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ABSTRACT 
 

PLX is a small, fully subword-parallel instruction set 
architecture designed for very fast multimedia 
processing, especially in constrained environments 
requiring low cost and power such as handheld 
multimedia information appliances. In PLX, we select 
the most useful multimedia instructions added previously 
to microprocessors. We also introduce a few novel 
features: a new definition of predication requiring very 
few bits in each predicated instruction, and datapath 
scalability from 32-bit to 128-bit words, which allows 
different degrees of subword parallelism without any 
changes to the ISA. Performance results from basic 
multimedia kernels testify to PLX’s superiority for 
multimedia processing. 
 
 

1. INTRODUCTION 
 

Multimedia processing involves compute-intensive 
operations and constitutes an increasingly greater 
fraction of the general-purpose processor’s workload [1]. 
To achieve better multimedia performance, instruction 
set architectures (ISAs) have added multimedia 
extensions [2,3], such as MAX-2 [4] to PA-RISC 
processors [5], MMX [6] to IA-32 processors, and a 
superset of these to IA-64 [7] processors. These ISAs 
exploit the following two properties of multimedia 
applications: 

 

• Huge amounts of data parallelism  
• Extensive use of low-precision data  
 

These two properties are exploited well by the use of 
subword parallelism, also called microSIMD parallelism 
[2,8]. In a subword-parallel architecture, the processor’s 
datapath is partitioned into multiple lower-precision 
segments called the subwords, and the instructions 
operate in parallel on these subwords (Figure 1). 

PLX is a fully subword-parallel ISA designed for very 
fast media processing [9]. We introduce the PLX 
architecture along with some examples that highlight 
some of its features, such as low-cost multiplication, a 
new definition of predication, and datapath scalability. 

 
 
 
 
 
 
 
 

Figure 1: Parallel add instruction operating 
simultaneously on multiple subwords 

 
 
 
 
 
 
 
 
 

Figure 2: PLX processor with three functional 
units: ALU, Shift and Permute Unit (SPU), and an 
optional pipelined multiplier  

 
2. PLX INSTRUCTIONS 

 
PLX instructions can be classified into three major 

groups based on the functional unit responsible for their 
execution: ALU instructions, shift and permute 
instructions, and multiply instructions (Figure 2). All 
instructions are 32-bits long and subword sizes are 1, 2, 4 
and 8 bytes.  

Basic ALU instructions shown in Table 1 include 
parallel add and subtract (with modular or saturation 
arithmetic), parallel shift and add, parallel average, 
parallel maximum and minimum, logical and compare 
instructions (Section 3).  
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2.1. Low-cost multiplication 
 
Pshift [left|right] add instructions allow 

low-cost integer and fixed-point multiplication in the 
ALU without requiring a separate multiplier. Since the 
shift amounts are limited to 1, 2 or 3 bits to the right or 
left, they are realized by a small pre-shifter added to the 
ALU [8,10]. Because multiplications can be performed 
efficiently and inexpensively in the ALU, a separate 
integer multiplier becomes optional for very low-cost 
and low-power PLX implementations (as indicated by 
the dotted lines in Figure 2). 

 
Table 1: ALU instructions* 

Instruction Description 
padd iii bac +=  

padd w/ saturation ,iii bac +=  ],[ HLci ∈  

psubtract iii bac −=  

psubtract w/ saturation ,iii bac −=  ],[ HLci ∈  

paverage ),( iii baaveragec =  

psubtract average ),( iii baaveragec −=  

pshift left add iii bnac +<<= )(  

pshift right add iii bnac +>>= )(  

pmaximum ),max( iii bac =  

pminimum ),min( iii bac =  

logical operations (and,or, 
not,xor,and complement) 

 c = a op b , where op is one 
of the logical operations 

cmp     (compare)  Pd1 = rel(a,b); Pd2 = !Pd1 

cmp.pw1 (compare parallel  
        write one) 

see Section 3 

* Variables ci, ai and bi, correspond to the subwords in the 
destination and source registers respectively. (If no subscript is 
given, the entire register is used as source or destination.) L and 
H represent the low and high saturation limits when saturation 
arithmetic is used. If used, n represents an immediate value 
given in the instruction word. The function rel(a,b) compares a 
and b for a relation specified in the instruction word. If this 
relation is true, rel(a,b) returns 1, otherwise it returns 0. Pd1 and 
Pd2 are destination predicate registers in compare instructions. 

 
2.2. Full multiplication 

 
While they are low-cost and effective, the pshift 

[left|right] instructions only allow multiplication 
by constants. Therefore PLX also includes instructions to 
multiply two registers (Table 2). These instructions are 
handled by a separate optional multiplier unit.  

Pmultiply shift right right-shifts the 
products before writing the lower-order half of the bits to 
the destination register. This allows selection of the 
desired 16-bits of each product. Pmultiply odd and 
pmultiply even only multiply the odd or even 
indexed subwords of the source registers, producing full-
length products.  

 

2.3. Shift and permute instructions 
 
PLX has parallel shift and subword permute 

instructions, implemented in the shift and permute unit 
(Table 3). The parallel shift instructions shift the 
subwords in a register to the left or to the right by any 
amount specified either in an immediate field or in a 
register. The shift right pair instruction, first 
introduced in PA-RISC processors, is very useful for bit 
fields spanning two registers [5,7]. This instruction 
concatenates two source registers and shifts this value to 
the right. The lower half of the shifted value is placed in 
the destination register. Rotation is achieved when both 
source operands are the same register. 
 

Table 2: Multiply instructions 
Instruction Description 

pmultiply shift right  lowerhalfiii nbac ])*[( >>=  

pmultiply even iiii bacc 22122 *],[ =+  

pmultiply odd 1212122 *],[ +++ = iiii bacc  

 
Table 3: Shift and permute instructions 

Instruction Description 
pshift left nac ii <<=  

pshift left variable bac ii <<=  

pshift right nac ii >>=  

pshift right variable bac ii >>=  

shift right pair [ ]lowerhalfnbac >>= ],[  

mix left/right see text 
permute see text 
permute variable see text 

 
Subword permutation instructions are used to reorder 

the subwords in a register. Mix instructions described in 
[2-4,7] are very useful for performing matrix 
transposition of subwords packed into multiple registers. 
The permute instruction works on 1-byte and 2-byte 
subwords, and performs a small set of carefully selected 
permutation primitives [11,12]. The permute 
variable instruction uses a second source register to 
specify the permutation control bits, and hence can 
perform any arbitrary permutation of 1-byte or 2-byte 
subwords, with or without repetitions of any subword. 
 

3. PREDICATION 
 
All PLX instructions are predicated. PLX has 128 1-

bit predicate registers organized into 16 predicate register 
sets of 8 predicate registers each. At any given time, only 
one of these predicate register sets is active and the 
registers in this set are numbered P0 through P7. The 
active predicate register set is changed in software.  

The predicate registers P1 to P7 can be set and cleared 
using compare instructions (P0 is always true). This 



definition of predication requires only three bits in each 
instruction to specify a predicate register compared to the 
seven bits that would be required if the 128 predicate 
registers were addressed directly. 

Two types of compare instructions set the predicate 
registers in PLX. They are illustrated below, comparing 
two registers, R1 and R2, for equality. 

 
Type 1: cmp.rel (rel field specifies the relation to be tested.) 
Example: cmp.eq R1,R2,P1,P2 
Operation: If R1==R2, P1 � 1 and P2 � 0, else P1 � 0 and P2 � 1. 
 
Type 2: cmp.pw1.rel (pw1 stands for parallel write one.) 
Example: cmp.pw1.eq R1,R2,P1,P2 
Operation: If R1==R2, P1 � 1 and P2 � 0, else P1 and P2 are 
unchanged. 

 
The first type of compare is useful for implementing 

if-then-else statements without conditional branch 
instructions. The second type differs from the first 
because it writes the predicate registers only if the 
relation specified in the rel field is true. This allows 
multiple cmp.pw1.rel instructions to be executed in 
the same cycle, targeting the same predicate registers, to 
speedup complex conditional expressions. The values in 
the predicate registers must be initialized before using 
cmp.pw1.rel instructions. 

PLX also has load, store and jump instructions, as 
needed for a stand-alone processor. 

 
4. DATAPATH SCALABILITY 

 
PLX can be implemented as a 32-bit, 64-bit or 128-bit 

architecture without any changes to the ISA. To allow 
this, PLX instructions are designed to work for these 
different word sizes. All subword sizes of 1, 2, 4 and 8 
bytes are supported, up to the larger of the word size or 8 
bytes: a 32-bit PLX does not support 8 byte subwords 
and a 128-bit PLX does not support 16-byte subwords. 

Compared to a 64-bit PLX, a 32-bit implementation 
has a lower performance, but also a lower cost. On the 
other hand, doubling the datapath width to 128 bits 
effectively doubles the subword parallelism, but at a 
lower cost compared to a superscalar implementation 
with an equivalent degree of operation parallelism.  
 

5. EXAMPLES AND PERFORMANCE 
 

Performance of PLX is verified by simulating three 
commonly used multimedia algorithms in four different 
setups: 1) using a basic RISC-like 64-bit ISA without 
subword parallelism or predication; 2) using 64-bit 
MMX instructions; 3) using 64-bit PLX; and 4) using 
128-bit PLX to demonstrate datapath scalability.  

In all cases, the algorithms are hand-coded and 
optimized in their respective assembly languages. To 

emphasize the effects of ISA features, we keep the 
microarchitecture as simple as possible by using a single-
issue pipeline and assuming a perfect memory system, 
where all loads and stores take a single cycle. Execution 
latencies are properly accounted for, with single-cycle 
ALU and SPU instructions and three-cycle multiply 
instructions. Whenever possible, instructions are 
scheduled to eliminate pipeline stalls caused by data 
dependencies. 

The simulation software used is part of a 
comprehensive ISA research toolbox developed under 
the PLX project [9]. In addition to a cycle-accurate 
customizable simulator, it includes an assembler and a 
compiler as well as other auxiliary tools for workload 
characterization and performance analysis.  

Performance results are shown in Table 4, as 
speedups of the second, third and fourth setups over the 
first one.  

 
5.1. Digital filtering 
 

The most common DSP kernel is the digital filter. 
Applications include frequency-domain alterations of 
signals; low-pass, high-pass and band-pass filtering; 
audio equalization, adaptive filtering and speech 
compression. We simulate a 4-tap finite impulse 
response (FIR) filter that uses fixed-point numbers for 
both input data and coefficients. This algorithm benefits 
most from subword-parallelism and the low-cost 
multiplication that is offered by the pshift 
[left|right] add instructions. 

The 64-bit PLX is 4.48 times faster than the basic 
ISA, and also 4.07 times faster than MMX. A 128-bit 
PLX doubles the performance of a 64-bit PLX. 
 
5.2. Discrete cosine transform 

 
The Discrete Cosine Transform (DCT) and its inverse 

(IDCT) are commonly used code kernels in image and 
video compression such as JPEG, MPEG and H.261. We 
run simulations for an 8x8 2-dimensional DCT using the 
AAN [13] algorithm. 

The most time critical operations in the IDCT 
algorithm are matrix transposition and multiplication by 
fractional constants. Using mix instructions, the 
transposition of an 8x8 matrix of 16-bit IDCT 
coefficients is achieved very efficiently. The average 
number of parallel shift and add (and other) instructions 
required per multiplication in AAN DCT is only 3.5. 
Since four 16-bit multiplications are done in parallel in a 
single-issue 64-bit PLX, this is more than one 
multiplication per cycle, using just a single ALU (and no 
multiplier). A superscalar implementation with multiple 
ALUs can achieve even higher multiplication 
performance using the parallel shift and add instructions. 



5.3. Median filter 
 
Median filter is an image-processing algorithm used 

for noise reduction. Its most compute-intensive step is to 
find the median of nine 8-bit pixels enclosed within a 
3x3 box that is stepped across the whole image. To 
illustrate the PLX compare instructions and predication 
feature, we use a bubble-sort algorithm to sort the nine 
pixels, and then take the center value in the sorted list as 
the desired median. 

We show how the evaluation of conditionals in the 
sorting algorithm is accelerated with cmp.pw1 
instructions. Eight pairs of registers are compared for 
equality. Decisions are made based on whether the 
equality holds for all the comparisons or not. Without 
predication, these equality tests require at least eight 
serial comparisons, interspersed with conditional jump 
instructions. In PLX, the cmp.pw1.ne (compare, 
parallel write one, not equal) instruction is used to 
evaluate the comparisons in parallel as follows: 
 

Optimized Comparison Subroutine in Median Filter 
(R1-R8 are compared to R11-R18 respectively for equality.) 
 
01. P0 cmp.ne     R0,R0,P1,P0;;  # Init P1 to 0 
02. P0 cmp.pw1.ne R1,R11,P1,P0 
03. P0 cmp.pw1.ne R2,R12,P1,P0 
04. P0 cmp.pw1.ne R3,R13,P1,P0 

... 
09. P0 cmp.pw1.ne R8,R18,P1,P0;; 
10. P1 jmp        sometarget;; 

 
The double semi-columns are used to separate 

instruction groups that must be executed in different 
cycles. The theoretical limit for the execution of this 
sequence is three cycles. For a two-way superscalar 
implementation, six cycles are required.  

The median filter was further optimized by the use 
of shift right pair, pmaximum and pminimum 
instructions, for an overall speedup of about 10x over the 
non-subword-parallel implementation. A pair of 
pmaximum and pminimum instructions can sort 8 bytes 
in parallel on a 64-bit PLX, and 16 bytes in parallel on a 
128-bit PLX. 

 
Table 4: Speedups over the basic ISA 

 MMX (64 bits) 64-bit PLX 128-bit PLX 
FIR Filter 1.10 4.48 9.83 
AAN DCT  1.97 3.10 6.17 
Median Filter 6.50 10.66 19.53  
 
In each case, 64-bit PLX is much faster than MMX 
(which has the same degree of subword parallelism), and 
128-bit PLX provides a further 2x speedup. 
 

6. CONCLUSIONS 
 
The PLX architecture is capable of delivering very 

high multimedia performance at only a fraction of the 

complexity of existing microprocessors with multimedia 
extensions. The 32-bit instructions of PLX result in a 
higher code density compared to architectures with 
longer instructions such as IA-64. In addition PLX has a 
novel definition of predication that allows all instructions 
to be predicated with 128 predicate registers, while only 
consuming three bits in each instruction. We plan to 
investigate more thoroughly the usefulness of predication 
in reducing branch penalties in media programs. Another 
novel property of PLX is datapath scalability, which 
allows processor implementations with different datapath 
sizes using the same ISA. This gives extra flexibility in 
balancing complexity versus cost.  

Our results show that very high multimedia 
performance can be achieved with a simple and low-cost 
ISA like PLX. This makes PLX especially suitable for 
constrained environments such as wireless multimedia 
information appliances, where high multimedia 
performance and low cost and power are required.  
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