS and SUT for event detection and modification of SUT
state. The TSM derives a new key from a nonce it gen-
erates and SP’s Device Root Key (DRK). It then encrypts
a chunk of memory with this new key before sending the
encrypted chunk to the network or to storage. The simple
attack shown here verifies that secure data (here the derived
AES key), placed on the stack by the TSM as a function pa-
rameter, is not leaked in physical memory where the OS
could read it. This attack is very efficient, assuming a very
knowledgeable attacker who is specifically looking for SP de-
rived keys. It demonstrates precise coordination of software
events (injected breakpoints) with access to the hardware
(physical memory state), while the SUT is frozen to prevent
clearing or overwriting of any data in memory. The script
also requires access to the internal state of the SP hardware
from the TS to verify the results of the attack. Less specific
attacks can be constructed, by waiting for any event consid-
ered suspicious, then analyzing the event and examining the
hardware and software state of the frozen SUT.

Attack scripts are typically longer and can involve many
additional steps and interactions, along with a complete
TSM and its corresponding application. The full range of
events and attack mechanisms in Table 1 are available to
the attack scripts, with the TS in full control over the ap-
plications, OS, and hardware running in the SUT.

5.1 Lesson Learned: Leaking Data Through
the Stack

394



Application with TSM (TSMapp)

BEGIN CEM

· · ·

nonce ← Hash(C ENC, KeyID)
Reg1 ← DRK DeriveKey(nonce)
SecureMem.AESkey ← Reg1

// Attack script injects a breakpoint at start of Encrypt
function
Ciphertext ← Encrypt(SecureMem.AESkey,
&SecureMem.data, sz)
END CEM

// Send encrypted file on network or store on disk
Network Send(TTP, Ciphertext, sz)

· · ·

Attack Script (pseudocode)

EXECUTE(TSMapp, params)

// Wait for key generation
EVENTADD(DRK DeriveKey)
EVT ← WAIT()
// Read the generated key
ACCESS SPREG(r, SPRegs)
SPKey ← SPRegs.CEMBuffer

// Inject breakpoint for Encrypt()
BREAKPOINT(“&Encrypt”); CONT()
// Wait for interrupt due to breakpoint
EVT ← WAITFOR(Interrupt)

// Scan phys. memory for leaked key
for addr = 0 to 256M − 1 do

ACCESS MEM(PHYS, r, addr, 4096, buf)
if strstr (buf, SPKey) then

return “Derived Key Leaked in Memory”
return “Derived Key Not Found in Memory”

Figure 3: Example Application and Attack Script for Detecting Leaked Keys

In the process of testing how TSMs use SP mechanisms
to protect intermediate and persistent data, we found that
our new secure memory implementation failed to adequately
protect the intermediate data on the stack for a TSM com-
piled with GCC. Our example TSM in Figure 3 derives a
new key from the Device Root Key and uses it for encryp-
tion. The attack script freezes the SUT shortly after the key
is derived and scans physical memory. It finds that the key
has been leaked via parameter passing on the stack, violat-
ing data confidentiality. As a result, we have instrumented
a new software mechanism to swap the TSM’s stack to use
memory in a designated Secure Area. The same attack script
then verifies that this modified TSM correctly protects the
confidentiality of the key when passed as a parameter. This
demonstrates how a secure hardware mechanism (e.g., for
secure memory) can be used incorrectly by a TSM, often
inadvertently, leading to vulnerabilities.

The framework helped significantly in the debugging pro-
cess, in particular for relocating the TSM’s stack to a Secure
Area. Even a very simple TSM, which only generates a de-
rived key and saves that key in a secured data structure,
manages to leak the key via the stack when using wrapper
functions to access new SP instructions. The framework lets
us interrupt after critical hardware operations to detect data
leaked in plaintext in memory. When we find errors in the
way our implementation reassigns stack pointers to use a
Secure Area, we can correct the TSM code and the Secure
Area setup accordingly, to ensure that all stack operations
in a TSM access a valid Secure Area.

Using the framework, we also found a complication when
relocating the stack to a Secure Area on an x86 platform.
When an interrupt occurs in x86, the processor hardware
pushes an exception frame onto the stack, using the stack
pointer register; the operating system reads this frame to
handle the interrupt. If an interrupt occurs while in CEM,
with the stack pointer relocated to a Secure Area, the frame
data will be written in the Secure Area region. If still in
CEM at the time, this data will be protected as secure mem-

ory where the OS will not be able to read it. If CEM has
already been suspended before the frame is written, the data
will be written in plaintext and will overwrite part of the en-
crypted and hashed Secure Area data. When CEM is later
resumed, the hash check of this region will fail. Therefore,
we have developed a new mechanism to make the SP hard-
ware aware of the stack swapping. The hardware saves the
original stack pointer in an on-chip register when the stack
is relocated. It will automatically restore this original stack
pointer before the exception frame is written, saving the se-
cure stack pointer on-chip. The secure stack pointer is then
swapped back when CEM is resumed.

The lessons learned are that care must be taken in im-
plementing new trusted software while attempting to use
existing software conventions (e.g., for parameter passing
through the stack). Also, our testing framework can be used
effectively to expose and debug subtle interactions between
the trusted and untrusted software and hardware in an im-
plementation.

6. RELATED WORK
One related area of research is the formal verification of

both hardware and software, in which mathematical spec-
ifications for computer hardware or software are written,
and proof techniques are used to determine the validity of
such specifications. The complexity of formal verification
problems range from NP-hard to undecidable [22, 34, 23,
21]. The complexity of these formal verification mecha-
nisms led to the use of hybrid techniques [7] which use some
formal as well as informal methods. Some formal meth-
ods of verification include theorem provers (e.g., ACL2 [29],
Isabelle/HOL [30]), model checkers [27], and satisfiability
solvers [41, 12]. Some informal techniques used in practice
are control circuit exploration, directed functional test gen-
eration [15], automatic test program generation [11], fuzz
testing [17], and heuristic-based traversal [8]. The formal
and hybrid techniques try to verify the hardware and soft-
ware separately, unlike our holistic verification of a software-
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hardware system.
The limitation of the formal verification techniques is that

they must verify each component piece by piece. This is nec-
essary since the complexity of both specification and veri-
fication explodes exponentially with the addition of more
pieces to be tested. In our approach, we verify the system
in an informal but systematic and efficient way, and con-
sequently we can model both the security critical hardware
and software together; we are thus better able to determine
the security impacts of the interactions of the various com-
ponents.

Virtual machine introspection [16, 31, 26] techniques, de-
scribed previously, provide access to VM-state in similar
ways to our framework. However, they focus mostly on ob-
servability of software configurations or low-level operating
system and hardware behavior. Examples include intrusion
detection and virus-scanning from non-vulnerable host sys-
tems, preventing execution of malware, and tracing memory
or disk accesses. Instead, we strive to combine observability
of the full-system state with controllability of those same
components, actively during operation, to attack software
thought to be secure. In the past work, the focus is on
techniques for security monitoring of production machines,
rather than design-time testing of new architectures or of
new software systems to evaluate their potential vulnera-
bilities and flaws. Where some of these techniques provide
improved hooks into the virtual machine monitor [32], the
hooks could be integrated into our framework to make our
attack scripts more robust and more flexible.

Chow et al. [10] use system emulation to passively trace
data leaks in applications. However, our framework also per-
forms active attacks and looks for violation of security prop-
erties. Chow’s work also does not consider violations other
than data leaks, while we consider more security properties,
such as data integrity, policy enforcement, and control flow.
Furthermore, we are looking for flaws in trusted code and
hardware mechanisms that are specifically designed to pro-
tect security, unlike Chow where the applications are tested
for properties they were not designed for, therefore leading
to unexpected results.

Micro-architectural simulators like Simplescalar [3] are cycle-
accurate and hence can be very useful in estimating perfor-
mance metrics, but they cannot simulate a realistic software
system with a full commodity OS. Thus it is impossible to
test the security-critical interactions of a software-hardware
security solution with such a simulator.

The efforts by IBM [6], Intel [36] and others [37] provide
the functionality of a virtual TPM device to software, even
when the physical device is not present. In contrast, we
not only emulate the new hardware but also hook into the
virtual device to observe and control its behavior for testing
purposes, and study the interaction with other hardware and
software components.

7. CONCLUSION
We have designed and implemented a virtualization-based

framework for validation of new security architectures. This
framework can realistically model and test a new system
during the design phase, and draw useful conclusions about
the operation of the new architecture and its software inter-
actions. It also enables testing of various software applica-
tions using new security primitives in the hardware or in the
OS kernel.

Our framework serves as a rapid functional prototyping
vehicle for black-box or white-box testing of security prop-
erties. It can utilize and integrate multiple event sources and
attack mechanisms from the hardware and software layers of
the system under test. These mechanisms can test both low-
level components and high-level application behavior. As a
result, a comprehensive set of attacks are realizable on the
hardware, operating system, and applications.

We implement the SP architecture in our framework and
test its security mechanisms thoroughly, studying the in-
teractions of trusted software with the hardware protection
mechanisms. We also improve the design and implementa-
tion of SP’s architecture of both the secure memory and the
way SP handles dynamic data on the stack. Using a suite
of attacks on each layer of the architecture, we thoroughly
test each component of SP’s trust chain to show the effec-
tiveness of our proposed framework for debugging software,
for exposing subtle interactions between existing and new
mechanisms and conventions in an implementation, and for
reasoning about system security properties.
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