
Advanced Bit Manipulation Instruction Set Architecture

Yedidya Hilewitz and Ruby B. Lee
Princeton Architecture Laboratory for Multimedia and Security

Department of Electrical Engineering

Princeton University, Princeton, NJ 08544 USA
{hilewitz, rblee@princeton.edu}

1. Introduction
Microprocessor instruction set architectures currently offer support for operations on full
processor words and, more recently, on subwords of 8, 16, 32 or 64 bits. However, there is little
support for bit-oriented operations beyond the bitwise logical operators and shift operators. Some
ISAs, such as PA-RISC and Itanium, offer more advanced instructions such as extract and
deposit that combine mask and shift operations in one instruction.
We believe that numerous applications domains benefit from instructions that operate on bits.
We propose instructions (Table 1) to manipulate bits – permutation instructions to reorder bits
and subwords, and other instructions to compact and expand bit patterns, as well as instructions
to efficiently compute the parity of bits. We have examined applications domains ranging from
cryptography to bioinformatics, from cryptanalysis to channel coding and shown that advanced
bit operations have relevance.
We are soliciting your help to broaden our application analysis. We present our proposed
instructions and ask how can these instructions help your domain? Can your algorithms be
slightly modified to take advantage of our proposed instructions? Can our instructions be slightly
modified to enable performance improvements for your applications?

Table 1: Summary of Advance Bit Manipulation Instructions
Instruction Mnemonic Description Instruction Latency in

Cycles (relative to
single cycle ALU)

Butterfly bfly Performs butterfly permutation of input 1
Inverse Butterfly ibfly Performs inverse butterfly permutation of input 1
Group grp Divides input into two groups – the bits marked with a

“1” are grouped to the right and the bits marked with a
“0” are grouped to the left

3

Parallel Permute pperm A subword of the output is assigned the values of the
bits of the input with positions given in a list of
indices

1

Mix mix Even or odd-indexed subwords are selected alternately
from the two source registers.

1

Check check Subwords are picked alternately from the two source
registers in a checkerboard pattern.

1

Excheck excheck Subwords are picked alternately from the two source
registers in a reversed checkerboard pattern.

1

Mux mux Performs specific subword permutations 1
Static pex The bits in the input marked with a “1” are extracted

and grouped to the right.
1 Parallel

Extract
Variable pex.v The bits in the input marked with a “1” are extracted

and grouped to the right. The bit marking is variable.
3

 1
Yedidya Hilewitz and Ruby B. Lee, Advanced Bit Manipulation Instruction Set Architecture, Princeton
University Department of Electrical Engineering Technical Report CE-L2006-004, November 2006.

Static pdep A right justified field of bits is expanded and
deposited in bit positions marked with a “1”.

1 Parallel
Deposit

Variable pdep.v A right justified field of bits is expanded and
deposited in bit positions marked with a “1”. The bit
marking is variable.

3

Population Count popcount The count of the number of bits in the input set to “1”. 2
Dot Product dotprod Dot product of the inputs viewed as bit vectors. 1

n × n bmm.1rR Multiplication of 1 × n bit vector by n × n bit matrix. 1 (n = 64)
k × n bmm.2rR Multiplication of 2n-bit matrix by kn-bit matrix. 1

Bit Matrix
Multiply

1 × n bmm.2r Multiplication of n-bit matrix by n-bit matrix. 1
Parallel Table Lookup ptlu Each byte of a word is independently used as an offset

into parallel on-chip tables. The table lookups are
performed in parallel and the results are combined.

1

2. Permutation Instructions
2.1 Butterfly (bfly) and Inverse Butterfly (ibfly) [6, 8, 10, 11, 12]

• Format: bfly r1 = r2, ar.b1, ar.b2, ar.b3
ibfly r1 = r2, ar.ib1, ar.ib2, ar.ib3

• Description: The bfly and ibfly instructions permute their inputs, r2, using butterfly
and inverse butterfly circuits, respectively (Fig. 1 – each box is a switch that either passes
through or swaps its inputs depending on the value of a configuration bit). The
concatenation of these circuits forms a Beneŝ network, a permutation network.
Consequently, a single execution of both instructions can yield any of the n! permutations
of n bits.

• Advantages: The circuits have single cycle latency (i.e., latency less than of an ALU of
similar width). The circuits are small in area, each consisting solely of nlg(n) 2:1
multiplexers.

• Disadvantages: Each circuit requires nlg(n)/2 configuration bits. For n = 64, three
registers of configuration bits are necessary, in addition to register needed for the data
bits. Typical architecture support only two or three input operands. Thus, we propose to
use special registers, ar.b1-b3 and ar.ib1-ib3 (a la PA-RISC special functional unit registers
or Itanium application registers), dedicated to supplying the bits to the functional units. In
addition to this extra state, there is extra overhead in loading these registers if the
permutation is changing.

• Example Usage: P-Box permutation in DES cipher round function.

 2

Fig. 1: 8-bit butterfly and inverse butterfly networks.

2.2 Group (grp) [3, 5, 10, 12]

• Format: grp r1 = r2, r3

• Description: The grp instruction permutes its data input, r2, by grouping to the right
those bits flagged with a 1 in a configuration input, r3, and grouping to the left those bits
flagged with a 0 in the configuration input, maintaining the order of the bits within each
group (Fig. 2). A series of lg(n) grp instruction can yield any permutation.

• Advantages: grp has been used in a fast radix-2 sorting algorithm. The use of grp as a
cryptographic primitive has also been explored.

• Disadvantages: The current implementation of grp consists of parallel inverse butterfly
circuits and parallel hardware decoders that translate the configuration input to the
inverse butterfly control bits. These decoders are over 2.5 times the size of a butterfly or
inverse butterfly network. Thus this circuit is much larger than just a single inverse
butterfly circuit. Furthermore, the decoder is slow, causing the latency of grp to be 2 or
3 cycles.

• Example Usage: P-Box permutation in DES cipher round function.

Fig. 2: 8-bit grp operation.

2.3 Parallel Permute (pperm/pperm3r) [3, 5]

• Format: pperm.x r1 = r2, r3
pperm3r.x r1 = r2, r3, r4

 3

• Description: pperm (and pperm3r) permutes its data input, r2, according to an explicit
list of source indices found in a configuration input, r3. A sub-opcode, x, specifies at what
subword offset in the destination the bits are written. Each index requires lg(n) bits, so at
most n/lg(n) indices can be stored per word. As n indices must be specified, a minimum
of lg(n) instructions is required to yield any arbitrary permutation. pperm has only two
inputs and zeros the remaining positions in the output (and thus requires additional or
instructions to combine results). pperm3r has three inputs and keeps the bits in the
remaining positions from the third input, r4.

• Advantages: pperm can additionally permute bits with repetition, simply by repeating a
source index.

• Disadvantages: pperm requires the full sequence of instructions even for simple
permutations. pperm requires more than lg(n) instructions for an arbitrary permutation
(8 instructions for n = 64 if each index is byte aligned).

• Example Usage: Expansion permutation in DES cipher round function.

2.4 Mix (mix) [1, 2]

• Format: mix.sw.l/r r1 = r2, r3

• Description: mix performs a permutation on the 1, 2, 4-bit, 1, 2 or 4-byte subwords in r2
and r3. The subwords in each source register are grouped in pairs and one element from
each pair is selected for the output, alternating between the source registers (Fig. 3). The
left form (.l) selects the left element of each pair and the right form (.r) selects the right
element from each pair. Currently only 1-byte and larger mix instructions exist in PA-
RISC and IA-64.

• Advantages: mix can be used for efficiently reshaping subword matrices (e.g., to
transform from column major to row major). mix can also be used to expand the width of
subwords (by mixing with the zero register).

• Example Usage: Reshaping subword matrices in IDCT.

Fig. 3: mix.2.l operation (for 64-bit words)

2.5 Check (check) and Excheck (excheck) [2]

• Format: ex/check.sw r1 = r2, r3

• Description: check and excheck perform a permutation on the 1, 2 or 4-byte
subwords in r2 and r3. The subwords in each source register are grouped in pairs and one

 4

element from each pair is selected for the output, alternating between the source registers
(Fig. 4). check selects the left element of each pair from r2 and the right element of
each pair from r3, forming a checkerboard pattern. excheck reverses the pattern. Bit-
level check and excheck can also be defined, if deemed necessary.

• Example Usage: check and excheck can be used to achieve the rearrangements of area-
mapped 2 × 2 matrices.

Fig. 4a: check.2 operation

Fig. 4b: excheck.2 operation

2.6 Mux (mux) [23]

• Format: mux.sw.{rev,mix,shuf,alt,brcst} r1 = r2

• Description: mux performs a set of five byte permutations of r2 (Fig. 5). rev reverse the
bytes; mix performs a mix operation on the two halves of r2; shuf performs a shuffle
operation on the two halves of r2; alt performs an alternate operation on the two halves
of r2; brcst replicates the least significant byte (or 2 bytes) of r2 to all subwords. Bit-
level mux is performed by the bit-level permutation instructions.

• Advantages: Compact specification of specific common byte-level permutations.
• Example Usage: mux.brcst can be used to create a vector of constant values.

Fig. 5a: mux.1.rev operation

 5

Fig. 5b: mux.1.mix operation

Fig. 5c: mux.1.shuf operation

Fig. 5d: mux.1.alt operation

Fig. 5e: mux.1.brcst operation

3. Bit Compression and Expansion
3.1 Parallel Extract (pex) [12-14]

• Format: pex r1 = r2, r3, ar.ib1, ar.ib2, ar.ib3

• Description: The pex instruction groups to the right the bits in its data input, r2, flagged
with a 1 in a configuration input, r3 (Fig. 6). The remaining bit positions in the output are
zeroed. pex is a generalization of the extract (extr) instruction found in PA-RISC and
Itanium. extr performs a mask and shift operation – it right justifies a single field of bits
from its input. pex compresses and right justifies any subset of bits in its input. pex can
also be viewed as the right half of a grp operation.

• Advantages: The pex implementation uses an inverse butterfly circuit. The ibfly
control bits are calculated in advance and pex functions similarly to ibfly and shares
all of its advantages. (Note that the pex instruction actually performs a masked ibfly
operation and can be used as such by setting control bits ar.ib1-ib3 so as to perform an
operation not corresponding to pex with mask r3.)

 6

• Disadvantages: As pex uses the inverse butterfly circuit, it has the same disadvantages –
extra registers and overhead to set those registers for static pex.

• Example Usage: Least significant bit steganography (the least significant bits of image
or sound data are replaced by secret message bits) decoding.

Fig. 6: 8-bit pex operation

3.2 Parallel Extract, variable (pex.v) [12-14]

• Format: pex r1 = r2, r3

• Description: The pex instruction groups to the right the bits in its data input, r2, flagged
with a 1 in a configuration input, r3. The inverse butterfly control bits are dynamically
decoded from r3.

• Advantages: The inverse butterfly control bits are dynamically decoded from data
dependent mask r3 using a dedicated hardware decoder (the same decoder as used for
grp). If the pex operation is loop independent, then the decoder can write its output to
the inverse butterfly control registers and the static, fast pex instruction can be executed
in the loop.

• Disadvantages: Dynamic pex requires a sizable and slow decoder.

• Example Usage: Least significant bit steganography decoding in which only a random
subset of subwords are selected for embedding of message bits.

3.3 Parallel Deposit (pdep) [12, 14]

• Format: pdep r1 = r2, r3, ar.b1, ar.b2, ar.b3

• Description: The pdep instruction expands a right justified field of bits in its data input,
r2 to the positions flagged by 1s in a configuration input, r3 (Fig. 7). The remaining bit
positions in the output are zeroed. pdep is a generalization of the deposit (dep)
instruction found in PA-RISC and Itanium. dep performs a mask and shift operation – it
shifts a single right justified field of bits in the input to any position in the output. pdep
expands a single right justified field of bits to any arbitrary set of positions in the output.

• Advantages: The pdep implementation uses a butterfly circuit. The bfly control bits
are calculated in advance and pdep functions similarly to bfly and shares all of its
advantages. (Note that the pdep instruction actually performs a masked bfly operation
and can be used as such by setting control bits ar.ib1-ib3 so as to perform an operation not
corresponding to pdep with mask r3.)

 7

• Disadvantages: As pdep uses the inverse butterfly circuit, it has the same disadvantages
– extra registers and overhead to set those registers for static pdep. Functionally, dep
can maintain the values of the bits not overwritten in the destination. For pdep, a third
input operand would be required to support this feature.

• Example Usage: Least significant bit steganography encoding.

Fig. 7: 8-bit pdep operation.

3.4 Parallel Deposit, variable (pdep.v) [12, 14]

• Format: pdep r1 = r2, r3

• Description: The pdep instruction expands a right justified field of bits in its data input,
r2 to the positions flagged by 1s in a configuration input, r3. The remaining bit positions
in the output are zeroed. pdep is a generalization of the deposit (dep) instruction found
in PA-RISC and Itanium. dep performs a mask and shift operation – it shifts a single
right justified field of bits in the input to any position in the output. pdep expands a
single right justified field of bits to any arbitrary set of positions in the output.

• Advantages: The inverse butterfly control bits are dynamically decoded from data
dependent mask r3 using a dedicated hardware decoder (the same decoder as used for
grp except the control bits are fed to butterfly circuit reversing the order of the stages). If
the pdep operation is loop independent, then the decoder can write its output to the
inverse butterfly control registers and the static, fast pdep instruction can be executed in
the loop.

• Disadvantages: Dynamic pdep requires a sizable and slow decoder. Functionally, dep
can maintain the values of the bits not overwritten in the destination. For pdep, a third
input operand would be required to support this feature.

• Example Usage: Least significant bit steganography encoding in which only a random
subset of subwords are selected for embedding of message bits.

4. Dot Product
4.1 Population Count (popcnt) [23]

• Format: popcount r1 = r2

• Description: The popcnt instruction counts the number of bits set to “1” in input r2.
This instruction exists in ISAs such as Itanium.

 8

• Advantages: In addition its normal usage, popcnt can be used to compute parity as the
least significant bit of the count is the parity of the word.

• Example Usage: Error correcting coding.

4.2 Bit Vector Dot Product (dotprod)

• Format: dotprod r1 = r2, r3

• Description: The dotprod instruction ands its two inputs, r2 and r3, and then computes

the parity of the result: where {i} indicates the ith bit of the operand and

‘·’ indicates bitwise and.

{} {}irirr
n

i
32

1

0
1 ⋅=⊕

−

=

• Advantages: dotprod replaces a sequence of
o and of the two inputs,
o popcnt of the result and
o and to isolate the least significant bit.

• Example Usage: Error correcting coding.

4.3 Bit Matrix Multiply (bmm) [18, 19]

• Format: bmm r1 = r2, Rbmm for 1 × n bit vectors r1 and r2, and n × n bit matrix Rbmm

• Description: bmm multiplies a 1 × n bit vector by an n × n bit matrix: r1 = r2 × Rbmm
T mod

2 (where × is standard matrix multiplication) (Fig. 8). A single bit, i, of r1 is the bit vector
dot product of r2 and the ith row of Rbmm. A single vector-matrix multiplication calculates
n dot products in a single instruction.
We are also exploring multiplication primitives for decomposing the bmm operation into
multiplication of submatrices.

• Advantages: In addition to parity/dot product operations, bmm is also a superset of all the
bit manipulation instructions listed. A single “1” in the ith row of Rbmm, say in the jth
column, shifts the bit in the jth column of r2 to the ith column of r1. Thus, with proper
configuration of the B matrix, all permutations, with repetition and masking, are
computable using bmm.
Another possible use of bmm is bit matrix transpose (bmt). If n r2 vectors form the n × n
identity matrix then the corresponding n r1 vectors contain the transpose of Rbmm.

• Disadvantages: In order to efficiently compute bmm, the entire Rbmm matrix must be read
in a single cycle. This requires extra storage to hold the matrix and overhead to load this
storage. Additionally, the cost of dedicating storage to hold the entire matrix may prove
too high. This is why the smaller primitives are being explored.

• Example Usage: Error correcting coding.

 9

5. Table Lookup
5.1 Parallel Table Lookup (ptlu) [20-22]

• Format (generic): ptlu r1 = r2, r3

• Description: ptlu interprets the bytes of a word, r1, as independent indices into a set of
tables and then looks up the values in these tables in parallel and combines the result with
the second input, r2, in the output word (Fig. 8). The size of the entries and the method of
combining the table output (logical, concatenation, etc.) is flexible (our current
description is optimized for AES and thus has 32-bit entries and can XOR, concatenate or
select individual entries).
While ptlu is not a bit manipulation instruction, we list it due to the synergistic effects
of using bit manipulation instruction together with ptlu. For example, the bytes of a
word might need to be permuted prior to lookup. Alternatively, the data is less than a byte
wide, so the indices need to be expanded to byte boundaries prior to lookup.

• Advantages: ptlu can greatly speed up algorithms that use table lookups. Not only are
8 lookups performed in parallel in a 64-bit machine, but the tables are stored in dedicated
on-chip memory (essentially another block of L1 cache), allowing for single-cycle
latency and the elimination of cache misses that could potentially plague lookups to main
memory.

• Disadvantages: A dedicated block of on-chip memory is required to support this
operation. Efficiently managing multiple tables is still an open issue.

• Example Usage: Fast AES implementation.

Fig. 8: 64-bit ptlu

 10

6. Example Applications
We present a number of examples of applications that benefit from bit-oriented operations in the
ISA. We hope that these examples provide insight for the analysis of the relevance of bit-
oriented operations to your own application domain.

6.1 Cryptography
A number of popular ciphers, such as DES, have permutations as primitive operations. We have
previously shown that the inclusion of permutation instructions such as bfly/ibfly or grp
can greatly improve performance of the inner loop of these functions [3, 5]. Also see [9].

6.2 Binary Compression and Decompression
The Itanium [23] and AltiVec [24] parallel compare instruction produce subword masks – the
subwords for which the relationship is false contain all zeros and for which the relationship is
true contain all ones. This representation is convenient for subsequent subword masking or
merging. The SPARC VIS [25] parallel compare instruction produces a bit mask of the results of
the comparisons. This representation is convenient if some decision must be made based on the
outcome of the multiple comparisons. Converting from the Itanium representation to the VIS
representation for k subwords requires k extract instructions to extract a bit from each subword
and k-1 deposit instructions to concatenate the bits; a single pex instruction accomplishes the
same thing. The SSE instruction pmovmskb [26], which creates an 8- or 16-bit mask from the
most significant bit from each byte of a MMX or SSE register and stores the result in a general
purpose register, serves a similar purpose. However, pex offers greater flexibility than the fixed
pmovmskb, allowing the mask, for example, to be derived from larger subwords.

Similarly, binary image compression performed by MATLAB’s bwpack function [27] benefits
from pex. Binary images in MATLAB are typically represented and processed as byte arrays – a
byte represents a pixel and has permissible values 0x00 and 0x01. However, certain optimized
algorithms are implemented for a bitmap representation, in which a single bit represents a pixel.
To produce one 64-bit output word requires 64 extr and 63 dep instructions; 8 pex and 7 dep
instructions are equivalent (Fig. 9). For decompression, as with bwunpack, 64 extr and 56 dep
instructions are required to decompress one 64-bit input word; 7 extr and 8 pdep instructions are
equivalent.

(a)

 11

(b)

Fig. 9: (a) 1 bit of output requires 1 extr and 1 dep; (b): 1 byte of output requires 1 pex and 1 deposit

6.3 Least Significant Bit Steganography
Steganography refers to the process of hiding an a secret message, not by directly obscuring the
message content as with cryptography, but rather by embedding the message in a larger,
innocuous cover message. A simple type of steganography is least significant bit (LSB) [28]
steganography in which the least significant bits of the color values of pixels in an image or the
intensity values of samples in a sound file are replaced by secret message bits. LSB
steganography encoding utilizes a pdep instruction to expand the secret message bits and place
them at the least significant bit positions of every subword. Decoding uses a pex instruction to
extract the least significant bits from each subword and re-form the secret message. Fig. 10
depicts an example LSB steganography encoding operation in which the 2 least significant bits
from each 16-bit sample of PCM encoded audio is replaced with secret message bits.

Fig. 10: LSB steganography encoding (2 bits per 16-bit PCM encoded audio sample)

6.4 Binary Image Morphology
Binary image morphology is a collection of techniques for binary image processing such as
erosion, dilation, opening, closing, thickening, thinning, etc. The bwmorph function [27] in
MATLAB implements these techniques primarily through one or more table lookups applied to
the 3 × 3 neighborhood surrounding each pixel (i.e. the value of 9 pixels is used as index into a
512 entry table). In its current implementation, bwmorph processes byte array binary images, not
bitmap images, possibly due to the difficulty in extracting the neighborhoods in the bitmap form.
The relative pixel position is used as index into a 3 × 3 table that gives the actual index weight
for that position. The index weights for the 9 pixels are added and the result is used as the index
into the pixel transformation lookup table. If the images are processed in bitmap form, a single
pex instruction extracts the entire index at once (assuming a 64-bit word contains an 8 × 8 block
of 1-bit pixels, Fig. 11). As the neighborhood changes for each pixel, the dynamic pex.v
instruction may be needed. Alternatively, the data can be shifted so that the neighborhood to be
extracted remains in the same bit positions.

 12

Fig. 11: Using pex to extract a 3 × 3 neighborhood of pixels

6.5 Transfer Coding
Transfer coding is the term applied when binary data is encoded to allow for safe transmission
using a text-only protocol. Uuencoding [29] is one such encoding originally used for transferring
binary data over email or usenet. In uuencoding, each set of 6 bits is aligned on a byte boundary
and 32 is added to each value to ensure the result is in the range of the ASCII printable
characters. Without pdep, each field is individually extracted and has the value 32 added to it.
With pdep, 8 fields are aligned at once and a parallel add instruction adds 32 to each subword
simultaneously (Fig. 12). Similarly, for decoding, a parallel subtract instruct deducts 32 from
each subword and then pex compresses 8 6-bit fields.

Fig. 12: Uuencode of the word ‘bit’ using pdep

A similar transfer encoding is Base64 [30], which is the binary data transfer coding for the
Multipurpose Internet Mail Extensions (MIME) protocol which describes the format of email
messages. Currently, binary email attachments are most likely encoded using base64. Base64
uses each 6-bit value from the input stream as a lookup into the string
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" (note
that this string is sometimes modified due to context).

Some popular email applications, such as PINE or KDE Kmail, perform base64 encoding in a
straightforward fashion by extracting each 6-bit field and use the field as a lookup into the string.
Other applications, such as Mozilla Thunderbird, determine the output directly as a function of
the input value (i.e. if the input is in the range 0-25, the output equals the input plus 65 (the value
of ASCII ‘A’), etc.). pex/pdep, together with our parallel table lookup instruction (ptlu), can
greatly accelerate either process. For encoding, pdep is used to align each 6-bit index on a byte
boundary and ptlu is used to perform 8 lookups in parallel or multimedia (subword parallel
arithmetic) instructions are used to perform the comparisons and additions. For decoding, ptlu is
used to perform the reverse lookups in parallel or multimedia instructions are used to compute
the original indices and then pex compresses the eight 6-bit results.

6.6 Bioinformatics
Bioinformatics is the field of analysis of genetic information. DNA, the genetic code contained
within the nucleus of each cell, is a strand of the nucleotides adenine, cytosine, guanine and

 13

thymine. These nucleotides are typically represented by an ASCII string using the characters A,
C, G and T. However, a 2-bit (rather than 8-bit ASCII) encoding of the nucleotides [31] is more
efficient and can significantly increase performance of matching and searching operations on
large genomic sequences (the human genome contains 3.2 billion nucleotides). The ASCII codes
for the characters A, C, G and T differ in bit positions 2 and 1 (A: 00, C: 01, G: 11, T: 10) and
these two bits can be used to encode each nucleotide. Thus a fourfold compression of a genomic
sequence simply requires a single pex instruction to select bits 2 and 1 of each byte of a word
(Fig. 13). Without pex, a sequence of 8 extract instructions is required to isolate each 2-bit field
individually.

Fig. 13: Compression of sequence ATTCGCAC using pex

A strand of DNA is a double helix – there are really two strands with the complementary
nucleotides, A↔T and C↔G, aligned. When performing analysis on a DNA string, often the
complementary string is analyzed as well. To obtain the complementary string, the bases are
complemented and the entire string is reversed, as the complement string is read from the other
end. The reversal of the DNA string amounts to a reversal of the ordering of the pairs of bits in a
word. This is a straightforward bfly or ibfly permutation. Without these instructions, a
sequence of ands, shifts and ors (and a mux@rev) are required to perform the permutation.

The DNA sequence is transcribed by the cell into a sequence of amino acids or a protein. Often
the analysis of the genetic data is more accurate when performed on a protein basis. A set of
three nucleotides, or 6 bits of data, corresponds to a protein codon. Translating the nucleotides to
a codon requires a table lookup operation using each set of 6 bits as an index. This process is
identical to the base64 encoding described in the previous section and thus is accelerated by the
pdep instruction.

6.7 Error Correcting Codes
Error correcting codes are used in virtually all real-world digital communication settings to
correct bit errors introduced by channel noise. They are also used in storage settings such as ECC
RAM to correct for soft bit errors or RAID to prevent data loss in case of physical hard disk
failure. In error correcting coding the parity of subsets of message bits are computed and sent
along with the message. The knowledge of the parity bits allows for the detection and possibly
correction of bits flipped to due channel noise. In Hamming codes, the parity bits are created by
direct multiplication of the symbols with a generator matrix – a bit matrix multiply operation.
Convolutional coding processes the input as a continuous stream. One or more shift registers
store some number of previous input bits and the outputs are the parity of subsets of the stored
bits and the next input bits. This type of coding can also be mapped to bit matrix multiply by
replicating and shifting the matrix containing the generator polynomials across the bit matrix to
emulate the effect of the shift register memory. For example, the IEEE 802.11g 22 Mbit and 33

 14

Mbit convolutional coder is shown in Fig. 14(a) [32]. The equivalent B matrix is shown in Fig.
14(b).

(a)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0011001100
1001100010
0100001001

G

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

O

0000
0000
0000

00
00
00

G

G

G

B

(b)
Fig. 14: (a) IEEE 802.11g 22Mbit and 33Mbit convolutional coder (b) Equivalent B matrix with generator matrix G
replicated and shifted.

References:

PALMS papers are available for download at: http://palms.ee.princeton.edu/publications.html

Permutation Instructions:
[1] R. Lee. “Subword Parallelism with MAX-2,” IEEE Micro. vol. 16, no. 4, pp.51-59, August 1996.
[2] R. B. Lee, “Subword Permutation Instructions for Two-Dimensional Multimedia Processing in MicroSIMD

Architectures,” Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP 2000), pp. 3-14, July 2000.

[3] Z. Shi and R. B. Lee, “Bit Permutation Instructions for Accelerating Software Cryptography,” Proceedings of
the IEEE International Conference on Application-Specific Systems, Architectures and Processors, pp. 138-
148, July 2000.

[4] Xiao Yang and Ruby B. Lee, “Fast Subword Permutation Instructions Using Omega and Flip Network Stages,”
Proceedings of the International Conference on Computer Design (ICCD 2000), pp. 15-22, September 2000.

[5] R. B. Lee, Z. Shi, and X. Yang, “Efficient Permutation Instructions for Fast Software Cryptography,” IEEE
Micro, vol. 21, no. 6, pp. 56-69, December 2001.

[6] R. B. Lee, Z. Shi and X. Yang, “How a Processor can Permute n bits in O(1) cycles,” Proceedings of Hot Chips
14 – A symposium on High Performance Chips, August 2002.

 15

[7] Zhijie Shi and Ruby B. Lee, “Subword Sorting with Versatile Permutation Instructions,” Proceedings of the
International Conference on Computer Design (ICCD 2002), pp. 234-241, September 2002.

[8] Z. Shi, X. Yang and R. B. Lee, “Arbitrary Bit Permutations in One or Two Cycles,” Proceedings of the IEEE
International Conference on Application-Specific Systems, Architectures and Processors, June 2003.

[9] R. B. Lee, R. L. Rivest, M.J.B. Robshaw, Z.J. Shi, and Y.L. Yin, On Permutation Operations in Cipher Design,
Proceedings of the International Conference on Information Technology (ITCC), vol. 2, pp. 569 - 577, April
2004.

[10] Z. J. Shi, Bit Permutation Instructions: Architecture, Implementation and Cryptographic Properties, Phd.
Thesis, Princeton University, June 2004.

[11] R. B. Lee, X. Yang and Z. J. Shi, “Single-Cycle Bit Permutations with MOMR Execution,” Journal of
Computer Science and Technology, vol. 20, no. 5, pp. 577-585, September 2005.

[12] Y. Hilewitz and R. B. Lee, “Advanced Bit Manipulation Instructions,” Princeton University Department of
Electrical Engineering Technical Report, in progress.

Bit Compression and Expansion:
[13] R. B. Lee and Y. Hilewitz, “Fast Pattern Matching with Parallel Extract Instructions,” Princeton University

Department of Electrical Engineering Technical Report CE-L2005-002, February 2005.
[14] Y. Hilewitz and R. B. Lee, “Fast Bit Compression and Expansion with Parallel Extract and Parallel Deposit

Instructions,” Proceedings of the IEEE 17th International Conference on Application-Specific Systems,
Architectures and Processors (ASAP), pp. 65-72, September 11-13, 2006 (Best Paper Award).

Also [12]

Permutation Functional Unit Implementation:
[15] Zhijie Jerry Shi and Ruby B. Lee, “Implementation Complexity of Bit Permutation Instructions,” Proceedings

of the Asilomar Conference on Signals, Systems, and Computers, pp. 879-886, November 2003 (Nominated for
Best Student Paper Award).

[16] Y. Hilewitz, Z. J. Shi, and R. B. Lee, “Comparing Fast Implementations of Bit Permutation Instructions,”
Proceedings of the 38th Annual Asilomar Conference on Signals, Systems, and Computers, pp. 1856-1863,
November 2004.

[17] Y. Hilewitz and R. B. Lee, “Performing Advanced Bit Manipulations Efficiently in General-Purpose
Processors,” Princeton University Department of Electrical Engineering Technical Report CE-L2006-003,
October 2006 (in submission to ARITH-18).

Also [14]

Dot Product:
[18] William Lee, Gary J. Geissler, Steven J. Johnson, Alan J. Schiffleger, Vector Bit-Matrix Multiply Functional

Unit, US patent 5,170,370, to Cray Research, Inc., Patent and Trademark Office, 1990.
[19] Y. Hilewitz and R. B. Lee, “Towards Supercomputer Performance on Commodity Microprocessors –

Implementation of Bit Matrix Multiply in the Itanium Instruction Set Architecture,” Princeton University
Department of Electrical Engineering Technical Report, in progress.

Parallel Table Lookup:
[20] A. Murat Fiskiran and Ruby B. Lee, On-Chip Lookup Tables for Fast Symmetric-Key Encryption, Proceedings

of the IEEE 16th International Conference on Application-Specific Systems, Architectures and Processors
(ASAP), pp. 356-363, July 23-25, 2005.

[21] A. Murat Fiskiran and Ruby B. Lee, Fast Parallel Table Lookups to Accelerate Symmetric-Key Cryptography,
Proceedings of the International Conference on Information Technology Coding and Computing (ITCC),
Embedded Cryptographic Systems Track, pp. 526-531, April 2005.

[22] A. Murat Fiskiran, Instruction Set Architecture for Accelerating Cryptographic Processing in Wireless
Computing Devices, PhD. Thesis, Princeton University, August 2005.

Commercial ISAs:
[23] Intel Corporation, Intel® Itanium® Architecture Software Developer's Manual, Vol. 1-3, rev. 2.2, Jan. 2006.
[24] IBM Corporation, PowerPC Microprocessor Family: AltiVec™ Technology Programming Environments

Manual, Version 2.0, July 2003.
[25] Sun Microsystems, The VIS™ Instruction Set, Version 1.0, June 2002.

 16

[26] Intel Corporation, IA-32 Intel® Architecture Software Developer’s Manual, Vol. 1-2, 2004.

Applications:
[27] The Mathworks, Inc., Image Processing Toolbox User’s Guide:
 http://www.mathworks.com/access/helpdesk/help/toolbox/images/images.html.
[28] E. Franz, A. Jerichow, S. Möller, A. Pfitzmann, and I. Stierand “Computer Based Steganography,” Information

Hiding, Springer Lecture Notes in Computer Science, vol. 1174, pp. 7–21, 1996.
[29] “Uuencode,” Wikipedia: The Free Encyclopedia, http://en.wikipedia.org/wiki/Uuencode, 14 Oct 2005.
[30] Internet Engineering Task Force, “The Base16, Base32, and Base64 Data Encodings,” RFC 3548, July 2003.
[31] Cray Corporation, Man Page Collection: Bioinformatics Library Procedures, 2004, available online:

http://www.cray.com/craydoc/manuals/S-2397-21/S-2397-21.pdf.
[32] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11g-

2003.

 17

