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Abstract—Adding new hardware features to a cloud computing server requires testing both the functionality and the performance of
the new hardware mechanisms. However, commonly used cloud computing server workloads are not well-represented by the SPEC
integer and floating-point benchmark and Parsec suites typically used by the computer architecture community. Existing cloud
benchmark suites for scale-out or scale-up computing are not representative of the most common cloud usage, and are very difficult to
run on a cycle-accurate simulator that can accurately model new hardware, like gem5. In this paper, we present PALMScloud, a suite of
cloud computing benchmarks for performance evaluation of cloud servers, that is ready to run on the gem5 cycle-accurate simulator.
We conduct a behavior characterization and analysis of the benchmarks. We hope that these cloud benchmarks, ready to run on a
dual-machine gem5 simulator or on real machines, can be useful to other researchers interested in improving hardware
micro-architecture and cloud server performance.
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1 INTRODUCTION

S Imulation of new hardware architecture is a necessary
stage in computer hardware design. Ideally, we would

like to evaluate the functionalities and performance on a
detailed simulation platform at the design stage of the
new systems before committing to expensive chip fabrica-
tion and prototype systems. There are open-source cycle-
accurate simulators that have been worked on for a long
time (e.g., gem5 [18], PTLsim [28], MARSSx86 [27], etc),
that simulate hardware at a detailed level, and provide
good performance data. They can also be used to add new
hardware features into the detailed hardware models.

However, demonstrating performance of different hard-
ware configurations requires representative benchmarks for
the performance evaluation of today’s computing envi-
ronments. Frequently used benchmarks for performance
may not be representative of current or future computing
paradigms. Currently, the computer architecture community
uses SPEC Integer and Floating-point Benchmarks [16] for
general-purpose computing and some PARSEC benchmarks
[12] for parallel computing workloads. These are mostly
compute-intensive benchmarks and do not represent to-
day’s Cloud Computing scenarios, e.g., Amazon EC2 [1].
Cloud Computing provides different IT resources (e.g. com-
puting, storage, software development, system testing, etc.)
as services on demand to customers. So the most critical
attribute of Cloud Computing is resource virtualization. For
example a company can buy real hardware resources (e.g.
servers, etc.), or instead, lease Virtual Machines (VMs) from
cloud infrastructure providers. The company may deploy
web servers and application servers in several of these VMs,
and deploy data servers (e.g. MySQL) in other VMs. In this
paper, we select a suite of representative cloud computing
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benchmarks from the most common cloud computing ser-
vices and workloads, and we perform a detailed benchmark
behavior characterization.

The contributions of this paper are:

• PALMScloud: a representative suite of cloud com-
puting benchmarks, ready to run on gem5, with
benchmark characterization and analysis.

• Open availability of the simulation framework and
cloud computing benchmarks, for researchers [11].

Section 2 discusses representative cloud computing
server benchmarks, and a behavior characterization and
analysis of the benchmarks. Section 3 describes how we
set up the dual system to run PALMScloud in the gem5
simulator. Section 4 concludes the paper.

2 CLOUD COMPUTING SERVER BENCHMARKS

Cloud computing services can be categorized into several
fundamental models [21]: Infrastructure as a service (IaaS),
Platform as a service (PaaS), Software as a service (SaaS),
etc. Rackspace, the leader in hybrid cloud and founder
of OpenStack, put together a Top-10 list [19] of the most
common cloud computing use cases: File Storage and Shar-
ing, Cloud Database, Email, PaaS for Web Applications,
Web Site Hosting, etc. Some obsolete benchmarks (e.g.,
SPECweb [16], SPECmail [16], etc.) and currently in-use
benchmarks (e.g., SPECjbb [16], TPC-C [20], TPC-W [20],
etc.) only cover some of these. Also, since they target specific
commercial purposes and include too many features, they
run way too slow under a cycle-accurate simulator like
gem5. CloudSuite [23] is a recent benchmark suite for scale-
out workloads, covering many of the Top-10 list. However,
strictly speaking, most of them are big data applications
(e.g. Hadoop Mapreduce for Data Analytics, Memcached



1556-6056 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2016.2597818, IEEE Computer
Architecture Letters

2

TABLE 1: PALMScloud Server Benchmarks and Client-side Driving Tools and Commands

Server Client Client-side Stressing Commands and Benchmark Descriptions

Web Server Apache httpd Apache ab ab -c 10 -t 120 http://server-ip:8080/
send HTTP requests to the server with a concurrency of 10 requests at the same time, lasting 120 seconds

Database Server MySQL SysBench

sysbench –test=oltp –mysql-host=server-ip –mysql-user=... –mysql-password=... –mysql-db=test –oltp-table-name=sbtest
–db-driver=mysql –mysql-engine-trx=yes –num-threads=4 –max-time=120 –oltp-table-size=10000

preparation: create test tables with 10000 records
running: do advanced transactions with 4 concurrent threads, lasting 120 seconds

Mail Server Postfix Postal postal -t 1 -m 1 -c 3 send-list server-ip rcpt-list
1 connection, maximum message size is 1 KB, 3 messages per connection

File Server Samba smbd DBench smbd.write: dbench -B smb -smb-share//server-ip/share -smb-user=% -loadfile=smb-writefiles.txt 2
smbd.read: dbench -B smb -smb-share//server-ip/share -smb-user=% -loadfile=smb-readfiles.txt 2

Streaming Server ffserver openRTSP openRTSP -r -p [local-port] rtsp://server-ip:7654/*.mp3
3 workloads: X remote requests (X=1, 3 and 30)

Application Server Tomcat Apache ab
ab -c 2 -t 120 http://server-ip:8080/(X URLS)
Send HTTP requests to the server with a concurrency of 2 requests for each URL, lasting 120 seconds
3 workloads: X=1, 3 and 11 (different URLs contain different jsp and servlet examples)

Compute Server libsvm a1a.t svm-predict a1a.t train.model test.output

for Data Caching, Cassandra NoSQL for Data Serving, etc.),
many of which are specifically designed for physical ma-
chines and require direct disk IO access. Thus CloudSuite
benchmarks use big data infrastructures, which are hard to
run on a cycle-accurate simulator. Virt-LM [24] is a suite
of benchmarks used to evaluate the performance of live VM
migration strategies among different software and hardware
environments in a data center scenario, and includes 5 of
Rackspace’s top 10 benchmarks.

2.1 PALMScloud Workloads
Based on Virt-LM and Rackspace’s Top-10 list, we carefully
selected an initial set of 6 representative cloud comput-
ing workloads, including the workloads for a Web Server,
Database Server, Mail Server, File Server, and Application
Server, and also a Streaming Server, which is not in the Virt-
LM or Rackspace’s list. Below, we describe the programs we
selected, and the parameters we use for each program to do
the benchmark behavior characterization. We also select a
popular compute-intensive (machine learning) benchmark
for comparison. Table 1 summarizes our server benchmarks
and the client-side driving tools and commands in our
PALMScloud benchmark suite.

Web Server and Client: Apache HTTP server (httpd)
[3] has been the most popular web server on the Internet
since 1996. The project aims to develop and maintain an
open-source HTTP server for modern operating systems
including UNIX and Windows NT. For the client side, we
choose Apache Benchmark Tool (ab) [2], which is a single-
threaded command line benchmarking tool well suited for a
non-GUI testing environment under gem5. This tool allows
picking the stressing time limit (in seconds) and the number
of concurrent requests.

Database Server and Client: MySQL [9] is a well-
known open-source relational Database Management Sys-
tem (DBMS). For the client side, we choose SysBench [17]. It
is a modular, cross-platform and multi-threaded benchmark
tool for evaluating OS parameters that are important for
a system running a database under intensive load. In Sys-
Bench, we use the OLTP (on-line transaction processing) test
mode, which benchmarks a real database’s performance.
In the preparation phase, we create test tables with 10000
records. For the running phase, we use 4 client threads to
do advanced transactions continuously.

Mail Server and Client: We mainly focus on Simple
Mail Transfer Protocol (SMTP), and we choose postfix [14]

to act as the SMTP server. We set the server side IP address
to link with domain: domain1.com. Postfix is on the server
side, and is responsible for delivering all the emails. The
receivers of email are local users in domain1.com. During
the server initialization phase, we add 20 local users: user0
∼ user19 for our testing purposes. For the client, we use
postal [13] to send messages to the server. Postal aims at
benchmarking mail server performance. It shows how fast
the system can process incoming email.

File Server and Client: SMB provides file sharing and
printing services to Windows clients as well as Linux clients.
We use the SMB protocol and choose Samba smbd [15] as
the file server. On the client side, we choose Dbench [6] as
the workload generator. It can generate different I/O work-
loads to stress either a file system or a networked server.
We need to specify dbench’s stressing backend (smb in this
case), the shared file server folder and the user-password
pair in the command line configuration. Moreover, Dbench
has a key concept of a “loadfile”, which is a sequence
of operations to be performed on the file server’s shared
folder. The operations could be “Open file 1.txt”, “Read X
bytes from offset Y in file 2.txt”, “Close the file”, etc. In
our experiments, we generate two different “loadfiles”, one
is a write-intensive load (smbd-writefiles.txt), another is a
read-intensive load (smb-readfiles.txt). Finally, we can add
a number n at the end of the dbench command to specify
the total clients simultaneouly performing the load.

Streaming Server and Client: We use ffserver [7] as
our streaming server. It is a streaming server for both audio
and video, supporting mp3, mpg, wav, etc. ffserver is part
of the ffmpeg package. It is small and robust. Before starting
the server, we need to register server side media-files at
ffserver.conf file. On the client side, we choose openRTSP
[10]. RTSP protocol can control the streaming. Clients issue
VCR-like commands, such as play and pause, to facilitate
real-time control of playback of media files from the server.
In the experiment, ffserver registered several mp3 audio files
on the server side. In section 2.2, ffserver.sX means using
openRTSP to send X remote client connection requests to
the ffserver for mp3 files streaming.

Application Server and Client: For web applications,
the application server components’ main job is to support
the construction of dynamic pages [5]. Application servers
differ from web servers by dynamically generating html
pages each time a request is received, while most http
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Fig. 1: PALMScloud: (a) Execution Cycles Breakdown, and (b) IPC

0.00
0.05
0.10
0.15
0.20
0.25

I-Ca
che

 Mi
ss R

ate

icache miss (application) icache miss (os)

Fig. 2: I-Cache Miss Rate

servers just fetch static web pages. Application servers can
utilize server-side scripting languages (PHP, ASP, JSP, etc.)
and Servlets to generate dynamic content. We use Tomcat [4]
on the server side. It is a small, robust application server that
also provides many useful small jsp and servlet examples.
For the testing, we use Apache ab to send HTTP requests to
Tomcat (Apache ab is described previously as a web server
client).

Compute Server (Machine Learning): We also want
to use some computing benchmarks to represent compute
servers. We choose LIBSVM [22] to do Support Vector
Machine (SVM) classification. On the server side, we have
already trained an SVM model using data set a1a’s train-
ing data from UCI’s machine learning repository [25]. a1a
stands for Adult Data Set, which can be used to predict
whether a person’s income exceeds $50K/yr based on his
census data. We use this model to do SVM classification on
a1a’s testing data: a1a.t.

TABLE 2: Server’s Architecture Parameters

Processor 32nm Intel Xeon E5-1410,
operating at 2.80GHz, SMT enabled

Microarchitecture Sandy Bridge
# CPU Cores/ # HW Threads 4/8

Core Width 4-wide issue and retire
Reorder Buffer 168 entries

Reservation Stations 54 entries
Load/Store Buffers 64/36 entries

L1 Cache 32KB I/D, 4-cycle latency
L2 Cache 256KB per core, 12-cycle latency

LLC (L3 Cache) 10MB, 28-cycle latency
Memory 32GB

2.2 Benchmark Characterization
We conduct our characterization study on a dual-machine
setting. All the server-side benchmarks are installed and
configured in a PowerEdge R320 rackmount chasis, while
all the workload-driving tools reside in another PowerEdge
R720. PowerEdge R320 server contains an Intel Xeon E5-
1410 processor with 4-OoO cores (8 HW Threads with SMT
enabled in our study), and the processor has a three-level
cache hierarchy, with private L1/L2 cache and shared LLC.
Table 2 summarizes the processor and hardware parameters.
The server runs Ubuntu 14.04 LTS, with Linux kernel 3.5.0.

To analyze the micro-architectural behavior of the bench-
marks, we use Intel Vtune [8] to monitor the server-side
benchmarks on the PowerEdge R320. Vtune is a software
tool that has access to the processor performance counters.
For all the workloads, we start by launching the client-
side stressing tools first, then we perform a 60-second mea-
surement on the server-side benchmarks after they finish
the ramp up phase. Below, we present the characterization
results of the workloads.

Figure 1a shows the breakdown of the total execution
cycles of the workloads. Nowadays, many CPUs have out-
of-order (OoO) multi-width superscalar cores. Our server-
side CPU uses Sandy Bridge-EN cores, which have 4-wide
issue and retire pipeline slots. In each cycle, the processor
front-end generates up to 4 micro-ops (µops) placed into
the pipeline slots, which means the ideal IPC for one core
would be 4. However, usually not all of the slots are filled
with useful µops (squashed due to branch misprediction or
stalled due to back-end resource starvation or data unavail-
ability). In Figure 1a, committing cycles reflect the amount
of µops that actually get committed into the architectural
state. For example, if during the commit cycle, 3 slots have
useful µops that get committed, we count 75% of that cycle
as committing, and 25% of that cycle as stalled. The total
commit cycles and the total stalled cycles add up to 100%.

Figure 1a shows that the execution cycles of the PALM-
Scloud workloads are dominated by stalls in both applica-
tion and OS codes. Unlike the first 6 cloud workloads, the
last workload, svm, hardly traps into the OS. This compute-
intensive benchmark behaves like the compute-intensive
desktop (SPECint) and parallel (PARSEC) benchmarks an-
alyzed in [23]. Also, from Figure 1b, our benchmarks (not
including svm) have an average IPC of 0.69 for application
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codes, and 0.45 for OS codes, in comparison with svm’s
application IPC 1.53, SPECint’s average application IPC 1.4
[23], and PARSEC’s average application IPC 2.0 [23]. Many
software modules in our benchmarks require trapping into
the OS kernel a lot, whose intrinsic behavior, along with the
poor instruction-level parallelism in both application and
OS codes, could be the main reasons that cause the low IPCs.

Figure 2 shows the I-Cache miss rates for both appli-
cation and OS codes. For our cloud benchmarks (minus
svm), the average application code I-Cache miss (5.5%) and
OS code I-Cache miss (7.7%) are much larger than those
of the svm benchmark (< 1%), the SPECint benchmarks
(< 1%) and the PARSEC benchmarks (< 1%) [23]. This
indicates that the cloud benchmarks’ instruction working
sets tend to exceed the I-Cache capacity compared with
desktop benchmarks.

In summary, our Cloud benchmarks differ from SPEC
and PARSEC benchmarks in exhibiting relatively low IPCs,
high I-Cache miss rates and a significant amount of stalls
in both application and OS codes. The low IPC can be
explained by the large amount of stalls, which are likely due
to the significant number of networking and disk accesses,
and handling of user connections and requests, which all
require trapping into the OS kernel, incurring a lot of context
switches. Also, OS code tends to have a lot of dependencies,
which reduces parallelism and lowers the IPC.

3 RUNNING PALMSCLOUD ON GEM5 SIMULATOR

We have prepared our cloud benchmark suite to run easily
on the gem5 simulator using a flexible client-server dual
system configuration, as shown in Figure 3. In particular, the
server, which is the test system, is run in cycle-accurate CPU
mode, while the client, which is the drive system, can use a
simple CPU mode with only functional modeling in gem5.
The server and the client can communicate via the Ethernet
link and each gets an IP address. By taking advantage
of the dual system, we can adjust the driving workload
from the client side and measure the performance on the
server side, instead of using a server-side fixed input script.
Also, the dual system simulates a real two-node network
environment. The server applications provide services and
monitor input requests on their specified TCP ports, while
the client programs request for services (HTTP requests,
streaming requests, etc.) through these server-side ports.

Fig. 3: Running PALMScloud on Gem5 Simulator with Dual-
System Configuration

It’s not easy to install server benchmarks under the gem5
simulator system. So we install them on a real machine, and
copy the installed package and all the required dynamic li-
braries to gem5’s image disk. Both server side and client side
use the basic Linux system installed on gem5’s image disk.
The server has different server-side applications installed.
When booting the dual system, both server and client con-
figure their network interface. The server then initiates the

server-side services and sends a ready signal to the client,
so that the client can drive the server side with requests.
Some server-side benchmarks actually require some time to
start up before their services are available to the client under
gem5. We use a daemon program to test periodically if the
service ports are opened up by the benchmark. Only at that
time will the server send a ’ready’ signal to the client.

4 CONCLUSIONS

We have defined a new Cloud benchmark suite that rep-
resents the common workloads of today’s public cloud
computing usage. We did a behavior characterization and
performance analysis of the benchmarks, and compared
them to compute-intensive benchmarks - cloud workloads
are often network and I/O intensive benchmarks. A detailed
case study of the use of our PALMScloud benchmark suite
can be found in [26]; this evaluates the performance of a
cloud server implementing a new secure cache architecture,
Newcache, on gem5. With this paper, we are also providing
opensource access to our cloud server benchmarks, already
compiled, configured and tested for gem5 simulations. They
can be downloaded from [11]. We hope that this paper and
our PALMScloud benchmark suite can expedite cloud per-
formance evaluation for other researchers when simulating
new hardware features.
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